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Summary
Multi-domain proteins continue to be a major challenge in protein structure prediction. Here, we
present a Monte Carlo (MC) algorithm, implemented within Rosetta, to predict the structure of
proteins in which one domain is inserted into another. Three new MC moves combine rigid-body
and loop movements to search the constrained conformation by structure disruption and subsequent
repair of chain breaks. Local searches find that the algorithm samples and recovers near-native
structures consistently. Further global searches produced top-ranked structures within 5 Å in 31 of
50 cases in low resolution mode, and refinement of top-ranked low-resolution structures produce
models within 2 Å in 21 of 50 cases. Rigid-body orientations were often correctly recovered despite
errors in the linker conformation. The algorithm is broadly applicable to de novo structure prediction
of both naturally occurring and engineered domain insertion proteins.

Introduction
Over two-thirds of the proteins in the prokaryote and eukaryote proteomes are composed of
multiple domains (Ponting and Russell, 2002; Russell, 1994; Vogel et al., 2004). Furthermore,
proteins engineered for new functions have been created by combining domains of existing
proteins in such a way to link the conformational states of the individual domains. While many
natural and engineered domains are joined end-to-end, complex function can arise from the
more extensive structural coupling when one domain is inserted within another, creating a
domain insertion protein (Baird et al., 1999; Buskirk et al., 2004; Guntas et al., 2005;
Ostermeier, 2005; Radley et al., 2003; Russell, 1994; Skretas and Wood, 2005a). Given the
difficulties in obtaining structures of large proteins by either x-ray crystallography or NMR,
computational protein structure prediction could play an important role for understanding these
large proteins. However, while single domains (averaging ∼150 residues per domain (Shen et
al., 2005)) can often be predicted to moderate accuracy using de novo or comparative modeling
(Rohl et al., 2004a), multidomain proteins are much more challenging due to the higher order
organization and increased size (Tress et al., 2007). Complex topology creates additional
prediction difficulties due to the interdependence of the degrees of freedom. In this study, we
develop and test a method that predicts the overall structure of domain insertion proteins from
structures of the individual domains.

The word “domain” has many connotations from evolutionary, structural, and functional
contexts. The most common classification in structural biology defines a domain as a compact
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independently folding unit with structural similarities to other proteins. A number of resources
can be used to parse proteins into domains using a structural definition, including the manually
curated Structural Classification of Proteins (SCOP (Barton, 1994)) database and the hidden
Markov model-based CATH system (Jones et al., 1998; Orengo et al., 1997). The DomIns
Database of domain insertion proteins contains 1332 structures, although the number of unique
structures is much lower (Selvam and Sasidharan, 2004). For the purpose of this paper, domain
insertion proteins are defined by two criteria: 1) they are two-domain proteins and 2) the host
domain, A, is non-continuous and thereby made up of two segments, A1 and A2, which are
separated in sequence by two linkers and the insert domain, B (Figure 1).

From the structures of domain insertion proteins, a number of observations have been made.
First, the inserted domain is most often the smaller of the two domains with the host domain
comprising 50-80% of the protein and the insert domain comprising the remaining 20-50%
(Aroul-Selvam et al., 2004; Ponting and Russell, 2002). Second, the location of the insertion
point is biased such that most insertions occur in the last third of a protein's sequence length.
Finally, the ends of the inserted domain are within 8 Å of each other in the crystal structure,
allowing insertion to occur more readily (Aroul-Selvam et al., 2004). The reasons for these
trends are not clear, but may include evolutionary pressure for easier insertion and correct
folding.

Structure prediction experiments, such as the Critical Assessment of Structure Prediction
(CASP (Moult et al., 1995)), show that it is very difficult to predict the structure of multidomain
proteins, even when homology models of the individual domains are available (Tai et al.,
2005; Tress et al., 2005; Venclovas and Margelevicius, 2005). Recently, algorithms have
emerged that parse protein sequences into separate domains and use templates matching each
piece to create homology models, however most of the time, multidomain proteins are still
modeled using a single template for the full length of the protein (Cheng, 2007; Cheng and
Baldi, 2006; Clarke et al., 2007; Tress et al., 2007; Zhou et al., 2007). In the domain definition
section of CASP, assessors assign official domain definitions by visual inspection using criteria
of geometrical separation, symmetry, and recurrence in other structures (Tress et al., 2005).
Similarly, predictors use a variety of combined automated and manual inspection algorithms
to predict domains (Bradley et al., 2005a; Clarke et al., 2007). In the most recent CASP
experiment, CASP7, 16 out of 96 proteins were classified as domain insertion proteins by the
assessors (Clarke et al., 2007) using the above criteria, and yet there is no indication that these
targets were approached differently than any other structure prediction problem (Zhou et al.,
2007); Rhiju Das, Jianlin Cheng, personal communication). Our hypothesis is that increased
accuracy can be achieved by using template-based homology modeling for the individual
domains (increasing accuracy since these are smaller) and then combining the domains with a
domain insertion algorithm. To our knowledge, there is no published study on the systematic
prediction of domain insertion proteins from the component domains, and no reliable methods
exist to find their structure.

