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Abstract

Now that complete genome sequences are available for a variety of organisms, the

elucidation of gene functions involved in metabolism necessarily includes a better

understanding of cellular responses upon mutations on all levels of gene products,

mRNA, proteins, and metabolites. Such progress is essential since the observable

properties of organisms – the phenotypes – are produced by the genotype in juxtaposition

with the environment. Whereas much has been done to make mRNA and protein profiling

possible, considerably less effort has been put into profiling the end products of gene

expression, metabolites. To date, analytical approaches have been aimed primarily at the

accurate quantification of a number of pre-defined target metabolites, or at producing

fingerprints of metabolic changes without individually determining metabolite identities.

Neither of these approaches allows the formation of an in-depth understanding of the

biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for

sample preparation and analytical techniques, a number of chemically different classes of

compounds can be quantified simultaneously to enable such understanding. In this review,

the terms describing various metabolite-oriented approaches are given, and the differences

among these approaches are outlined. Metabolite target analysis, metabolite profiling,

metabolomics, and metabolic fingerprinting are considered. For each approach, a number

of examples are given, and potential applications are discussed. Copyright # 2001 John

Wiley & Sons, Ltd.
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Introduction

In all higher organisms, not just plants, the majority
of genes have not yet been studied in any experimental
depth. Roughly a third of Arabidopsis thaliana’s
genes have not been assigned putative functions,
even based upon sequence similarities with ortho-
logs in other organisms, and only nine percent of all
Arabidopsis genes have been studied in any detail.
Moreover, many gene assignments are not specific
enough to indicate biochemical function, or not
detailed enough to define biological roles in a more
comprehensive manner [5]. Gene duplications are
known to be a major source of rapid evolutionary
adaptation, and often result in enzyme isoforms
(paralogs) that carry out the same or highly similar

functions in different cells or organs within one
organism. However, such homologous enzymes
(both orthologs and paralogs) may also have quite
different substrate specificities or altered kinetic
characteristics in order to fulfil new biological roles.
This could explain the huge number of up to
200 000 different metabolites estimated to occur in
the plant kingdom (D. Strack, personal commu-
nication). The full suite of metabolites synthesized
by a biological system comprises its metabolome.
Such a system can be defined by level of biological
organization, such as organism, organ, tissue, cell,
or cell compartment levels. In order to determine
biological function of a metabolite (and, by associa-
tion, its cognate enzyme and enzyme-encoding
gene), an often-used strategy is to perturb a system
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by systematically introducing genetic alterations
and looking for the effect of the perturbation. This
can be done by mutating a gene of interest and
describing phenotypic effects of this mutation
(reverse genetics), or by first identifying an interest-
ing phenotype and then seeking its genetic cause
(forward genetics). In both approaches it is essen-
tial to describe the phenotype accurately. Several
schemes for precisely linking genes to their func-
tions have been suggested, among them metabolic
control analysis [15] and the individual analysis of
steady-state levels of metabolites [80] in order to
comprehensively describe the net result of cellular
regulation on the metabolite level. More common,
however, are approaches that study cellular re-
sponses at the transcript or the protein level (trans-
criptomics and proteomics, respectively). Current
strategies and limitations for the quantitative
analysis of cellular responses at all three gene
product levels (mRNA, proteins, and metabolites)
have been recently summarized in a short review
[24], including thoughts on database requirements
and informatic tools. Today, transcriptomic app-
roaches seem to give the best coverage of genome
level responses. However, due to limitations in
analytical precision and high costs, few transcrip-
tomic studies adequately meet rigid statistical
requirements. On the other hand, proteomic
approaches based on two-dimensional gel electro-
phoresis are well established in many biological
laboratories [78] and are comparatively inexpensive.
However, if the full set of proteins separated by 2D
gels are to be identified, highly automated systems
are needed for cutting spots, digesting proteins,
and analysing peptides using mass spectrometry.
Therefore, protein identification strategies regularly
focus on the most abundant alterations in com-
parative experiments, such as newly appearing (or
completely disappearing) spots, which might lead
to erroneous conclusions, since smaller changes in
protein abundances can lead to clear alterations in
metabolic pathways. Furthermore, low abundance
proteins are regularly overlooked [38] as are
hydrophobic proteins, which are difficult to resolve
using current 2D systems. Quantification of protein
abundances can be performed using isotope coded
affinity tags with precisions as accurate as 12%
relative standard deviations [39], but to date, this
technique has not been utilized for proteomic
studies that go beyond one-to-one comparative
experiments. Compared to transcriptomic and

proteomic approaches, analytical techniques for

metabolite detection and quantification are far

more robust and mature. Analytical precisions

may be below 1% relative standard deviations, and

dynamic ranges exceed four orders of magnitude.

