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ABSTRACT

One of the challenges of the post-genomic era is to
provide accurate function annotations for large
volumes of data resulting from genome sequencing
projects. Most function prediction servers utilize
methods that transfer existing database annotations
between orthologous sequences. In contrast, there
are few methods that are independent of homology
and can annotate distant and orphan protein
sequences. The FFPred server adopts a machine-
learning approach to perform function prediction in
protein feature space using feature characteristics
predicted from amino acid sequence. The features
are scanned against a library of support vector
machines representing over 300 Gene Ontology
(GO) classes and probabilistic confidence scores
returned for each annotation term. The GO term
library has been modelled on human protein annota-
tions; however, benchmark performance testing
showed robust performance across higher eukary-
otes. FFPred offers important advantages over
traditional function prediction servers in its ability
to annotate distant homologues and orphan protein
sequences, and achieves greater coverage and
classification accuracy than other feature-based
prediction servers. A user may upload an amino
acid and receive annotation predictions via email.
Feature information is provided as easy to interpret
graphics displayed on the sequence of interest,
allowing for back-interpretation of the associations
between features and function classes.

INTRODUCTION

Computational approaches to protein annotation predic-
tion often infer protein function by transferring

annotations between proteins with similar sequence,
structure, amino acid motifs or phylogenetic profiles.
Most automated function prediction servers employ
nearest neighbour approaches that rely upon identifying
well-annotated sequence and structural homologues. In
practice, these methods are only applicable in cases where
sequence relationships can be reliably established and
homologues are functionally well characterized. Past
estimates based on 2 million known sequences suggested
as few as 33% of unannotated sequences were closely
related to well-characterized homologues and could be
targeted by these methods (1). The remaining set comprised
sequences that were distantly homologous to well-anno-
tated proteins or were orphan proteins. More recent studies
have shown that similar sequences cannot always be used to
infer similar functions, for example, one study reported a
requirement of 40-70% sequence identity between enzymes
to transfer function with 90% accuracy (2). A second study
highlighted the problems of ‘annotation lag’ or indeed
erroneous annotations in sequence databases. Often,
proteins that had been well characterized experimentally
still exist as ‘hypothetical proteins’ within the biological
sequence databases over 2 years after the original literature
has been published characterizing the sequence (3). These
findings highlight the importance for accurate automated
methods that can be applied to all sequences and are
independent of homology information.

One class of method that addresses the annotation of
orphan and unannotated proteins are feature-based. These
methods utilize information derived from characteristics of
the protein sequence; secondary structure or hydropho-
bicity for example, in order to determine function.
Machine-learning feature-based approaches have been
successfully used to recognize patterns of features that are
indicative of different functional classes such as enzyme EC
numbers (4) and for a handful of Gene Ontology (GO)
terms (5). These methods do not rely on annotation transfer
from nearest neighbour sequences and are resistant to
missing or error-prone annotations through the use of
sensitive machine learning techniques that are capable of
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distinguishing genuine functional signals from noise.
Consequently, these approaches are capable of providing
truly novel functional insights by generating ab initio
function predictions.

Here, we describe the FFPred server for feature-based
function prediction using the Gene Ontology Annotations
(6) as our definition of function. This server differs from
other conventional function prediction servers in that it
has the capacity to annotate orphan and distantly homo-
logous proteins with broad function terms. The server
consists of individual classifiers for 111 molecular function
and 86 biological process categories capable of achieving
>50%  sensitivity at false positive rates of <10%. The
categories represent over 300 GO annotation terms
considering inheritance within the term definitions. In a
comparison study with another feature-based server (7),
FFPred offered the broadest selection of GO annotation
terms for prediction and achieved a greater level of
accuracy for common classifiers through the use of
additional feature inputs and more accurate prediction
of existing features using PSI-BLAST profiles.