For comparison, there are two general methods for predicting the structure of end-to-end
multidomain proteins: the problem can be approached similarly to protein-complex formation
by docking two domains (Yuval et al., 2005), or it can be studied with “domain assembly,”
where the torsional degrees of freedom of the linkers are sampled, resulting in downstream
movement of the second domain relative to the first domain (Wollacott et al., 2007).

Predicting the structure of domain insertion proteins is kinematically more difficult because
the domains are connected by two linkers. Compared to a docking approach, the linker torsion
angles increase the conformational space, and compared to domain assembly, the second linker
and host domain compactness constrains the conformation. The two linkers prevent a domain
assembly method from working because any changes made in one linker will move one of the
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segments of the host domain. Furthermore, since the linkers are often found at the interface
between the two domains, a docking approach is insufficient because the linkers must be
modeled to provide a full interface region for domain-domain contacts.

In this work we predict structures of domain insertion proteins by simultaneously optimizing
the conformation of the linkers and the rigid-body orientation of the host and insert domains.
We introduce a Monte Carlo (MC) based algorithm implemented within the Rosetta protein
structure modeling suite (Rohl and Baker, 2002) incorporating parts of earlier approaches to
both domain assembly and loop modeling. We develop combinations of conformational moves
to efficiently search the relevant conformation space and maintain the connectivity constraints
of the protein. We test the algorithm in local and global searches in both low- and high-
resolution representations.

Results
New move types

At the core of our method are three new MC moves we added to the standard Rosetta move
set. These moves simultaneously optimize the linker conformation and rigid-body position,
while enforcing the constraints presented by the two linkers. Each move follows a two-step
process. The first step applies a perturbation, which is often disruptive, and the second step
repairs any disruption caused by the move. Moves are accomplished using a “fold tree”
representation of the protein (Bradley and Baker, 2006). A fold tree represents a protein by a
graph and allows backbone conformational sampling to be localized without propagation of
torsion angle perturbations past specified “cut points.” The structurally continuous segments
between cut points are called “edges” and are connected to each other spatially by “jumps,”
which encode the rigid-body transformations connecting the edges. Flexible regions, such as
the linkers, must be adjacent to at least a single cut point to allow conformational sampling
while preventing propagation of backbone torsion angle perturbations far downstream.

Figure 2 shows the new moves for the low resolution search. Figure 2A describes a rigid-body
move wherein domain B is translated and rotated while domain A remains fixed, causing the
two linkers connecting the domains to break (Figure 2A, center). The rigid-body fold tree,
shown below the cartoon, uses a fixed jump to connect the two halves of domain A so that they
move as a single entity. A flexible jump between domain A and domain B is altered to allow
B to sample the conformational space around A. The broken chains are later repaired using a
loop-building move over two 11-residue linkers, defined as the insertion point residues and
five adjacent residues on either side.

Connecting linkers between the domains (11 residues each) are built and optimized as a loop-
prediction problem through a combination of three-residue fragment insertions (Rohl et al.,
2004a) and cyclic coordinate descent (CCD) loop closure (Canutescu and Dunbrack, 2003).
CCD iteratively adjusts single dihedral angles to minimize the sum of the squared distances of
three backbone atoms across a chain break. As shown in Figure 2B, three consecutive backbone
torsion angles are replaced by the insertion of a fragment, causing the linker to break; it is then
forced closed using CCD. During the move, the residues in the single linker that is being built
and repaired are the only flexible parts of the protein.

The final move type is an “insertion flop” move. Several small φ/ψ torsion angle movements
are imposed in one linker, propagating the movement through the insert domain to a chain
break in the second linker (Figure 2C). The second linker is subsequently repaired with CCD
moves. This process is iterated with the two linkers alternating between the roles of being
perturbed or broken-and-repaired. This effectively “flops” around the insert domain, where the
linker residues are the only flexible parts.