However, de novo identification of metabolites is far

more difficult than the readout of linear mRNA or

protein sequences. Therefore, metabolite analyses

have been historically constrained to a number

of pre-defined compounds. To describe cellular

responses in more depth, several strategies have

been developed to answer different questions. These

questions are outlined as follows:

(1) In order to study the primary effect of any

alteration (e.g. a genetic mutation) directly, an

analysis can be restricted exclusively to the

substrate and/or the direct product of the

corresponding encoded enzyme. In order to

improve signal-to-noise ratios, extensive sample

cleanup protocols may be used to avoid

interferences from major accompanying com-

pounds. This strategy is called metabolite

target analysis and is mainly used for screen-

ing purposes, and for analyses that need

extreme sensitivity such as the monitoring of

phytohormones.

(2) For investigations of selected biochemical

pathways, it is also often not necessary to

view the effects of perturbation on all branches

of metabolism. Instead, the analytical pro-

cedure can be focused on a smaller number of

pre-defined metabolites. Sample preparation

and data acquisition can be focused on the

chemical properties of these compounds with

the chance to reduce matrix effects. This

process is called metabolite profiling (or some-

times metabolic profiling). For example, these

pre-defined metabolites can be chosen based

upon a class of compounds (such as amino

acids, organic phosphates, or carbohydrates),

or based upon their association with a specific

pathway. In the context of drug research

or pesticide metabolism, the term metabolic

profiling is frequently used to describe the

metabolic fate of an administered drug.

(3) Due to pleiotropic effects, the effect of a

single mutation may lead to the alteration of

metabolite levels of seemingly unrelated bio-

chemical pathways. This is especially liable to

happen if genes are constitutively overexpressed
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or anti-sense inhibited. A comprehensive and

quantitative analysis of all metabolites could

help researchers understand such systems.

Since such an analysis reveals the metabolome

of the biological system under study, this

approach should be called metabolomics. Both

sample preparation and data acquisition must

aim at including all classes of compounds,

while at the same time assuring high recovery,

and experimental robustness and reproducibi-

lity. The resolving power of the chosen analy-

tical method must be high enough to maintain

sensitivity, selectivity, matrix independence, and

universality. Since metabolomic data sets will be

complex, adequate tools are needed to handle,

store, normalize, and evaluate the acquired data

in order to describe the systemic response of

the biological system. Furthermore, metabolo-

mic approaches must include strategies to

identify unknown metabolites, and analytical

tools may even reach out to incorporate models

of theoretical biochemical networks.

(4) For functional genomic or plant breeding

programmes, as well as for diagnostic usage

in industrial or clinical routines, it might not

be necessary to determine the levels of all

metabolites individually. Instead, a rapid clas-

sification of samples according to their origin

or their biological relevance might be more

adequate in order to maintain a high through-

put. This process can be called metabolic finger-

printing. Such approaches have occasionally

been termed metabonomics, which on the one

hand could be mixed up with the completely

different goal of metabolomics, and on the

other hand with the earlier defined concept of

the metabolon, the coordinated channelling of

substrates through tightly connected enzyme

complexes. Sometimes, metabolic fingerprints

have enough resolving power to distinguish

between individual signals that can then be

related to sample classification. However, it

cannot be assumed that such techniques lead to

the identification of the most important effects,

since major metabolic events might be obscured

during data acquisition due to irreproducible

matrix effects and lack of analytical resolution

and sensitivity.

A number of different metabolomic applica-

tions can be imagined. Some are more obvious,

such as increasing metabolic fluxes into valuable
biochemical pathways by metabolic engineering
(e.g. enhancing the nutritional value of foods) or
into pathways needed for the production of
pharmaceuticals in plants [30]. Other fields of
applications are less obvious. For example, meta-
bolomics could be applied in assessments of
substantial equivalence of genetically modified
organisms [87] when the metabolic phenotypes of
well-known cultivars (that are commonly believed
to be safe) are compared to transgenic plants. In
addition, metabolomic analysis will be of great
theoretical value for understanding metabolic
responses in more detail. Finally, comprehensive
analysis of metabolites could become invaluable in
studies that directly aim at detecting biologically
active small molecules (such as in drug discovery
programmes in which diseased and healthy tissues
are compared).

In this review, comparisons are made among the
current techniques used to acquire metabolomic
data, and strategies to interpret this data to render
it useful are discussed.