METHODS

The server processing model (Figure 1) shows the
computational steps involved from inputting a query
amino acid sequence to generating a set of GO term
predictions. The first step involves the generation of a set
of feature descriptors for the query sequence. The features
are calculated from a suite of programs predicting cellular
localization, post-translational modification patterns, sec-
ondary structure and transmembrane regions [see ref. (7)
for full feature listing]. Most of the prediction algorithms
require a single amino acid sequence as input; however,
for secondary structure, disorder and transmembrane
features, more accurate predictions can be obtained by
the use of PSI-BLAST profiles as input to the algorithms.
For this purpose, three separate PSI-BLAST profiles are
generated according to the recommended default para-
meter settings for each prediction program using the
current version of uniref90 (8) as the search database.

Each program output is parsed and converted into
feature descriptors describing attributes of the sequence
such as number of predicted disordered residues at the
N-terminus, or number of glycosylated residues predicted
in the protein. At this stage, the feature matrix is normal-
ized so that values lie between 0 and 1 and reformatted for
screening against the library of support vector machines
(SVMs). Each classifier outputs a binary decision value as
to whether the protein should receive the annotation term
or not, with an associated posterior probability. The
decision values and probabilities are collated for each GO
term and summarized in the final annotation results as jury
decisions and confidence scores.

Each GO class is represented by five SVM classifiers
trained with rbf (radial basis function) kernels to recognize
feature patterns associated with the annotation term. The
rbf kernel was selected due to its simplicity and superior
performance when applied to a variety of biological
problems (9,10). The rbf kernel has also been shown to be
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Figure 1. Server process flow diagram.

a general case of linear kernel and sigmoid kernel for
certain parameters (11). SVMs for a given category were
trained using five homology reduced partitions of the total
14 055 protein dataset. The number of partitions was
selected as a trade-off between retaining sufficient positive
class examples for model building and the ability to predict
an annotation using multiple classifiers. Sequences in the
same training and test dataset partition were filtered so
that no two sequences were related at more than le-6
BLAST E-value. This technique boosted overall perfor-
mance by providing five independent classifiers utilizing
different feature weightings for prediction of the same GO
category.

GO class scoring scheme

The posterior probabilities for each classifier are generated
using the method of Platt (12). In this case, the SVM model
encodes the position of a decision boundary separating the
positive GO class members from the negative GO class
members according to the feature input data. The distance
from the decision boundary in either direction for a protein
represented in feature space can be obtained from the
classifier output. Probabilities are assigned to each distance
value f(x) for a GO classifier y by estimating the parameters
A and B of a sigmoid function that is fitted to the
distribution of distances obtained for an independent test
protein dataset (Equation 1).
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Figure 2. Sample output from the server for sequence IP100745501.

A GO class assignment is made by majority rule for a
protein, where three out of the five classifiers produce a
positive decision result. This number is reported as the
Jury value (Figure 2). The final confidence score for a GO
class assignment is taken as the average of the three
highest probability values. As a guide, the greater the
number of classifiers that predict an annotation class for a

| denates an inherted term P denates a predicted term [ indicates the term is conrmed in the current GOA annatation

protein (the Jury value), the greater the confidence in the
resulting score. This scoring mechanism eliminates false
positive assignments made by one or two of the five
classifiers increasing overall precision.

Finally, the hierarchical nature of the GO classifi-
cation scheme is exploited by propagating annotation
confidence scores between related terms. A maximum
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confidence score is reported and displayed in the GO
hierarchy view (Figure 2) for each GO term representing
the maximum confidence score of the term classifier or any
of its child terms.

USAGE
Input query format

The FFPred server accepts single protein sequences as
input formatted as plain text or in FASTA format. It is
expected that the amino acid sequence of interest
represents the entire mature protein product of a gene or
at least a genuine transcript. Server results based on
sequence fragment inputs may be unreliable as feature
information may differ substantially between truncated
gene products. Additionally, if the sequence input has
been recently processed or is present in the human IPI
protein dataset, the user will be immediately directed to a
page displaying the feature and GO term predictions for
the given query sequence.