Berrondo et al. Page 3

Structure. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We tested each move independently to verify the function of the move, to optimize the number
of iterations needed, and finally to assess how each move acted on the development set proteins.
Finally, we explored combinations of moves to see how they affected each other. Analysis of
the effectiveness of each move to lower the score and the computational cost of each move
guided us in determining the order of moves and the optimal number of iterations.

Domain insertion algorithm and application
The domain insertion algorithm exploits Rosetta's multi-scale approach combining a low-
resolution mode where side chains are represented as pseudo-atom centroids (Simons et al.,
1997) and a high-resolution mode with explicit side chains. The low-resolution mode allows
for broad and fast exploration of the conformation space, and the new moves are applied in
this mode. Starting structures are subjected to five iterations alternating between sets of rigid-
body moves and sets of loop-building moves, with Boltzmann criterion checks within each set
of moves and after the combined iteration. Thus, the MC search allows for cooperative
movement through rigid-body and linker conformation space. Low-resolution structures which
are not able to close the chain breaks after the repeated loop-building moves are rejected. The
insertion-flop combination moves are less disruptive to structure, therefore they are used after
the rigid-body and loop-building moves are complete.

High-resolution refinement allows fine changes in structure to produce the most relevant
structure for evaluating the energy for decoy discrimination. Refinement consists of several
cycles, wherein each cycle includes φ/ψ perturbations on the backbone of residues in the
linkers, minimization of the rigid-body conformation, and CCD to close any chain breaks.
Perturbations at this stage are very small to avoid clashes in the highly corrugated all-atom
potential function. The interface and surrounding side-chains are periodically repacked using
an embedded MC simulated annealing routine to select the best combination of conformations
from a discrete rotamer library (Dunbrack and Cohen, 1997; Kuhlman and Baker, 2000).

The low-resolution scoring function derives from the de novo prediction algorithm (Rohl et
al., 2004b) except a contact function is added from the docking algorithm (Gray et al.,
2003a) to encourage compactness of the domains. The high-resolution scoring function
originates from the refinement protocol (Bradley et al., 2005b) and is dominated by van der
Waals, solvation, and hydrogen bonding energies. Both scoring functions are supplemented
with a penalty function for chain breaks. The full scoring functions for both low- and high-
resolution modes are detailed in the Experimental Procedures.

Calculations were performed on a test set of 50 crystal structures of proteins selected from the
SCOP database for domain insertion topology and resolution of 2.5 Å or better, removing any
multimeric structures and monomeric structures with significant disordered regions. An
overlapping development set of seven proteins was used to tune the new moves described
above. Computation time is approximately 3 minutes per decoy and varies slightly with protein
size. Some targets proved to have high rates of rejection of initial and low-resolution refined
decoys due to inability to close linkers, thus increasing total computation time.

Local search with domain insertion is able to discriminate structures
To test whether the energy function recognizes near-native structures as those with minimal
energy relative to non-native structures, we performed local structure prediction searches. To
ensure sampling near the native crystal structure, initial structures were created from the native
structure by perturbing similarly to a local search in docking (Gray et al., 2003a), using a rigid-
body transformation and repairing the linkers (Experimental Procedures). In these tests, we
used a combined protocol employing both the low- and high-resolution searches, resulting in
all-atom decoy structures.
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Figure 3 shows the high-resolution score plotted against root-mean squared deviation (rmsd)
from the native structure for 500 decoy structures created by the local search for each of the
seven proteins in the development set. The funnel-like shape of the plots shows that the
minimum energy decoy corresponds to the decoy with the lowest rmsd, indicating that the
score function discriminates near-native decoys. The plots also show the score of the native
structure after high-resolution refinement to relieve any inherent clashes (red diamonds). These
points represent the hypothetical structure that is nearest to the native structure and consistent
with the Rosetta energy function. In all seven proteins, the refined native structures are found
within 0.1 Å rmsd and are the structures with the lowest score. For the seven proteins presented
in Figure 3, all of the plots show that the lowest-scoring decoy is within 1 Å of the native
protein structure.

