W444-W451
doi:10.1093/nar|gkn336

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

Published online 4 June 2008

NeAT: a toolbox for the analysis of biological
networks, clusters, classes and pathways

Sylvain Brohée'*, Karoline Faust', Gipsi Lima-Mendez', Olivier Sand’, Rekin’s Janky’',
Gilles Vanderstocken', Yves Deville? and Jacques van Helden'

"Laboratoire de Bioinformatique des Génomes et Réseaux (BiGRE), Université Libre de Bruxelles (ULB), Boulevard
du Triomphe, CP263, B-1050 Bruxelles and 2Department of Computing Science and Engineering, Université
catholique de Louvain (UCL), Place Sainte Barbe, 2. B-1348 Louvain-la-Neuve, Belgium

Received January 31, 2008; Revised April 24, 2008; Accepted May 10, 2008

ABSTRACT

The network analysis tools (NeAT) (http://rsat.ulb.
ac.be/neat/) provide a user-friendly web access to a
collection of modular tools for the analysis of
networks (graphs) and clusters (e.g. microarray
clusters, functional classes, etc.). A first set of tools
supports basic operations on graphs (comparison
between two graphs, neighborhood of a set of input
nodes, path finding and graph randomization).
Another set of programs makes the connection
between networks and clusters (graph-based clus-
tering, cliques discovery and mapping of clusters
onto a network). The toolbox also includes programs
for detecting significant intersections between clus-
ters/classes (e.g. clusters of co-expression versus
functional classes of genes). NeAT are designed to
cope with large datasets and provide a flexible
toolbox for analyzing biological networks stored in
various databases (protein interactions, regulation
and metabolism) or obtained from high-throughput
experiments (two-hybrid, mass-spectrometry and
microarrays). The web interface interconnects the
programs in predefined analysis flows, enabling to
address a series of questions about networks of
interest. Each tool can also be used separately by
entering custom data for a specific analysis. NeAT
can also be used as web services (SOAP/WSDL
interface), in order to design programmatic work-
flows and integrate them with other available
resources.

INTRODUCTION

During the last decade, large-scale biological studies
produced huge amounts of data that reveal various
layers of molecular interaction networks: protein

interactions, transcriptional regulation, metabolic reac-
tions, signal transduction, etc.

Graphs (in the mathematical sense) have been used to
represent, study and integrate such biological networks.
By definition, a mathematical graph is a set of nodes
(generally represented as dots) that are connected by edges
(lines between dots). Edges may be enriched by several
features, e.g. a direction (an edge from node 4 to node B
is distinct from an edge from B to A), a color, a type and
a weight (a value is associated to the edges).

Such edges and nodes provide convenient ways to
represent biological features. For example, in a protein—
protein interaction network, a node represents a polypep-
tide and an edge indicates the existence of a physical
interaction between two polypeptides (1). A weight can
optionally be put on edges to reflect the strength of
interactions. In ‘compound-centric’ metabolic networks,
nodes represent metabolites and the directed edges
represent the enzymes used to convert a metabolite into
another one (2). The metabolic networks may also be
represented as bipartite graphs, i.e. a network with two
distinct types of nodes (one for compounds and one for
reactions), where edges must always link a node of one type
to a node of the other type (3,4). Similarly, graphs can be
used to represent regulatory relationships (5,6) and
transduction pathways (7). Network biology is emerging
as a very fertile field, as reflected by the rapidly increasing
pace of relevant publications (8,9).

Despite the ever-increasing availability of data that may
be represented as networks, large-scale analyses should be
considered with caution, for several reasons. Firstly, high-
throughput data are notoriously noisy (presence of false
positives) and incomplete (10,11). In addition, some
interaction networks have been characterized by several
independent studies, which are providing complementary
subsets of the data. Important efforts will thus be required
to extract reliable information from the ever-increasing
amount of data.