Sample preparation

When aiming at the simultaneous detection of the
full suite of metabolites in biological samples, the
applied methods cannot be restricted to the techni-
cal question of which type of data acquisition might
be most suitable, but must also seriously consider
adequate methods of sample preparation. As a first
step, the inherent enzymatic activity of biological
samples has to be rapidly stopped by freeze
clamping, immediate freezing in liquid nitrogen, or
by acidic treatments using perchloric or nitric acid
[4]. However, acidic treatments pose severe pro-
blems for many analytical methods that follow.
Usually, freezing in liquid nitrogen is regarded as
the best way to stop enzymatic activity, but if this
treatment is used, great care must be taken not to
partially thaw tissues before extracting metabolites.
This issue can be circumvented using lyophilization
(which prevents both enzyme and transporter
function), or by immediately adding organic sol-
vents and applying heat, thereby also inhibiting the
recovery of enzymatic activity. Using non-aqueous
fractionation of lyophilised samples, metabolite
levels can be distinguished even from different
cellular compartments [29]. Tissues cultures are
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often directly infused into cold organic solvents,
keeping temperatures below –20uC at all times
during sample preparation [34]. For plant tissues,
sample homogenisation might pose problems.
Frozen samples, for example, can be ground using
a ball mill in pre-chilled holders [25], or ground
directly in an extraction solvent using ultra turrax
homogenisers [54]. Other plant organs such as
roots, however, prove sometimes to be too hard
for ball mills, whereas potato tubers are too soft
[63a]. Most frequently, polar organic solvents like
alcohols are directly added to homogenized frozen
tissues for the extraction of polar components,
often followed by non-polar solvents such as
dichloromethane for gaining sufficient recovery of
lipophilic metabolites.

Any sample preparation protocol must necessa-
rily remain a compromise between complete recov-
ery of some compound classes and avoiding chemical
or physical breakdown of more labile metabolites.
For example, aromatic compounds might need the
input of a reasonable amount of energy into the
system (e.g. heat), in order to increase the recovery
from (lipophilic) membranes or protein complexes,
whereas for other compounds, chemical degradation
might occur even at gentle and cold extraction
conditions. Furthermore, some compounds (such as
polyamines) might need acidic environments for
efficient extraction, whereas acidic compounds
should best be extracted at slightly basic to neutral
conditions. Last, vitamins such as tocopherol are
prone to oxidation, and great care must be taken to
ensure reproducible extraction of such compounds.
Unfortunately, no systematic study has yet been
published on metabolomic recoveries and break-
down reactions comparing different techniques of
sample preparation, homogenisation, and extrac-
tion, although true metabolomic approaches must
consider these questions with great care.

Data acquisition

Metabolite target analysis

For decades, analytical chemistry has increased the
reliability and the sensitivity of detecting pre-
defined compounds in biological tissues. Ultimately,
this has lead to the detection of single molecules in
single living cells, with great potential of studying
biological responses to cellular events in vivo [12].
More routine methods have been developed to

selectively detect a few members of a compound
class while neglecting all others. Polyamines, for
example, are believed to be involved in a number of
processes important for plant systems, such as
drought stress, and various analytical methods are
available for their reliable quantification in plant
material [10]. Vitamins remain the objects of
ongoing analytical research [6], especially when the
simultaneous analysis of different isoforms is
required [71]. On another note, long-studied com-
pounds might still hold some challenges, such as the
reliable detection of metabolites that appear simul-
taneously in the oxidized and reduced form, such as
glutathion [52], or in different stereoisomers, such
as zeaxanthins [17]. Most demanding remains the
analysis of trace compounds in extremely complex
matrices, such as phytohormones in plants. A
variety of protocols have been developed for the
detection of indole-3-acetic acid [60], for abscisic
acid [19], and for indole-3-pyruvate [74], and
methods for phytohormone analysis will almost
certainly be further improved in coming years to
achieve better detection limits and easier sample
clean-ups.

Target analysis will remain the most wide-spread
technique, with applications in all areas of biologi-
cal research. However, for comparative analysis in
functional genomics studies, target analysis is only
of limited use, since the levels of the target analytes
might be altered by unexpected effects that can
not be understood without more comprehensive
approaches. Therefore, a broader analysis of meta-
bolic alterations is needed to limit over-interpretation
of data. In the following section, the concepts and
results of multi-target profiling approaches and
non-biased data acquisition will be reviewed.

Metabolite profiling

Since the late 1960’s, improved chromatographic
methods have made peak identifications possible
relying solely on chromatography. When coupled to
sensitive detectors, these analytical methods were
soon applied to urine samples and plant tissues to
profile important compound classes such as amino
acids [2]. By including compounds with known
retention times, shifts in absolute retention times
could be taken into account. In one application of
this method, up to 155 organic acids were detected
in order to diagnose human diseases in a clinical
routine [75,76]. Mass spectrometry offered an
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additional and completely independent method for
compound identification. By coupling gas chroma-
tography to mass spectrometry (GC/MS), fifty
different human diseases could be diagnosed simul-
taneously [41]. Today, computational constraints
facilitate a more automated and more reliable
categorization of human metabolic disorders [49]
and cancer-related tissues [48].