Global search is successful in most cases tested
While local searches probe the native energy funnel, a global search with an unbiased starting
configuration is a more realistic test of blind prediction ability. To reduce computation time,
we first tested the feasibility of using the low-resolution search alone for creating near-native
decoy structures. Figure 4 shows plots of the low-resolution score versus rmsd for 800 decoys
from global low-resolution searches on each of the 50 proteins in the test set. To our surprise,
not only are near-native structures created, but the low-resolution energy function is often able
to discriminate near-native structures within a small set of low-scoring decoys. In ∼30 of the
targets, funnels are apparent with the lowest scoring decoy within 5 Å of the native structure.
These energy funnels reflect more than simple shape-matching of the domain insertion
interface: plots of the bump and contact terms of the energy function only occasionally reveal
funnels (data not shown); contributions from the residue environment and residue-residue pair
scores and other low-resolution terms are necessary to discriminate near-native decoys in a
broad range of targets.

Next, we tested a two-step process where the top-scoring decoys from the global, low-
resolution search are retained and used for further refinement in a high-resolution protocol.
Ten high-resolution decoys were created from each of the ten top-scoring low-resolution
decoys, for a total of 100 high-resolution decoys.

Figure 5 shows plots of the full-atom score versus rmsd for the high-resolution refinement of
all of the proteins in the test set. The sparseness of the graph reflects the limited sampling from
only top-scoring low-resolution structures, and each low-resolution starting structure produces
a small range of rmsds in the ten models created. Several interesting trends can be found when
comparing the low-resolution and high-resolution results. In some cases (e.g. 1fl2, 1m1h, 1nhq,
1qjd, and 1xmb), running high-resolution refinement can provide better discrimination and
eliminate false-positives structures. Furthermore, the high-resolution refinement sometimes
moves a low-rmsd decoy from low-resolution mode closer to the native structure, as is the case
for ribose 5-phosphate isomerase (1uj4, moving from ∼4 Å to ∼3 Å) and NADPH-dependent
oxidoreductase (1vj1, moving from ∼4 Å to ∼1.5 Å). The fraction of native contacts (fnat)
measure (used in the Critical Assessment of Predicted Interactions, CAPRI (Gray et al.,
2003b;Wodak and Mendez, 2004)), and interaction rmsd (iRMSD (Aloy et al., 2003)) show
similar trends as the rigid-body rmsd. In several cases (1d4d, 1dq3, 1jnd, 1m1h, 1p1m, and
1xmb), high-resolution refinement improves fnat and provides better discrimination of near-
native decoys (data not shown).

In a couple cases, high-resolution refinement does not improve the structure at all, but rather
creates an increase in false positives, as can be seen in isoleucyl-tRNA synthetase (1ile) and
the translocase seca subunit (1tf5). The plots in Figure 5 for these two proteins show the lowest
scoring decoys (black) with lower scores than the refined native structure (red diamonds),
indicating that the scoring function does not discriminate accurately. Note that the high-
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resolution search typically perturbs the decoy by only a few Ångstroms from the starting
structure. Thus, the high-resolution refinement can only save a low-resolution search which
provides top-scoring decoys within a moderate range of the native structure (3-5 Å). In fact,
when the 100 top-scoring low-resolution decoys are refined for C-terminal binding protein 3
(1hku), the lowest-scoring decoys are within 2 Å versus 18 Å using only the 10 top-scoring
low-resolution decoys (data not shown), indicating that additional computing time can improve
some cases by probing deeper in the list of low-resolution decoys.

The funnels seen in Figures 4 and 5 can be quantified by counting the number of low-scoring
decoys that have rmsd less than a threshold. Table 1 summarizes the results for both the low-
resolution search and the high-resolution refinement. For the complete set of 50 proteins, the
low-resolution search is successful to 2 Å rmsd for 17 proteins and to 5 Å rmsd for 31 proteins.
The high-resolution refinement leads to an improvement in the number of successes with 21
proteins less than 2 Å rmsd and 33 with less than 5 Å rmsd. Therefore, the high-resolution
search helps find a conformation that is closer to the native and increases the number of decoys
in these low rmsd conformations. Other measures of accuracy show similar trends, with 27
proteins resulting in an fnat greater than 30% and 27 with an iRMSD less than 3 Å. Table 1
also shows the best rmsd for the five top-scoring decoys and for all decoys in low- and high-
resolution searches. The best rmsds are below 1 Å in several cases, and in about 30 cases, the
best-rmsd of the top-five structures is within an Ångstrom of the best-rmsd of the whole decoy
set.