Specialized tools are required to extract and compare
information obtained from multiple data sources, and

*To whom correspondence should be addressed. Tel: +32 02 6505434; Fax: +32 02 6505425; Email: sylvain@scmbb.ulb.ac.be

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://rsat.ulb
http://creativecommons.org/licenses/

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

apply various statistical parameters treatments to describe
and understand networks properties. For this purpose, we
developed the Network Analysis Tools (NeAT), a set of
modular software tools supporting a large variety of
operations on networks and clusters. The web interface
provides a convenient and intuitive access to the tools and
allows to thread user-provided data sets through typical
analysis work flows, in order to interpret their networks.
The NeAT programs may be grouped in three categories:
tools for manipulating graphs (graph comparison, random-
ization, alteration, visualization, etc.), tools for analyzing
clusters (or, equivalently, classes) (cluster comparison, etc.)
and tools that establish the link between networks and
clusters (graph clustering, graph—cluster mapping, etc.).

NeAT DESCRIPTION

Figure 1 and Table 1 present the collection of tools
available in NeAT as well as their input and output types.
On the website, each tool is accessible via the menu on the
left panel of the web page (Figure 3, inset).

As shown in Table 1, NeAT tools can be broadly
grouped in three categories: network tools perform various

| convertgraph |
§

Network/graph
l_ User-provided netw ork ‘

w445

operations on one or several graphs, cluster tools are
mainly dedicated to comparisons between clusters and
network—clusters tools make the connection between
networks and clusters.

We will briefly describe the function of each tool
together and discuss some typical application. Further
information and examples of utilization can be found in
the cited literature.

NETWORK TOOLS
Network topology

Several statistics have been defined to characterize global
topological properties of a network. It has been shown
that these topological properties distinguish biological
networks from random networks. Noticeably, it is often
stated that the distribution of degree (the number of edges
connected per nodes) follows a power-law distribution
(12). The program graph-topology computes the degree of
each node of a graph, which can then be analyzed either as
a full result table or visualized as a XY plot (Figure 2).
Graph-topology also computes the betweenness (i.e. the
proportion of shortest going through a node) and the

[convert-classes]

:

Clusters/classes

| User-provided clusters —‘

User-selected nodes _]

Strin String database interaction e
° S [i i } 'gnodeu;:i?su -
= Labeled graph
compare-graphs ! » : .
[ks ‘\ (intersection / union / difference) —>[Clustering (MCL / RNSC)]—i{ Node clusters |
random-graph .\ [g e — Fuzzy clusters
[J> BN graph-cluster-membership J (membership coefficient table)
[alter-graph }- Altered graph
—'{ graph-get-clusters }-
Labeled graph |
{intra / inter — cluster edges)
Separate pathw ays | Source and target nodes —‘
(sub-network) ¥
— PathFinder |
Merged pathw ays
(sub-network)
i
3 !] Statistics
[display-graph] [graph-node-degree] [roc-stats]— ROC curve statistics |
‘|' I Node degrees |
l Graph draw ing | |
|

Class comparison statistics

3 t { compare-classes]

[contingency-stats]4\

I

e, e — S I

Contingency table]c—
Contingency statistics]
Legend [User input| | method | | Resut |

Figure 1. Flow chart of the tools and data types supported on NeAT. Trapezoidal boxes represent user-provided input, rounded boxes programs and

rectangles results.

Table 1. Description of the programs available in NeAT

Program

Description

Input

Output

Network tools
convert-graph

display-graph

compare-graphs

random-graph

graph-topology

alter-graph

Pathfinder

String dataset download

Network clusters tools
MCL (34,36) and RNSC (37)

graph-cligue
graph-neighbours

graph-cluster-membership

graph-get-clusters

Clusters tools
compare-classes
contingency-stats

Others tools
roc-stats

Converts a graph from a format to another
one, position the nodes and changes the edge
colors and width according to its weight

Draws a network graphical representation

Computes the intersection, the union or the
difference of two networks

Generates random graphs either from an
existing graph or from scratch according to
different randomization procedure.

Calculates the degree, betweenness and close-
ness of each node and specifies if this node is a
source or a target node

Alters a graph either by adding or removing
edges or nodes (targeted removal or not)

Finds the k-shortest path between a set of
source nodes and a set of target nodes

Downloads a subset of the network of the
String database (40)

Finds the densely connected subsets of the
graph

Extract al cliques from a graph

Extracts from a graph the neighborhood of a
set of seed nodes

Maps a clustering result onto a graph and
compute the membership degree between each
node and each cluster, on the basis of edges
linking this node to the cluster

Compares a graphs with clusters. Extracts the
intra-clusters edges or map the clusters on the
network

Compares two class files (the query file and
the reference file). Each class of the query file
is compared to each class of the reference file.