For automated metabolite identification, reliable
information on both retention time and mass
spectra is required. However, mass spectra of
metabolites can be dominated by co-eluting com-
pounds in complex chromatograms, and may be
obscured at trace levels by chemical noise. To allow
high threshold values for mass spectral quality in
routine identifications, mass spectra therefore need
to be purified. By using mass spectral deconvolution
software, peak identification was possible for 68
target compounds for the rapid detection of inborn
errors [40] when comparing samples from diseased
and healthy children.

Less work has been done on the comparative
analysis of profiling plant compounds. The simulta-
neous determination of carbohydrates, sugar alco-
hols, acids, sterols, and amino acids by GC/MS was
first explored by Sauter et al. [64] for comparing
the effects of pesticide applications on plants. Due
to the lack of sample pre-fractionation, the chro-
matograms were heavily crowded, and less abun-
dant metabolites such as lysine were easily missed.
By restricting the analysis to polar compounds,
derivatisation protocols were further optimised [1],
and profiles of polar metabolites in apricots were
generated [45]. More systematically, Roessner et al.
[63a,b] evaluated the utility of GC/MS measure-
ments for the analysis of polar metabolites in
potato tubers. However, in different organisms
(and also, in different organs of the same organ-
ism), biochemical pathways may be quite differently
organized, and pathways could not be as conserved
as textbooks suggest. Therefore, the actual bio-
chemical pathways must be reinvestigated using
modern analytical tools. For example, GC/MS can
be used to investigate metabolic networks consisting
of a small number of metabolites using stable
isotopes and profiling the fractional enrichment [14].

For some compound classes, such as bis- and
trisphosphates or lipids, liquid chromatography
(LC) is the method of choice for separation. By
measuring the absorption of ultraviolet light (UV),
profiles of aromatic and de-saturated organics

can be acquired, such as carotenes, xanthophylls,
ubiquinones, tocopherols, and plastoquinones.
LC/UV has successfully been used to characterize
transgenic and mutant tomato genotypes and for
screening Arabiodpsis mutants [27]. However, com-
pared to UV detection, mass spectrometers are
clearly more versatile and are capable of not only
analysing isoprenoids and aromatics, but also
compounds without UV absorbing moieties (such
as oligosaccharides). Since the beginning of the
1990’s, electrospray ionisation has offered a robust
and versatile interface to connect liquid chromato-
graphy and mass spectrometry. For compound
classes such as sugar polyols, it has been shown
that its analytical precision is high enough for
reliable quantifications, if stable isotope labelled
compounds are used as internal references [69]. For
other classes of compounds such as ceramides,
LC/MS showed detection limits in the femtomolar
range for analysis of cultured T-cells [37,59]. The
highest absolute sensitivity for metabolite profiling
can be gained by connecting capillary electropho-
resis to laser-induced fluorescence detection. With
this technique, steroids could be quantified in the
attomolar range, compared to femtomolar sensiti-
vities when coupled to mass spectrometry.

Most frequently, the term metabolic profiling refers
to the catabolic degradation of a certain compound in
an organism. In order to study such degradation
pathways comprehensively, several analytical app-
roaches may be followed in parallel. Beuerle and
Schwab [8] investigated the degradation of linoleic
acid in stored apples using GC/MS, LC/MS/MS and
LC in conjunction with radioactivity detection. Even
more frequently, metabolic profiles are determined
in pharmaceutical research in order to follow the
metabolic fate of administered drugs. A typical
example of this is the elucidation of the biochemical
pathways of propanolol degradation in rats using
LC/MS/MS [7]. This can be coupled to bioassay
directed fractionation, such as the binding affinity of
catabolites to specific receptors [51], in order to gain
information about the biological (or toxicological)
relevance of catabolites.

Metabolomics

The obvious next step in metabolic network
analysis is to try to determine metabolic snapshots
in a broad and comprehensive way. In metabolomic
approaches, any bias against a certain class of
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compounds must be avoided. Instead, biological

importance is defined by evaluating relative changes

of metabolite levels in comparative experiments. It

is of utmost importance, therefore, that the abun-

dance of any metabolite can be directly compared

from one sample to the next, which makes the use

of stable isotope standards to cope with potential

matrix effects highly advantageous. Furthermore, it

is probably wise to use fractionation steps (like

lipophilic/hydrophilic separations) and chromato-

graphic separations in order to minimize the

number of compounds that reach the analytical

device simultaneously. To demonstrate the power of

such an approach, a profile with over 150 detectable

peaks in the base peak chromatogram is shown for

the polar phase of potato leaves (Figure 1). In a

proof-of-concept study, such GC/MS analysis was

chosen by Fiehn et al. [26] to characterize plant

mutants using a two-phase fractionation protocol.