Successes
Successful predictions can identify approaches to modeling that are working correctly. Figure
6 shows the best-scoring decoy superimposed on the native structure for a signal processing
protein (1owq), hypothetical protein TM0936 (1p1m), flavocytochrome C3 (1qjd), and
NADPH-dependent oxidoreductase (1vj1). For the signal processing protein and hypothetical
protein TM0936 (Figure 6A-B), not only is the algorithm able to identify the correct insert
domain orientation, but it can also find the correct rotamer positions for most of the side chains
at the interface and in the linkers. For flavocytochrome C3 and NADPH-dependent
oxidoreductase (Figure 6C-D), the insert domain is in the correct conformation, but there is
some variation in the linker regions. A higher variability in the rmsd of the linkers than that of
the domain orientation is commonly observed.

To illustrate the variability of linker conformations among decoys, Figure 7 shows low-
resolution score plotted versus two types of rmsd for the case of biliverdin reductase A (1gcu).
On the left is a plot of the score vs. rmsd of the insert domain Cα atoms after each decoy is
superimposed onto the native structure using the host domain Cα coordinates. The right plot
shows the score vs. the rmsd of the linker residue Cα atoms after superposition using only the
linker Cα coordinates. In rigid-body space, the lowest scoring decoys are ∼2.5 Å from the native
with ample sampling below 5 Å (Figure 7, left). However, there are no structures created with
a linker rmsd less than 4 Å and the lowest scoring decoy has a linker rmsd near 5 Å (Figure 7,
right). Therefore, the linkers account for the highest amount of inaccuracy in the models.

Failures
Failures can often be more instructive than successes since they point out problems in the
modeling methods. One common cause for a failure is a small interface between the two
domains. In the case of leucyl-tRNA synthetase (1h3n, Figure 8A-B), the insert domain is
relatively small compared to the host domain and there are many alternate interfaces where the
insert domain is likely to find a conformation that is compact, improving the low-resolution
contact score and the van der Waals energy in the high-resolution score. Indeed, in the lowest
energy structure (pink, Figure 8A) the insert domain fills a cavity in the host domain (red,
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Figure 8B), resulting in a shift of the insert domain away from the native conformation.
Similarly, the lowest scoring model for C-terminal binding protein 3 (1hku) shows a 180°
rotation of the insert domain towards the host domain, resulting in a more compact, though
incorrect, structure (Figure 8C-D).

These failures may indicate deficiencies in the energy calculation for the backbone and an
overemphasis on van der Waals (contact) energies. Alternatively, the protein domains may be
loosely connected in solution with flexible rigid-body orientations, one of which is stabilized
by crystal contacts in the x-ray structure, making structure prediction difficult.

A second, rarer reason for failure is the inability of the scoring function to discriminate near-
native decoys. On the high-resolution plot for isoleucyl-tRNA synthetase (1ile, Figure 5),
several decoys at an rmsd of 15 Å (black points) have a score well below the lowest score of
the refined native structures (red diamonds). Similarly for translocase seca subunit (1tf5),
several decoys near 10-15 Å have scores below those of the refined native structures. To test
whether these predictions could have been improved by refinement of all low-resolution
decoys, rather than only the ten top-scoring low-resolution decoys, scores for ten structures
refined from each of the lowest-rmsd decoys in the low-resolution set are also shown (green
points). In the cases of translocase seca subunit and isoleucyl-tRNA synthetase, the near-native
decoys are still are not the lowest-scoring, thus a correct prediction is still not possible.
However, in several other cases (1d2k, 1edq, 1el5, 1hku, 1l6j, and 1w0o), refining the lowest-
rmsd structure results in a low-scoring, near-native structure which is not sampled using only
the lowest-scoring decoys from the low-resolution mode.

Discussion and Conclusions
Combinations of domains into multidomain architectures create diverse and complex
functions, but few approaches are available to predict their superstructure. Many domains are
linked end-to-end, but a significant fraction are joined through domain insertion, creating an
intimate association between the sequences of the individual domains and a coupled folding
problem. In this article, we have presented and tested one algorithm to predict the structure of
domain insertion proteins. The domain insertion problem is unique in that there are multiple
degrees of freedom which are interdependent on each other, thus our algorithm simultaneously
optimizes the conformation of the joining linkers and the rigid-body displacement of the
domains. Such an interdependent problem is also encountered in other protein structure
prediction problems such as motif grafting for vaccine design (Bill Schief, personal
communication) or folding using docking type approaches with connected secondary structures
(Haspel et al., 2007).