Study of a contingency table

Calculates and draws ROC curve

A network in a given format

A network

Two networks to be compared

A graph or a list of node names or nothing

A network, (list of nodes for which the degree
has to be computed)

A network
A network and the list of source and target

nodes

A list of nodes for which you want to know
the neighbors in String

A network

A network

A network, (a list of seed nodes)

A network, clustering results

A network

One or two cluster files

A contingency table

Scored results associated with validation labels

A network in the requested format

A figure in the requested format

A network (intersection, union, difference)

A randomized network

A table the requested centrality statistics of
each requested node

An altered network

A table of pathway or a network composed of
the set of pathways

The neighbors of the nodes your entered in
and the edges between them.

A list of clusters

A list of cliques

Clusters of neighbor-source node pairs

A tab-delimited membership table, where each
row represents a node and each column a
cluster. Entries are the membership degree of
the node.

An edge-labeled network

For each comparison, the number of common
elements and comparison statistics or a con-
tingency table

Statistics according to ref. (26)

For each score value, the derived statistics (Sn,
PPV, FPR), which can be further used to draw
a ROC curve.

Input Parameters between brackets are optional.

INSSI 12112 GO 9E “JOA QOOT YPHDISRY SPIOY NIUN 9P M

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

Degree distribution
1000 e E

—fra
= inv_cum

Number of nodes

1 10 100
Degree

Figure 2. Node degree distribution of a yeast protein interaction
network obtained from two-hybrid data. The distribution was
computed with the program graph-topology and plotted on log scales
for both the abscissa and ordinates. The linear shape of the curve on
the log-log graph suggests that this network follows a power-law
distribution of degree. Color code : blue, absolute frequency; green,
reverse cumulative frequency.

closeness (i.e. the mean shortest distance of a node to all
others) of each node in the network.

Node neighborhood

Starting from one or several nodes of interest, the
program graph-neighbours collects neighbor nodes up to
a user-specified distance. Neighborhood analysis can be
for example applied to predict the function of an unknown
polypeptide by collecting its neighbors with known
function in a protein interaction network (‘guilty by
association’) (13).

Network comparison

The program compare-graphs computes the intersection,
the union and/or the difference between two input
networks and estimates the statistical significance of the
overlap (Figure 3, inset).

These basic operations between graphs can serve for
many other tasks: the union can be used to integrate
networks at different layers (e.g. metabolism, transduction
signal and transcriptional regulation), the intersection to
select interactions with evidences in two distinct experi-
ments, the differences to select interactions detected by
one method and missed by another one. A typical example
of application is to estimate the relevance of a protein—
protein interaction network obtained by some high-
throughput experiment, by comparing it with a manually
curated network [e.g. BioGrid or MIPS databases data
(14,15)].

w447

Evaluation of predicted networks using receiver operating
characteristic (ROC) curves

The program roc-stats is typically used as a postanalysis
program after a network comparison between predicted
and annotated networks. It takes as input a set of scored
results associated with validation status (positives or
negatives) and computes, for each threshold on the
score, the derived statistics: true positive rate (TPR, also
called sensitivity), positive predictive value (PPV), false
positive rate (FPR) and accuracy.

Those statistics are also further used to draw different
graphical plots showing the performance as a function of
the score threshold or allowing performance comparisons
(precision recall and ROC curves).

ROC curves show the fraction of the true positives
(TPR) versus the fraction of the (FPR) and are often used
to compare the predictive performance of different
programs (16).

Path finding in a network

Biochemical interactions form intricate networks, where a
multitude of pathways can be used to join two nodes of
interest. The search of optimal paths (minimizing the
number of steps, or the distance, or some weight) has a
long tradition in graph theory. Path finding algorithms
have been applied to uncover signal transduction path-
ways from protein—protein interaction networks (17-19)
or metabolic pathways in metabolic networks, respectively
(20-22). Recently, we evaluated the performance of a
k-shortest path finding algorithm for metabolic pathway
inference and found that the correspondence between
inferred and annotated pathways can be crucially
improved by setting an appropriate weighting on the
nodes of the metabolic network, in order to penalize
highly connected compounds (4).