326 polar and lipophilic compounds were analysed,

half of which had no assigned chemical structure.

Two mutants were compared to their parental

genotypic backgrounds, and metabolic phenotypes

were assigned by clustering the acquired data

according to the sample origin. However, analysis

was restricted to abundant peaks, and, almost

certainly, a number of trace compounds will have

been overlooked by this approach. GC/MS analyses

were also used for studying metabolic phenotypes in

wild type and transgenic potato tubers, using 86

abundant peaks selected from the chromatograms,

followed by clustering the data according to meta-

bolic phenotypes [63b]. In this paper, however,

quantitative alterations of only a few unidentified

metabolites were taken into account, and pre-

sumably, an even higher number of peaks remained

undetermined. Another approach to identifying

gene functions using extended chromatographic

analysis was performed by Tweedale et al. [81].

After growing wild type and mutant E. coli strains

in minimal media and 14C-labelled glucose, the 70

most abundant metabolites were separated on

two-dimensional thin layer chromatography. Rela-

tive quantification of metabolites by radioactivity

Figure 1. Polar phase of Solanum tuberosum leaves, analysed by GC/quadrupole MS (unpublished results). Inspection of
peaks apparent in the base peak chromatogram results in some 150 distinct metabolites. Abundant peaks in the middle of the
chromatogram are monosaccharides, followed by disaccharides (sucrose being the largest), and raffinose at the end of the
chromatogram. Trimethylsilylated hydroxy- and amino acids are eluted in the first third of the profile
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detection showed reproducible alterations in meta-
bolite pools (among them from unidentified meta-
bolites), depending on culture conditions. However,
changes in metabolite pools could only partly be
ascribed to known control functions of the mutated
gene.

In metabolomic analysis of comparative experi-
ments, major changes in metabolite levels will
almost certainly include unidentified peaks. There-
fore, metabolomic research should include approa-
ches aimed at elucidating chemical structures, for
example by combining liquid chromatography
with nuclear magnetic resonance detection (NMR)
and mass spectrometry [86]. For GC separations,
however, de novo identification strategies are less
straightforward. For polar components, for exam-
ple, chemical derivatisation that hampers structural
investigation is needed, especially if hard ionisation
techniques such as electron impact ionization are
applied. In order to gain information about the
intact molecule, derivatisation agents can be used
that result in characteristic pseudo molecular ions.
Using this approach, 30 uncommon plant metabo-
lites were identified after calculation of elemental
compositions and database queries [25]. However,
compounds larger than monosaccharides could not
be detected using this method due to decreased
volatility of the corresponding derivatives and
incomplete derivatisation due to steric hindrance
of the reagent. In conclusion, metabolomic approa-
ches based on GC/MS need better procedures for
identifying unknown peaks. This could potentially
be achieved by softer ionisation techniques (such as
chemical ionisation), and by combining information
derived from mass spectral fragmentation patterns,
isotope ratios, exact masses, structure generators,
and (bio)chemical databases.

As pointed out above, high throughput analyses
for functional genomics also need an automatic
procedure to assign an indicator of the reliability of
a compound match. This was achieved by develop-
ing an automatic mass spectral deconvolution and
identification software (AMDIS) by Stein [72]. This
software is capable of computing purified mass
spectra from the elution profile of a compound by
deconvolution of the overlapping mass spectra of its
neighbouring compounds (or, background ions that
stem from chemical noise). Using the deconvoluted
mass spectra, peak identities are confirmed by
searching mass spectral libraries. Halket et al. [40]
used this software to enhance the reliability of peak

identifications in GC/MS runs, but did not take the
total number of peaks into account.

Today, analytical methods such as GC/MS,
NMR, and LC/UV/MS are reliable and robust
enough to be used as workhorses in biological
laboratories, yet sample preparation protocols seem
to contain the most error prone steps (that
ultimately might cause irreproducible or artefactual
results). In metabolomic approaches, all protocols
have intrinsic biases for and against chemically
different classes of metabolites. Therefore, recov-
eries and reproducibilities cannot be as high as in
metabolite profiling or metabolite target analyses.
Instead, metabolomic analyses have to be regarded
as ‘quick-and-dirty’ methods, that aim to be as
comprehensive and as fast as possible, but that
cannot insure the precise quantification of each and
every metabolite.