Database query

The user may also view pre-processed results for the
human proteome using IPI accession identifiers or enter
one of the GO terms in the library into the GO query field.
In the latter case, the reported results table details novel
predictions that are not present within the GOA annota-
tion or Swiss-Prot annotated datasets.

Output format

Server output for sequence submissions are returned to
the user by email containing a text summary of GO
annotation predictions for the input sequence with a
hyperlink to a dynamically generated temporary results
page (Figure 2). The results page details predicted features
and GO annotations for the query sequence. The feature
predictions are shown in tabular format as well as
graphically mapped onto the sequence of interest for
easy interpretation. This allows for back interpretation of
feature patterns responsible for functions. This view is also
available in print friendly format.

GO term predictions are represented in hierarchical
format or as single table of individual term results. In the
hierarchy view, each GO term is annotated according to

Table 1. Classification performance for six eukaryotic proteomes

whether it was predicted by classifiers present in the
library, or whether the annotation was inherited through
classifiers representing one or more of the child terms.
This view enables the user to contextualize the predictions
and derive extra confidence in predictions that are made
by both parent and child term classifiers.

Computational efficiency

In the case of a typical protein sequence, computation
takes 12-15min from initial sequence submission to
receiving server results via email on an Intel Xeon
3.2GHz processor running CentOS 4.4. The majority
portion of this time is spent screening the GO term SVM
library (around 11min per sequence). Users wishing to
submit significant number of queries or whole proteomes
for annotation should contact the authors for advice.

RESULTS AND DISCUSSION

The SVM models underlying this method have been
trained and tested on human annotated proteins. In
order to assess the performance of the method on other
organisms, we tested the classifiers using Gene Ontology
Annotations from the GOA project (13) on eukaryotic
model organisms zebrafish (Danio rerio), mouse
(Mus musculus), fly (Drosophila melanogaster), worm
(Caenorhabditis  elegans) and yeast (Saccharomyces
cerevisiae). Table 1 lists the performance statistics;
sensitivity, specificity, precision and Matthew’s correlation
coefficient (MCC) obtained for each organism using the
classifiers trained on human data for all categories
performing better than random. The proteins in each
genome that were annotated with one or more GO terms
were used as the basis of the benchmark study. A result
was considered correct if the server assignment was also
represented in the GOA annotation by the GO term in
question or one of its child terms. Proteins annotated at
less specific GO term levels than the term in question were
omitted from the study.

As evolutionary distance between the different species
and human increased, the overall average classifier
accuracy decreased (MCC values in Tablel). Inspection
of the sensitivity and specificity values showed the
performance decrease could be attributed to a loss in
sensitivity across more distantly related species worm, fly

MCC Sensitivity Specificity Precision No. of Proteins No. of Categories
Human 0.66 0.67 0.99 0.68 32528 197
Mouse 0.57 0.48 0.98 0.52 26557 196
Zebrafish 0.65 0.58 0.97 0.64 12684 186
Worm 0.47 0.47 0.97 0.56 11770 165
Fly 0.44 0.40 0.98 0.57 13107 175
Yeast 0.42 0.34 0.97 0.61 5527 99

Each performance statistic represents the mean average value for all GO term classifiers. MCC represents Matthew’s correlation coefficient, a
measure of overall classifier accuracy. A value of 0 indicates random performance, whilst a value of 1 implies perfect classification. Sensitivity
represents the proportion of positive examples recovered by the classifier, i.e. TP/(TP + FN). Specificity represents the proportion of negatives
examples recovered by the classifier i.e. TN/(FP + TN). Precision represents the proportion of positive assignments made by the classifier that were
correct, i.e. TP/(TP + FP). TP, true positives; TN; true negatives; FP, false positives; FN, false negatives.
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and yeast. The sensitivities obtained for mouse and
zebrafish were comparable with human. The average
specificities observed for all classifiers for each proteome
were high for all organisms. This property is a requirement
for predictors that will be applied to whole proteomes to
avoid large numbers of false positives, where the expected
number of GO term annotations is small compared with
the number of proteins not annotated by the GO term.