The NeAT interface includes a general k-shortest path
finding algorithm, that supports searches from a set of
(one or several) source nodes to a set of target nodes (23).
Node weights can either be specified in the input graph or
computed automatically according to node degree (4).

Network randomization and alteration

Random graphs are extremely useful to analyze statistical
properties of graphs and to validate theoretical models
(24-27). The significance of some properties observed in a
biological network (e.g. node degree, clustering coefficient,
network diameter, etc.) can be estimated by measuring the
distribution of probability of the same property in a large
set of random networks. Random networks can also be
used to observe the behavior of a given algorithm (e.g.
clustering) in absence of biological information.

The program random-graph supports different proce-
dures to randomize a network, which can then be
submitted to the same workflows in the same way as a
real biological network. Random graphs can be generated
from the scratch, according to an Erdds-Renyi model.
Alternatively, random graphs can be generated by
permuting the edges between the nodes of a given input
graph. This randomization preserves the degree of each

W448 Nucleic Acids Research, 2008, Vol. 36, Web Server issue

et Cramt 22 b uc baimmatinder_rwst el T [-ax

Figure 3. The compare-graphs result. Main figure: result of the comparison between two large-scale yeast protein interaction networks obtained by
the two-hybrid method (41,42). The networks were compared using compare-graphs and displayed with yED. Edge color code: green, edges present in
both networks (intersection); red, edges present in Ito’s data set only; violet, edges present in Uetz’ dataset only. Inset: comparison statistics,
including an estimation of the significance of the intersection between the network comparison, based on the hypergeometric distribution.

node. A third mode of randomization preserves the degree
distribution of the input graph, without preserving the
degree of individual nodes.

Another tool, alter-graph, performs a partial randomi-
zation of a given input graph, by combining two
operations: random addition and/or deletion of nodes
and/or edges. Altered graphs are particularly useful to
study the robustness of procedures to the presence of noise
(node/edge additions) or to missing information (node/
edge deletions). This tool was used in our comparative
assessment of four graph-based clustering algorithms (26).

Network display

NeAT includes a tool called display-graph, which generates
static images of an input network. Such drawings are
convenient for a quick inspection of the results from the
web browser, especially when dealing with large graphs.
However, the cost of this speed is that the layout is rather
rudimentary and the resulting image is static.

For more sophisticated layouts and for a dynamical
manipulation of the drawing, NeAT is also able to load a
network directly into the VisANT graph editor via Java
Web Start (28).

For more advanced visualization facilities, we recom-
mend specialized graph editors like yED Graph Editor

(http://www.yworks.com/en/products_yed_about.html)
and Cytoscape [(29), http://www.cytoscape.org]. To this
purpose, the tool convert-graph permits to export any
network resulting from NeAT to the GML format (http://
www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.
html) which is supported by both editors.

CLUSTER TOOLS

NeAT also presents a series of tools allowing to study
clusters or classification (functional classes) (Table 1,
clusters tools). For example, the program compare-classes
can study if among the clusters of highly connected nodes
extracted from a graph via some clustering algorithm,
some overlap with biological relevant classes [e.g. gene
ontology classes (30)] exists. This program also allows to
create a contingency table that can be further analyzed via
the contingency-stats application.

NETWORK-CLUSTER TOOLS
Network clustering

Various algorithms have been implemented to extract
clusters (i.e. groups of densely connected nodes) from
biological networks. Clustering algorithms are often used

http://www.yworks.com/en/products_yed_about.html
http://www.cytoscape.org
http://

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

w449

Figure 4. Comparison between a network and a set of classes. Mapping of the yeast protein complexes stored in MIPS database (15) on a large-scale
interaction data set obtained by coimmunoprecipitation followed by mass spectrometry experiments (39). The mapping and coloring was performed
with graph-get-clusters, and the image generated with the graphical editor yED. Intercluster edges (edges between nodes that do not belong to the
same complex) are displayed in gray. Intracluster edges (edges between nodes belonging to the same complex) are colored with cluster-specific colors

(one color for each protein complex).

in biology in order to extract coherent groups of nodes
from networks : detection of protein complexes (26,31—
33), of protein families (24), extraction of co-expressed
clusters from in co-expression networks (35), etc.