Metabolic fingerprinting

Comprehensive metabolomic analyses cannot be
achieved without pre-fractionation steps, chromato-
graphic separation, and use of different analytical
instruments. Therefore, each sample has to be
portioned into a (limited) number of aliquots,
reducing the total sample throughput. If a higher
number of samples need to be analysed, for exam-
ple for rapid classifications, even faster methods can
be applied that completely refrain from sample
clean-up steps or time consuming chromatography.
This might be needed for diagnostic purposes in the
clinical routine, for product quality controls, or for
analysing large mutant collections in functional
genomics programmes. The bottom line of meta-
bolic fingerprinting is to obtain enough information
to unravel (otherwise hidden) metabolic alterations,
without aiming to get quantitative data for all
biochemical pathways. Therefore, the resolution of
the analytical devices must be high enough to
handle critical information. Such devices as nuclear
magnetic resonance, mass spectrometry, or Fourier
transform infrared spectroscopy (FT-IR) provide
this resolution. Using a combination of pyrolysis
mass spectrometry and FT-IR, bacterial species
have been classified using novel programming tools,
resulting in potential biomarkers then used to
rapidly distinguish among these species [35]. A
similar approach was taken by Smedsgaard and
Frisvad [70], who used direct infusion of crude
fungal extracts into MS/MS instruments in order to
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classify ten different fungal species. NMR was used
to detect effects of toxins on rats via the direct
analysis of dried urine samples, and principle
components analysis for classification of metabolic
alterations [62]. However, metabolic fingerprinting
can easily be over-interpreted, since signals suitable
for distinguishing among samples might not be
biologically relevant, or might not be applicable
when distinguishing among samples from other
species (or situations). For example, Warne et al.
[84] studied metabolic effects by NMR after dosing
earthworms with toxins. By pattern recognition,
they noted elevated levels of glucose, citrate, and
succinate as potential biomarkers for toxicity.
However, there are clearly a lot of situations where
intermediates of the TCA cycle become elevated, and
generalisations about the suitability of this method
for detecting toxic effects should be avoided. For
example, differences in the levels of TCA inter-
mediates were also found by NMR analyses when
investigating urine samples from mutant mice [28].
In the realm of functional genomics, NMR was
used to detect metabolic phenotypes in yeast
mutants that did not show obvious visible pheno-
types. However, the informative power of NMR
was not sufficient in this instance to quantify
individual metabolite levels; enzymatic analysis
had to be applied additionally [58].

Apart from NMR and MS, infrared spectroscopy
has also been used to find differences in compara-
tive experiments. For example, tomato fruits from
plants grown under salinity stress can be distin-
guished from those grown under normal conditions
based on so-called genetic programming [43].
Obviously, all approaches to metabolic fingerprint-
ing have made use of sophisticated informatic tools
in order to deconvolute raw analytical data. How-
ever, Gilbert et al. [31] emphasized that only genetic
programming gives interpretable equations for the
underlying reasons leading to final classification
results.

NMR, low-resolution MS, and FT-IR all lack
resolving power to distinguish all the metabolites in
a single spectrum. To date, no study has been
published that utilizes the enormous resolving
power of Fourier-transform ion cyclotron reso-
nance mass spectrometry (FT-MS). Theoretically,
all small metabolites of an organism could be
analysed simultaneously using this approach (with-
out any chromatography), since the FT-MS
resolution of R>100 000 allows the unambiguous

detection of metabolites that are only 0.005 Da
apart, and the accurate masses of these metabolites
could be used for de novo identification. However,
such an approach would face some severe limita-
tions. First, isomers having identical elemental
compositions (such as fructose and glucose) could
not be distinguished. Second, matrix effects could
cause severe alterations in electrospray ionisation
efficiency by ion suppression. And finally, ion
repulsion in the cyclotron cell could occur, which
would clearly hamper high resolution and accurate
mass analyses. Nevertheless, FT-MS seems prone
to be used for metabolic fingerprinting, and it
might be a powerful tool for rapidly detecting
major metabolic differences when screening mutant
collections.

