Abstract
The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation—fasting and re-feeding—in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken.
Full Text
The Full Text of this article is available as a PDF (330.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdrakhmanov I., Lodygin D., Geroth P., Arakawa H., Law A., Plachy J., Korn B., Buerstedde J. M. A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res. 2000 Dec;10(12):2062–2069. doi: 10.1101/gr.10.12.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey Michael J., Beremand Phillip D., Hammer Rick, Bell-Pedersen Deborah, Thomas Terry L., Cassone Vincent M. Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol Endocrinol. 2003 Jul 24;17(10):2084–2095. doi: 10.1210/me.2003-0121. [DOI] [PubMed] [Google Scholar]
- Banerjee Nila, Zhang Michael Q. Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol. 2002 Jun;5(3):313–317. doi: 10.1016/s1369-5274(02)00322-3. [DOI] [PubMed] [Google Scholar]
- Boardman Paul E., Sanz-Ezquerro Juan, Overton Ian M., Burt David W., Bosch Elizabeth, Fong Willy T., Tickle Cheryll, Brown William R. A., Wilson Stuart A., Hubbard Simon J. A comprehensive collection of chicken cDNAs. Curr Biol. 2002 Nov 19;12(22):1965–1969. doi: 10.1016/s0960-9822(02)01296-4. [DOI] [PubMed] [Google Scholar]
- Brazhnik Paul, de la Fuente Alberto, Mendes Pedro. Gene networks: how to put the function in genomics. Trends Biotechnol. 2002 Nov;20(11):467–472. doi: 10.1016/s0167-7799(02)02053-x. [DOI] [PubMed] [Google Scholar]
- Brown William R. A., Hubbard Simon J., Tickle Cheryll, Wilson Stuart A. The chicken as a model for large-scale analysis of vertebrate gene function. Nat Rev Genet. 2003 Feb;4(2):87–98. doi: 10.1038/nrg998. [DOI] [PubMed] [Google Scholar]
- Burt Dave, Pourquie Olivier. Genetics. Chicken genome--science nuggets to come soon. Science. 2003 Jun 13;300(5626):1669–1669. doi: 10.1126/science.1086231. [DOI] [PubMed] [Google Scholar]
- Cogburn L. A., Wang X., Carre W., Rejto L., Porter T. E., Aggrey S. E., Simon J. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci. 2003 Jun;82(6):939–951. doi: 10.1093/ps/82.6.939. [DOI] [PubMed] [Google Scholar]
- Duplus Eric, Forest Claude. Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol. 2002 Sep;64(5-6):893–901. doi: 10.1016/s0006-2952(02)01157-7. [DOI] [PubMed] [Google Scholar]
- Goodridge A. G., Fantozzi D. A., Klautky S. A., Ma X. J., Roncero C., Salati L. M. Nutritional and hormonal regulation of genes for lipogenic enzymes. Proc Nutr Soc. 1991 Aug;50(2):115–122. doi: 10.1079/pns19910022. [DOI] [PubMed] [Google Scholar]
- Hackam Abigail S., Bradford Rebecca L., Bakhru Rita N., Shah Raza M., Farkas Ronald, Zack Donald J., Adler Ruben. Gene discovery in the embryonic chick retina. Mol Vis. 2003 Jun 20;9:262–276. [PubMed] [Google Scholar]
- Huang X., Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999 Sep;9(9):868–877. doi: 10.1101/gr.9.9.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H., Schmidt C. J., Decker K. S., Emara M. G. A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST data. Anim Genet. 2003 Aug;34(4):249–254. doi: 10.1046/j.1365-2052.2003.01003.x. [DOI] [PubMed] [Google Scholar]
- Klamt Steffen, Stelling Jörg. Two approaches for metabolic pathway analysis? Trends Biotechnol. 2003 Feb;21(2):64–69. doi: 10.1016/s0167-7799(02)00034-3. [DOI] [PubMed] [Google Scholar]