The graph-based clustering algorithms MCL (34,36)
and RNSC (37) have been shown to obtain good
performances for extracting protein complexes from
protein interaction networks (26). These algorithms can
deal with large graphs and are very efficient in time. For
these reasons, we included them in the NeAT tool suite.

Moreover, NeAT also includes a tool that discovers
cliques (fully connected set of nodes) in networks.

From partitions to fuzzy clusters

As many clustering algorithms, MCL or RNSC partition
the graphs into nonoverlapping clusters: each node is
assigned to one and only one cluster. However, in some
types of biological data, a single assignment may fail to
represent multiple relationships between a node and
various types of neighbors (for example, a protein may
be part of different complexes).

Some graph-based clustering algorithms support multi-
ple assignment and nonassigned nodes (i.e. fuzzy cluster-
ing), but the tuning of their parameters is sometimes
delicate and the results can sometimes be weaker than
those of a partitioning algorithm.

To keep the best of both worlds, an approach is to first
run a partitioning algorithm and to postprocess its result
by measuring a posteriori the membership between each
node and each cluster of the partition. The membership of

a node to a cluster is the proportion of edges from this
node that reach that cluster. If the graph is weighted, the
membership can take edge weights into account.

This two-step approach has been used to perform a
reticulate classification of phages and detect mosaic
phages resulting from fusions between other phage
genomes (38). The program graph-cluster-membership
takes as input a graph and a clustering result, and returns
a node/cluster table indicating the degree of membership
of each node to each cluster.

On the NeAT site, clustering results can automatically
be launched to the graph-cluster-membership form. graph-
cluster-membership can easily be adapted to be combined
with other graph-based clustering algorithms.

Mapping of classes onto network

NeAT program graph-get-clusters then allows to extract or
to map node clusters onto the network. A first function of
such a mapping is to visualize the coherence of protein
clusters or functional classes in the context of the network.
Figure 4 displays a typical example of graph-get-clusters
results, where known protein complexes (15) have been
mapped onto a yeast protein interaction network obtained
by high-throughput co-immunoprecipitation experiments
(39). Edges between proteins belonging to annotated
structural complexes have been colored according to their
cluster (complex) membership. This helps the user to
visualize the position of complexes in the interaction
network.

w450

DOCUMENTATION

NeAT programs are documented at various levels. Firstly,
a manual is accessible from each query form, providing a
systematic description of the parameters. Second, DEMO
buttons automatically fill the query form with predefined
examples (data sets + parameter values), in order to give
the intuition of the result returned by the tools on a typical
situation. Third, NeAT contains a tutorial, where users
can learn using the tools on the basis of concrete
biological data sets.

IMPLEMENTATION AND AVAILABILITY

Unless otherwise specified, all interaction data sets
available in the NeAT demonstrations and the tutorials
were downloaded from the BioGrid database (14) (http://
www.thebiogrid.org/).

Moreover, NeAT includes a tool allowing to download
and precisely filter subsets of the String database. This
database contains protein interaction data obtained by
integrating known and predicted interactions from a
variety of sources (40).

Except for the path finding and the graph layout
algorithms, all NeAT programs were developed in Perl
and can be used as stand-alone applications on UNIX-
based systems (tested on Linux + Mac OSX). The stand-
alone version is freely available for academic users upon
request (see Informations on the NeAT website).

The large majority of NeAT tools allows the treatment
of graphs with several thousands of nodes and several tens
of thousands of edges in a reasonable time. Typical
published biological networks (a few thousands of nodes
and tens of thousands of edges) are treated within seconds.
However, some tools may be slower (cliques discovery
(NP-hard), betweenness and closeness computation), but
the execution time stays reasonable (minutes).

The web site (http://rsat.scmbb.ulb.ac.be/neat/) is free
and open to all users and there is no login requirement.