Data interpretation

Pattern recognition

Regardless of which analytical method is used,
metabolomic analyses, as well as profiling major
events by fingerprinting, will result in large collec-
tions of raw data. As long as more than subtle
metabolic changes are expected, the analysis of
metabolic profiles should definitely result in clear
clusters according to the design of the comparative
experiment, i.e. mutant/wild type, healthy/diseased,
young/old, etc. If such comparisons cannot be
verified by clustering tools, the data might be too
noisy to be further analysed. The lack of inherent
information might either be trivial (important
alterations in metabolite levels could be missed), or
errors might be introduced during sample prepara-
tion steps or by data acquisition itself. Next, any
subgroups within the major clusters must be tested
to insure that classification occurred as per the
intended experimental set-up. Again, such subclus-
ters might be generated either by systematic errors
in sample preparation or data acquisition, or by
random errors such as slight differences among
culture treatments, even if the investigator believed
treatments to be under control. Both reasons
cannot be fully excluded in metabolomic analyses
of comparative biological experiments, since there
are simply too many factors that could cause subtle
changes in clustering results. In Figure 2, a potential
result of a hierarchical clustering analysis is demon-
strated for a hypothetical experiment. Samples are
easily classified according their origin, A or B,
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however, two sub-clusters can be seen within the B
population. Once such a subgroup is found within
B, it is not statistically sound to treat B as one
population and to compare it to A, by Student’s
t test for example. Numerous approaches exist for
statistical analysis, such as multiple analysis of
variance (MANOVA) or analysis of frequency dis-
tributions, but great care should be taken to meet
the statistical requirements for such tests. Whenever
possible, experienced statisticians should be asked
to evaluate the best experimental design in order to
answer a specific question. More important than
clustering metabolic phenotypes or calculating
alterations in average metabolite levels might be
indications of further relationships within metabo-
lomic data sets. Yet, there is not much experience in
analysing such hidden relationships. The current
paradigm is that cluster analysis of linear relation-
ships of variables (e.g. gene expression) might lead
to candidate genes with similar biological roles in
cellular processes [22]. Bittner et al. [9] briefly
summarized current approaches to analyse relation-
ships in mRNA expression data sets, and investiga-
tors using metabolomic data analysis might learn
from these experiences. The authors conclude that
considerable efforts have been made to cluster

linear one-to-one correlations, but the investigation
of non-linear responses may be much more biolo-
gically important. Non-linear response curves could
be investigated using more sophisticated informa-
tion tools, such as the concept of mutual informa-
tion [68]. Furthermore, non-trivial results may also
be obtained by applying other concepts such as
rule-based learning methods. Gilbert et al. [32] have
utilized a variant of such supervised learning algo-
rithms, genomic computing, to build new biological
hypotheses from the re-analysis of mRNA expres-
sion data deposited in publicly accessible data
banks. Very likely, the best we can get from
bioinformatic analyses of large-scale data sets is
the generation of new hypotheses, and information
concerning how much evidence was found support-
ing each of the hypotheses. Such information can
then be the starting point of hypothesis generation.
Other groups can then work to falsify or substan-
tiate hypotheses using classical biochemistry and
molecular biology.

Metabolic networks

To further test the biological relevance of hypo-
theses gained from metabolomic data sets, these

Figure 2. Cluster analysis of a hypothetical experiment. Hierarchical clustering of the samples using Euclidean distances for
all metabolites might result in the expected separation of samples from origin A (such as wild type samples) and from origin B
(such as mutant samples). In this example, B samples fall into two sub-groups. B1 and B2, as indicated by the length of the lines
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data should be compared to predictions made either
by searching connections to known biochemical
pathways, or by using prediction models based
on mathematical calculations from biochemical
kinetics or stoichiometries. For the former, classical
textbooks certainly give a good start. However, as
large networks are generated, a broader view on
metabolic interactions will be needed. Within the
publicly available genomic data base KEGG
[46,53], links to encoded enzymatic pathways can
be found with maps visualizing standard metabolic
pathways of different organisms. However, KEGG
has only a partial overlap with other enzymatic or
metabolic databases and it is worth looking into
BRENDA [11], WIT [85], and PathDB [56].

Another possibility when comparing metabolic
networks is to follow theoretical considerations.
Two basic approaches can be found in literature:
first, metabolic fluxes can be calculated from
experimental knowledge of enzyme kinetics in a
method called metabolic control analysis [4,44,77].
Secondly, metabolic pathways can be calculated to
be feasible or not by considering the stoichio-
metry of enzymatic reactions [36,57]. Below, both
approaches are briefly evaluated for their applic-
ability to metabolomic research.

Metabolic control analysis has regularly been
applied to forward the aim of increasing carbon flux
through certain biochemical pathways in bio-
technological applications [13,33]. These authors
emphasized that relative directions and relative
intensities of metabolite fluxes must be determined
in order to understand even small metabolic net-
works in full. One way to measure such fluxes is by
adding isotopically labelled compounds (often by
growing cultures on 13C-labelled Glucose) and
following the kinetics of isotope distribution by
means of NMR or MS [73,82].