To achieve predictions in light of the constraints, we exploited the fold tree graph to propagate
conformational changes (Bradley and Baker, 2006) and created new Monte Carlo moves based
on combinations of simpler moves which disrupt and then restore chain continuity. Similar to
the introduction of combination moves for simulating dense polymer melts with
configurational bias techniques (Escobedo and de Pablo, 1995), these moves proved to be
efficient and capable of solving the coupled domain insertion structure prediction problem.

The results in Table 1 and Figures 4-8 indicate that the Rosetta domain insertion algorithm is
capable of recovering the native structure of naturally occurring domain insertion proteins with
an overall success rate of ∼65%. The high success rate may be due to the fact that the two
linkers create constraints not present in pure docking problems, reducing the conformational
space such that even a low-resolution approach is successful in a moderate fraction of targets.
On the other hand, the linker prediction, which was typically the least accurate part of the
models, is harder than a standard loop-modeling problem since the stems of the linkers are not
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fixed relative to each other and the environments surrounding the linkers are not constant.
Nevertheless, the failure of a simple docking algorithm to predict domain insertion protein
structure shows that linkers are critical for occupying sufficient space. Finally, it is important
to remember that the tests performed here included an unfair advantage by using crystal
structures of the individual domains, similar to the ‘bound’ protein-protein docking problem.

In the cases where there is a failure in recovering the native structure, there is often a larger
volume available to the insert domain around the host domain and linkers with less secondary
structure and more exposure to solvent. Several of these cases fail in low-resolution but are
successful upon high-resolution refinement due to the more accurate energy function. More of
the failures might be turned into successes through improvements in the scoring function to
better include effects of protein conformational entropy, explicit waters, backbone torsional
potentials, and electrostatics (which are more important at the protein surface). In addition to
the scoring function, the number of low-resolution decoy structures used in refinement may
be limiting. Greater sampling could be achieved by going deeper into the list of top-ranked,
low-resolution structures at the expense of increased computer time. Alternatively, crystal
contacts may be needed to position the domains to match the x-ray conformation of a dynamic
protein. Crystal contacts have been found to be helpful for high-resolution prediction of loop
conformations (Jacobson et al., 2002; Jacobson et al., 2004).

The results of CASP7 (http://predictioncenter.org/casp7) on domain insertion proteins show
that the prediction groups were often able to predict the separate domains to moderate accuracy
using algorithms that search for templates matching the entire protein's length. Thus, individual
domain structures typically serve as good starting points for multidomain structure prediction.
In many cases, a template matching the host domain was used to predict the full protein and
led to moderately accurate predictions. By using a separate template for the host and insert
domains, a more accurate model might be predicted using a domain insertion algorithm to
combine the separately predicted domains. Domain insertion proteins have not been considered
as a multidomain protein problem before this study, and we plan to test the algorithm in CASP8.

The current study focused on the recovery of known protein structures using native structures
for the individual domains. In the consideration of using domain insertion prediction in blind
predictions from sequence alone, several additional steps are required. First, a method is
required for predicting the number of domains in a protein and identifying whether it is a
domain insertion protein. Domain prediction is an old problem (Taylor, 1999), and there are
several promising methods developed recently (Clarke et al., 2007; Tress et al., 2005) which
are overcoming problems such as differing definitions of domains (Bryson et al., 2007;
Veretnik et al., 2004). To exploit our domain insertion prediction method, domain identification
methods need to be extended to allow domain-size gaps. Second, homology modeling can be
used on the separate domains (Melo and Sali, 2007; Rohl et al., 2004a), with the benefit that
each domain may be modeled more accurately when using two small templates in the absence
of a single large template. The homology-modeled domains can then be used in the domain
insertion algorithm to provide a model of the complete protein structure. Inserting domains
using homology structures will be more challenging than the native-backbone tests presented
in this paper due to the uncertainties in the homology structures. Furthermore, to accommodate
intra-domain structural changes due to the combination of the domains, refinement of the final
structure, including sampling of small backbone torsion angle changes, may be helpful
(Bradley et al., 2005b). Due to the size of these multidomain proteins, such refinement will be
computationally challenging and thus beyond the scope of the current study. Alternatively,
domain insertion modeling might be valuable to find the structure of new proteins by
crystallography using a molecular replacement strategy (Rossmann, 1990, 2001).
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Beyond prediction of wild-type biological proteins, the algorithm is promising for
understanding and designing new proteins with combined function. For example, Guntas et
al. have used experimental domain insertion techniques to combine the functions of
maltodextrin binding protein (MBP) with TEM-1 β-lactamase in a switch whose catalysis
activity is dependent on the concentration of maltose (Guntas et al., 2005; Guntas et al.,
2004). The switching activity in the insert domain may arise from backbone changes induced
by the presence of the fused host domain as it undergoes a hinge motion. Structural models
can guide experiments to test such hypotheses. Other targets are inteins, such as Mycobacterium
tuberculosis RecA, in which inserted domains are capable of self-excision upon activation
(Buskirk et al., 2004; Skretas and Wood, 2005b). As in the blind prediction problem, in order
to model the domain motions from which the functional coupling is likely to arise, the current
domain insertion algorithm is likely to need supplementation by a backbone refinement
algorithm. The combination of these algorithms will be a valuable tool for engineering new
proteins with complex function arising from the combination of domains.