NeAT programs are also accessible as web services
(interface SOAP/WSDL), which allows to design pro-
grammatic workflows and integrate NeAT tools with
various remote resources (databases and software tools).
Actually, our website is itself a client for the web services,
which guarantees a constant care for maintaining func-
tional web services.

CONCLUSION

The Network Analysis Tools provide bioinformaticians
and biologists with a set of web tools that can be
combined to efficiently perform the main graph operations
(comparison, node degree computation, clustering, etc.)
used in today’s network biology. As all programs can be
integrated in workflows, either on our website or via
SOAP web services, users can easily use them to study the
topology of a network of interest, discover densely
connected groups of nodes, compare these groups to
some reference classification and run negative control by
submitting randomized graphs to the same analysis.

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

With the increasing number of studies involving
biological networks, we are confident that the NeAT
web server will be useful to biologists in general and to
network bioinformaticians in particular.

ACKNOWLEDGEMENTS

Pathfinder is a Java wrapper around the REA algorithm
written by Jimenez and Marzal in C. K.F. acknowledge
these developers for putting their code in public. The
NeAT java wrapper was inspired by a Python wrapper
written by Pierre Schaus and Jean-Noél Monette at UCL
(INGI), who are acknowledged for having helped K.F.
K.F. would also like to thank the former aMAZE team
for their support and help. The clustering algorithm MCL
was developed by Stijn Van Dongen (Sanger Institute,
UK). We are thankful to Stijn for making his code
publicly available, for allowing us to integrate it in our
web server, and for his extensive feed-back on the NeAT
web interface. The clustering algorithm RNSC was
developed by Andrew King (McGill Institute, Canada).
We are thankful to Andrew King for making his code
publicly available and for allowing us to integrate it in our
web server. We thank Zhenjun Hu for helping us to
integrate ViSANT in NeAT and Morgane Thomas-
Chollier (Université¢ Libre de Bruxelles, Belgium) for her
help in the website design and in the implementation of
php scripts. We also acknowledge the following colleagues
for having tested NeAT and for their constructive
comments: Cei Abreu (Sanger Institute, UK), Bruno
Contreras Moreira (University of Saragossa, Spain),
Alexandre Irrthum (Universit¢é de Liége, Belgium),
Philippe Gautier (MRC Edimburg, UK), Nicolas
Simonis (Harvard Medical School, Boston, USA) and
Shuye Pu (Hospital for Sick Children, Toronto, Canada).
S.B. and R.J. are recipients of a PhD grant from the
Fonds pour la Formation a la Recherche dans I'Industrie
et dans I’Agriculture (FRIA). K.F. is supported by The
Actions de Recherches Concertées de la Communauté
Frangaise de Belgique (ARC grant number 04/09-307).
G.L.M. is a fellow from the Fonds Xenophilia, ULB. The
laboratory is a member of the BioSapiens Network
of Excellence funded under the sixth Framework program
of the European Communities (LSHG-CT-2003-503265).
The BiGRe laboratory is supported by the Belgian
Program on Interuniversity Attraction Poles, initiated
by the Belgian Federal Science Policy Office, project
P6/25 (BioMaGNet). Funding to pay the Open
Access publication charges for this article was provided
by the Région Wallonne de Belgique (TransMaze project
415925).

Conflict of interest statement. None declared.

REFERENCES

1. Jeong,H., Mason,S.P., Barabasi,A.L. and Oltvai,Z.N. (2001)
Lethality and centrality in protein networks. Nature, 411, 41-42.

2. Jeong,H., Tombor,B., Albert,R., Oltvai,Z.N. and Barabasi,A.L.
(2000) The large-scale organization of metabolic networks. Nature,
407, 651-654.

http://
http://rsat.scmbb.ulb.ac.be/neat/

20.

21

22.

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

. Gagneur,J., Jackson,D.B. and Casari,G. (2003) Hierarchical analy-

sis of dependency in metabolic networks. Bioinformatics, 19,
1027-1034.

. Croes,D., Couche,F., Wodak,S.J. and van Helden,J. (2006)

Inferring meaningful pathways in weighted metabolic networks.
J. Mol. Biol., 356, 222-236.