The number of classifiers obtaining over 90% specificity
at sensitivities of >30% were also reported (Tablel). The
decrease in these numbers with evolutionary distance from
human can be explained in part as a consequence of
differences in quality and completeness between the
various proteome annotation efforts and in part as a
function of decreasing feature conservation between
proteins from more distant eukaryotic proteomes.
Amongst the 99 categories that were useful in predicting
the functions of yeast proteins, the majority were more
general annotation terms that had higher performance
accuracies on human proteins and were focused around
enzymatic and transmembrane protein functions. The
majority of terms unsuitable for use with yeast were
biological process categories. This observation suggests
that the features corresponding with many of these
categories in human are not conserved within lower
eukaryotes and may correspond with other studies
reporting a lack of conservation of protein—protein
interactions between species (14).

Overall, the benchmark results show robust classifica-
tion accuracies across the vertebrate and mammalian
proteomes for most of the annotation categories. We
recommend the effective use of this server to annotate
vertebrate and mammalian proteomes; however, our
results indicate that when run on proteins from lower
eukaryotic organisms, the server is more likely to leave a
protein unannotated rather than produce an erroneous
annotation. The server is not recommended for use with
proteins from plants or prokaryotic organisms. Key
differences in subcellular localization signalling pathways
and post-translational modification pathways mean that
patterns of features corresponding with function are not
sufficiently conserved with those obtained for human for
effective function prediction.

The two primary uses of the server are in the annotation
of orphan and unannotated proteins or for partially
annotated proteins. Example output (Figure 2) represents
the predicted functions for the human IPI00745501
protein sequence. This sequence does not return any
annotated hits by sequence homology searches and is
therefore unlikely to be annotated by servers utilizing
annotation transfer methods. FFPred annotates this
sequence with several GO terms with a maximum
annotation score of 0.584 as a DNA-binding protein
and more specifically a transcription factor. From the
feature-based graphical output, we also learn that this
sequence contains many predicted phosphorylation and
O-glycosylation sites and is compositionally biased with
significantly over-represented in arginine, glutamine and
histidine residues (red highlights in Figure 2). The
sequence is under-represented in leucine, isoleucine and
phenylalanine residues (blue highlight in Figure 2) and the
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predicted subcellular localization is nuclear. These pieces
of information can be used to rationalize the prediction,
since the presence of many phosphorylation sites within
the protein is consistent with a role in some signalling
pathway and the large contiguous stretches of disorder
enriched in positively charged residues are characteristics
of some DNA-binding proteins (15). These types of
predictions made on unannotated sequences await further
characterization and experimental validation in the
laboratory. For predictions made on well-characterized
sequences, supporting evidence can often be found in the
literature or by comparing FFPred results with other
independent prediction methods.

CONCLUSIONS

Genome sequencing projects have furthered our under-
standing of disease processes and the biological mecha-
nisms underlying them. Sequences with high homology to
closely related organisms can be readily annotated by
numerous similarity search techniques. As a result,
existing function annotations that can be transferred in
this way are quickly propagated throughout the biological
sequence databases. However, it is clear that many
functions are not simply determined by sequence homo-
logies and in many cases we cannot confidently identify
relationships with well-characterized proteins. The
FFPred server that integrates information from many
different resources provides a powerful and necessary
alternative to homology inference-based methods and can
deliver vital functional clues where other methods fail.

FUTURE WORK

At the time of writing, due to computational costs, the
current version of the server did not permit batch sequence
processing. We intend to Grid enable the server in the
future and anticipate that this feature will be incorporated
in future server releases so that users can submit multiple
query sequences to the FFPred server.
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