- Lomax M. I., Huang L., Cho Y., Gong T. L., Altschuler R. A. Differential display and gene arrays to examine auditory plasticity. Hear Res. 2000 Sep;147(1-2):293–302. doi: 10.1016/s0378-5955(00)00139-8. [DOI] [PubMed] [Google Scholar]
- Min W., Lillehoj H. S., Kim S., Zhu J. J., Beard H., Alkharouf N., Matthews B. F. Profiling local gene expression changes associated with Eimeria maxima and Eimeria acervulina using cDNA microarray. Appl Microbiol Biotechnol. 2003 Apr 24;62(4):392–399. doi: 10.1007/s00253-003-1303-x. [DOI] [PubMed] [Google Scholar]
- Morgan R. W., Sofer L., Anderson A. S., Bernberg E. L., Cui J., Burnside J. Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek's disease virus. J Virol. 2001 Jan;75(1):533–539. doi: 10.1128/JVI.75.1.533-539.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris S. M., Jr, Winberry L. K., Fisch J. E., Back D. W., Goodridge A. G. Developmental and nutritional regulation of the messenger RNAs for fatty acid synthase, malic enzyme and albumin in the livers of embryonic and newly-hatched chicks. Mol Cell Biochem. 1984 Sep;64(1):63–68. doi: 10.1007/BF00420929. [DOI] [PubMed] [Google Scholar]
- Neiman P. E., Ruddell A., Jasoni C., Loring G., Thomas S. J., Brandvold K. A., Lee Rm, Burnside J., Delrow J. Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6378–6383. doi: 10.1073/pnas.111144898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neiman Paul E., Grbiç Jovana J., Polony Tatjana S., Kimmel Robert, Bowers Sandra J., Delrow Jeffrey, Beemon Karen L. Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of Fabricius. Oncogene. 2003 Feb 20;22(7):1073–1086. doi: 10.1038/sj.onc.1206070. [DOI] [PubMed] [Google Scholar]
- Papin Jason A., Price Nathan D., Wiback Sharon J., Fell David A., Palsson Bernhard O. Metabolic pathways in the post-genome era. Trends Biochem Sci. 2003 May;28(5):250–258. doi: 10.1016/S0968-0004(03)00064-1. [DOI] [PubMed] [Google Scholar]
- Stark Jaroslav, Callard Robin, Hubank Michael. From the top down: towards a predictive biology of signalling networks. Trends Biotechnol. 2003 Jul;21(7):290–293. doi: 10.1016/S0167-7799(03)00140-9. [DOI] [PubMed] [Google Scholar]
- Tirunagaru V. G., Sofer L., Cui J., Burnside J. An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Genomics. 2000 Jun 1;66(2):144–151. doi: 10.1006/geno.2000.6189. [DOI] [PubMed] [Google Scholar]
- Unger Roger H. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab. 2003 Nov;14(9):398–403. doi: 10.1016/j.tem.2003.09.008. [DOI] [PubMed] [Google Scholar]
- Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics. 2001 Dec;17(12):1183–1197. doi: 10.1093/bioinformatics/17.12.1183. [DOI] [PubMed] [Google Scholar]
- de la Fuente Alberto, Brazhnik Paul, Mendes Pedro. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 2002 Aug;18(8):395–398. doi: 10.1016/s0168-9525(02)02692-6. [DOI] [PubMed] [Google Scholar]
- de la Fuente Alberto, Snoep Jacky L., Westerhoff Hans V., Mendes Pedro. Metabolic control in integrated biochemical systems. Eur J Biochem. 2002 Sep;269(18):4399–4408. doi: 10.1046/j.1432-1033.2002.03088.x. [DOI] [PubMed] [Google Scholar]
- van Hemert Saskia, Ebbelaar Bastiaan H., Smits Mari A., Rebel Johanna M. J. Generation of EST and microarray resources for functional genomic studies on chicken intestinal health. Anim Biotechnol. 2003 Nov;14(2):133–143. doi: 10.1081/ABIO-120026483. [DOI] [PubMed] [Google Scholar]