By analysing of the fine structure of NMR
spectra, the positions of incorporated 13C atoms
can be determined, enabling the mathematical
modelling of the contribution of different pathways
to the metabolic cycles [50,55,65]. In plant systems,
however, the situation is even more complicated.
Plant metabolism is heavily split among several
cellular compartments, and a range of methods
must be combined to fully elucidate metabolic
fluxes into certain pathways [61]. Using LC/fluor-
escence, off-line radioactivity measurements, and
NMR, such metabolite fluxes were successfully
elucidated in maize root tips after application of

13C- and 14C-labelled glucose [18]. For selected
organs like potato tubers, Thomas et al. [79] were
able to successfully explain enzymatic influence in
certain pathways using metabolic control analysis.
Further limitations of metabolic control analysis
were reviewed by Kell and Mendes [47] who
emphasized that biochemical predictions using
metabolic control analysis is now only achievable
for small, comparatively simple pathways, and that
it can only be applied if no drastic changes in
enzymatic activities occur. Therefore, metabolic
control analysis does not seem to be directly
applicable to metabolomic data sets in comparative
experiments, which are often designed to study
dramatic alterations like mutant/wild type compar-
isons. Alternatively, metabolic fluxes may also be
modeled from in vitro determined enzyme kinetics.
However, the in vivo kinetics of these enzymes
might be quite different. Additionally, the bottom
line of metabolic control is independent enzyme
action. However, it is unclear if this assumption
holds true for all cellular processes or if the
coordinated action of multiple enzymes may in
fact be a more realistic maxim [83].

In the second approach towards prediction of
metabolic networks, the enzymatic reactions are
further simplified by taking only the stoichiometries
of substrates and products into account, in order to
calculate feasible and optimal metabolic flux direc-
tions. The only constraints that are used for such
calculations (also called flux balance analyses) are
systemic mass balances and reaction capacities,
while neglecting constraints given by mRNA or
protein expression, or enzyme kinetics.

Such models can be computed from functional
assignments of genes for any organism, and no
further experimental data are needed. Therefore,
large metabolic networks can be built from matrix
correlations of overall substrate-product stoichio-
metry, but almost certainly, the models derived
from such calculations will lack prediction power
due to the lack of additional experimental evidence
concerning cellular compartmentalisation and in vivo
kinetics. Nevertheless, non-obvious links in bio-
chemical pathways can be found by pure computer
simulations [16]. This is especially true if each
pathway is reduced to a set of strongly co-operating
enzymes, as developed in the concept of ‘elementary
flux modes’ by Schuster et al. [66,67]. In this
approach, biochemical pathways are not defined
by the interpretation of individual scientists, but are

164 O. Fiehn

Copyright # 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 155–168.



purely based on computing the thermodynamic and
stoichiometric feasibility of enzymatic conversions
between arbitrarily chosen sets of metabolites. In
two break-through papers, growth rate data of
E.coli mutants were compared to predictions made
from stoichiometric matrices. In 86% of the studied
cases, the effects of gene knockouts in E.coli could
be correctly predicted when compared to data given
in literature [20,21].

Apart from stoichiometric approaches, standard
biochemical pathways can be considered with even
further simplifications. Each possible substrate-
product conversion may be regarded as an edge in
visualizations of metabolic networks. Fell and
Wagner [23] have suggested that metabolic net-
works generated by such simplifications are scale-
free networks. Therefore, they could potentially be
used to analyse the inherent connections, for
example in evolutionary studies. This approach
has also been followed in two studies from the
Barabási group [3,42], in which the authors showed
that metabolism is generally organized in such
scale-free networks, which might be less prone to mal-
functions caused by errors like random mutations.

Conclusions

Metabolomic analyses have only just begun, but it
is clear that the analytical challenges associated
with the relative quantification of metabolites can
be met more easily than those associated with the
de novo identification of unknown metabolites.
However, a combination of results from in-depth
characterization of genetically altered organisms
using transcriptomics, proteomics, metabolomics,
and accurate descriptions of developmental pheno-
types is now more feasible than was imagined just
five years ago. Chasing the dream of comprehen-
sively understanding living organisms will also
require improved data mining tools, and better
tools for integrating the results of experimentally
determined molecular phenotypes with predictions
made by computational simulations of cellular
networks. For example, right now it is difficult to
track the primary effects of mutations using meta-
bolic analyses. However, theoretically it should be
possible to link observed changes in metabolic
pathways to the underlying genetic alterations via
the enzymes involved in these pathways. So far,
however, no results have been published on how to

generate hypotheses about novel gene functions by
metabolite analysis. Eventually, small biological
laboratories will be unable to combine all the
genetic, analytical, and computational resources in
their institutions. Therefore, larger institutions
should face the responsibilities of building up
analytical resource centres and of creating publicly
accessible metabolomic databases similar to geno-
mic sequence repositories.
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