Experimental Procedures
Test set

We curated a comprehensive set of 50 domain insertion proteins with known structures from
the Structural Classification of Proteins (SCOP) database (Barton, 1994). The set of all SCOP
structures (27599 structures) was reduced as follows: 1) single-domain proteins and those
without a discontinuous domain were deleted (1118 structures remaining); 2) multimeric
proteins were removed (216 structures remaining); 3) redundant proteins with matching names
(which always indicated high sequence identity) were eliminated (80 structures remaining);
and 4) proteins with resolution > 2.5 Å were removed (50 structures remaining). Proteins in
the resulting set range from 186-821 residues with domains of 70-300 residues. In several cases
(1d4d, 1edq, 1h3n, 1ile, 1kit, 1l6j, 1ps9, 1qjd, 1tf5, and 1w0o) the host definition includes more
than one structural domain, creating “host domains” of 300-600 residues. Proteins in the test
set represent prokaryotes and eukaryotes and include functions from protein transport and
transcription to antibiotic inhibition.

Development set
The development set, used to tune the MC moves and global and local protocols, consists of
a subset of seven proteins from the test set that we selected by searching through proteins in
the DomIns database (www.domins.org, (Selvam and Sasidharan, 2004)). The set was created
as follows: 1) all non-redundant proteins from DomIns were downloaded (1167 structures); 2)
proteins were selected with single split domains (134 structures), eliminating those with
multiple insertions; 3) proteins with resolution > 2.5Å were deleted, leaving 65 structures; 4)
oligomeric proteins for which linkers were located at the interface between the monomers were
removed since symmetry was not modeled in this study (11 structures remaining); and 5) four
of the 11 remaining structures had significant missing density or other anomalies and were
eliminated, leaving seven structures. The resulting development set, marked in Table 2 with
asterisks, includes enzymes, inhibitors, and a secretory protein.

Domain insertion problem
The domain insertion algorithm requires the protein's sequence and structures of the individual
component domains. Component domains maintain a fixed backbone to reduce the
conformational search space. The low-resolution problem is
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where G is a function approximating the free energy of the folded protein subject to connectivity
constraints, T and R are vectors describing the relative location and orientation of the host and
insert domains by six translational and rotational degrees of freedom, and {φi} and {ψi}
represent the 44 backbone torsional angles of the linker segments. For the high-resolution
problem, the set of all side-chain torsion angles {χij} must also be determined for all residues
in the protein.

Initial conditions
Local searches probe the energy landscape near the native structure; therefore each simulation
begins with a different local perturbation of the native structure as follows. Similar to the local
starting position in docking (Gray et al., 2003a), a rigid-body perturbation translates the insert
domain by Gaussian random distances of 3 Å perpendicular to the plane of contact between
the domains and 8 Å standard deviation in the parallel directions, spins the insert domain around
the line of domain centers by a Gaussian random angle of 8° standard deviation, and tilts off
the line of centers by a Gaussian random angle of 8° standard deviation around a center of
rotation located at the midpoint of the linkers.

A global search emulates a blind prediction and thus requires an unbiased starting structure.
Therefore, a script arbitrarily randomizes the positions and orientations of the domains, and
then they are systematically positioned by defining a vector for each domain pointing from the
domain center to the centroid of the domain linker residues. The insert domain is rotated and
translated until the two vectors are collinear and of opposite direction, and the insert domain
is rotated around the collinear vectors until the four ends of the linkers are as close to co-planar
as possible. The resulting structure is stored for repeated input. For each independent decoy,
this structure is perturbed by randomly rotating the insert domain around the centroid of the
linker residues.