. Luscombe,N.M., Babu,M.M., Yu,H., Snyder,M., Teichmann,S.A.

and Gerstein,M. (2004) Genomic analysis of regulatory network
dynamics reveals large topological changes. Nature, 431, 308-312.

. Babu,M.M., Luscombe,N.M., Aravind,L., Gerstein,M. and

Teichmann,S.A. (2004) Structure and evolution of transcriptional
regulatory networks. Curr. Opin. Struct. Biol., 14, 283-291.

. Fukuda,K. and Takagi,T. (2001) Knowledge representation of

signal transduction pathways. Bioinformatics, 17, 829-837.

. Deville,Y., Gilbert,D., van Helden,J. and Wodak,S.J. (2003) An

overview of data models for the analysis of biochemical pathways.
Brief Bioinform., 4, 246-259.

. Huber,W., Carey,V.J., Long,L., Falcon,S. and Gentleman,R. (2007)

Graphs in molecular biology. BMC Bioinform., 8 (Suppl 6), SS8.

.von Mering,C., Krause,R., Snel,B., Cornell,M., Oliver,S.G.,

Fields,S. and Bork,P. (2002) Comparative assessment of large-scale
data sets of protein-protein interactions. Nature, 417, 399-403.

. Sprinzak,E., Sattath,S. and Margalit,H. (2003) How reliable are

experimental protein-protein interaction data? J. Mol. Biol., 327,
919-923.

. Yook,S.-H., Oltvai,Z.N. and Barabasi,A.-L. (2004) Functional and

topological characterization of protein interaction networks.
Proteomics, 4, 928-942.

. Letovsky,S. and Kasif,S. (2003) Predicting protein function from

protein/protein interaction data: a probabilistic approach.
Bioinformatics, 19 (Suppl 1), 1197-204.

. Breitkreutz,B.-J., Stark,C., Reguly,T., Boucher,L., Breitkreutz,A.,

Livstone,M., Oughtred,R., Lackner,D.H., Béhler,J., Wood,V. et al.
(2008) The biogrid interaction database: 2008 update. Nucleic Acids
Res., 36 (Database issue), D637-D640.

. Mewes,HW., Amid,C., Arnold,R., Frishman,D., Guldener,U.,

Mannhaupt,G., Munsterkotter,M., Pagel,P., Strack,N.,
Stumpflen,V. et al. (2004) MIPS: analysis and annotation of
proteins from whole genomes. Nucleic Acids Res., 32 (Database
issue), D41-D44.

.Janky,R. and van Helden,J. (2008) Evaluation of phylogenetic

footprint discovery for predicting bacterial cis-regulatory elements
and revealing their evolution. BMC Bioinform., 9, 37.

. Scott,J., Ideker,T., Karp,R.M. and Sharan,R. (2006) Efficient

algorithms for detecting signaling pathways in protein interaction
networks. J. Comput. Biol., 13, 133-144.

. Bebek,G. and Yang,J. (2007) Pathfinder: mining signal transduction

pathway segments from protein-protein interaction networks. BMC
Bioinform., 8, 335.

. Rahman,S.A., Advani,P., Schunk,R., Schrader,R. and

Schomburg,D. (2005) Metabolic pathway analysis web service
(pathway hunter tool at cubic). Bioinformatics, 21, 1189-1193.

van Helden,J., Gilbert,D., Wernisch,L., Schroeder,M. and
Wodak,S. (2001) Applications of regulatory sequence analysis and
metabolic network analysis to the interpretation of gene expression
data. In O.Gascuel and M.-F.Sagot (eds), Computational Biology :
First International Conference on Biology, Informatics, and
Mathematics, JOBIM 2000. LNCS Vol. 2066, Springer, Montpellier,
pp. 155-172.

.van Helden,J., Wernisch,L., Gilbert,D. and Wodak,S.J. (2002)

Graph-based analysis of metabolic networks. Ernst Schering Res.
Found. Workshop, 38, 245-274.

Croes,D., Couche,F., Wodak,S.J. and van Helden,J. (2005)
Metabolic pathfinding: inferring relevant pathways in

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

w451

biochemical networks. Nucleic Acids Res., 33 (Web Server issue),
W326-W330.

Jimenez,V. and Marzal,A. (1999) Computing the k shortest paths: a
new algorithm and an experimental comparison. Proc. 3rd Int.
Worksh. Algorithm Engineering (WAE 1999), 1668, 15-29.
Spirin,V. and Mirny,L.A. (2003) Protein complexes and functional
modules in molecular networks. Proc. Natl Acad. Sci. USA, 100,
12123-12128.

Han,J.-D.J., Dupuy,D., Bertin,N., Cusick,M.E. and Vidal,M. (2005)
Effect of sampling on topology predictions of protein-protein
interaction networks. Nat. Biotechnol., 23, 839-844.

Brohée,S. and van Helden,J. (2006) Evaluation of clustering
algorithms for protein-protein interaction networks. BMC
Bioinform., 7, 488.

Milenkovic,T., Lai,J. and Przulj,N. (2008) Graphcrunch: a tool for
large network analyses. BMC Bioinform., 9, 70.

Hu,Z., Ng,D.M., Yamada,T., Chen,C., Kawashima,S., Mellor,J.,
Linghu,B., Kanehisa,M., Stuart,J.M. and DeLisi,C. (2007) Visant
3.0: new modules for pathway visualization, editing, prediction and
construction. Nucleic Acids Res., 35 (Web Server issue),
W625-W632.

Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498-2504.
Gene Ontology Consortium. (2008) The Gene Ontology project in
2008. Nucleic Acids Res., 36 (Database issue), D440-D444.
Sharan,R., Ulitsky,I. and Shamir,R. (2007) Network-based predic-
tion of protein function. Mol. Syst. Biol., 3, §8.

Krogan,N.J., Cagney,G., Yu,H., Zhong,G., Guo,X.,
Ignatchenko,A., Li,J., Pu,S., Datta,N., Tikuisis,A.P. et al. (2006)
Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae. Nature, 440, 637-643.

Pereira-Leal,J.B., Enright,A.J. and Ouzounis,C.A. (2004) Detection
of functional modules from protein interaction networks. Proteins,
54, 49-57.

Enright,A.J., Dongen,S.V. and Ouzounis,C.A. (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic Acids
Res., 30, 1575-1584.

Lattimore,B.S., van Dongen,S. and Crabbe,M.J.C. (2005) Genemcl
in microarray analysis. Comput. Biol. Chem., 29, 354-359.

Van Dongen,S. (2000) Graph clustering by flow simulation. Ph.D.
Thesis. Centers for Mathematics and Computer science (CWI),
University of Utrecht.

King,A.D., Przulj,N. and Jurisica,l. (2004) Protein complex
prediction via cost-based clustering. Bioinformatics, 20, 3013-3020.
Lima-Mendez,G., van Helden,J., Toussaint,A. and Leplae,R. (2008)
Reticulate representation of evolutionary and functional relation-
ships between phage genomes. Mol. Biol. Evol., 25, 762-777.
Gavin,A.-C., Aloy,P., Grandi,P., Krause,R., Boesche,M.,
Marzioch,M., Rau,C., Jensen,L.J., Bastuck,S., Diimpelfeld,B. et al.
(2006) Proteome survey reveals modularity of the yeast cell
machinery. Nature, 440, 631-636.

von Mering,C., Jensen,L.J., Kuhn,M., Chaffron,S., Doerks,T.,
Kriiger,B., Snel,B. and Bork,P. (2007) String 7-recent developments
in the integration and prediction of protein interactions. Nucleic
Acids Res., 35 (Database issue), D358-D362.

Uetz,P., Giot,L., Cagney,G., Mansfield,T.A., Judson,R.S.,
Knight,J.R., Lockshon,D., Narayan,V., Srinivasan,M., Pochart,P.
et al. (2000) A comprehensive analysis of protein-protein interac-
tions in Saccharomyces cerevisiae. Nature, 403, 623-627.

Ito,T., Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y.
(2001) A comprehensive two-hybrid analysis to explore the yeast
protein interactome. Proc. Natl Acad. Sci. USA, 98, 4569-4574.