For both local and global searches, to avoid searching impossible conformations, any starting
structures with significant clashes are immediately rejected. Finally, linkers are initially built
using a single iteration of the loop building protocol.

Low-resolution search
After the initial perturbation, the low-resolution search algorithm (Figure 10A) starts with an
outer loop of five cycles of rigid-body and loop moves. Each set of rigid body moves consists
of 250 rigid-body perturbations (∼2 Å and/or 5°) each followed by a Metropolis test of move
acceptance,

where P is the probability of acceptance of a move, k is the Boltzmann constant, T is
temperature, and ΔG is the change in score resulting from the move. Rigid-body step sizes are
adjusted every 50 moves to maintain a move acceptance rate near 50%.

Rigid body moves are followed by a set of loop building moves (Figure 10B) which alternate
between a random 3-residue fragment insertion (3mers) and CCD (Canutescu and Dunbrack,
2003) loop closure, followed by the Metropolis criterion to accept or reject trial configurations.
Fragment insertions and CCD are repeated 25 times during the first three outer iterations and
100 times in the later iterations, and the chain-break score weight is increased geometrically
every 10 cycles from 0.02 to 1.0.

After rigid-body and loop building cycles are completed (Figure 10A), a final CCD procedure
is applied. If the chain-break score is not within the tolerance of 0.02 Å, the decoy is rejected.
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Otherwise, to complete the low-resolution stage with a finer optimization, five sets of insertion
flop moves are performed, where each set consists of 10 perturbations of linker backbone
torsion angles followed CCD and a Metropolis test.

High resolution search
The high-resolution search (Figure 10C) first places an all-atom side-chain at every residue
position and repacks them using a rotamer library (Dunbrack and Cohen, 1997) and gradient-
based minimization (Wang et al., 2005). Next, a random small perturbation of a φ or ψ angle
(“small move”) and a pair of φ/ψ angles (“shear move”, (Rohl et al., 2004b)) are used to perturb
the backbone of the linkers using a fold tree as shown in Figure 2A-B. After each backbone
torsion angle change, the structure undergoes gradient-based minimization with the linker
backbone torsion angles and the rigid-body transformation as independent variables, then CCD
loop closure on both linkers and a Metropolis test. The cycle is repeated 60 times starting each
time with side-chain packing of the residues which have increased energy since the last cycle,
or a full repack of all residues every 10 cycles.

Energy function
Rosetta's multi-scale algorithm is based on two scoring functions. At low-resolution, a fast
energy function is used that accounts for the backbone heavy atoms and a pseudo-atom
representing the centroid of the side-chain atoms. The scores, developed for and tested on
folding, loop building, and docking problems, include bumps, contacts, knowledge-based
residue environment and residue-residue pair propensities, a loop-closure measure, and a
Ramachandran score (Gray et al., 2003a; Rohl et al., 2004b; Simons et al., 1999).

At high resolution, Rosetta uses an all-atom potential to capture atomic scale physical forces.
For the domain insertion application, this includes van der Waals interactions (Gray et al.,
2003a), implicit solvation (Lazaridis and Karplus, 1999), orientation dependent hydrogen
bonding (Kortemme et al., 2003; Morozov and Kortemme, 2005; Morozov et al., 2004), and
a rotamer probability to capture side-chain internal energies (Dunbrack and Cohen, 1997;
Kuhlman and Baker, 2000). Both low and high-resolution score functions include a score to
penalize the chain breaks calculated as the square-root of the difference between the square of
the N-C distance across the chain break and the square of the ideal N-C distance. The energy
function implicitly includes entropic contributions from the solvent, but it neglects the
conformational entropy of the protein itself. Parameters and weights have been published
previously (Bradley et al., 2005b; Kuhlman et al., 2003).

Algorithm Availability
The full domain insertion protocol is freely available for academic and non-profit use as part
of the Rosetta structure prediction suite at www.rosettacommons.org. The distribution includes
supporting scripts, documentation, and full source code.
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Figure 1. Domain Insertion Protein Structure
A domain insertion protein consists of two domains, A (blue) and B (red). (A) Primary
structure; (B) Tertiary structure. The two 11-residue linkers connecting A to B are orange.
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Figure 2. Cartoon representation of combination MC moves and their corresponding fold trees
Each horizontal panel shows an initial position and selected perturbation locations (left), the
disrupted structure after a perturbation (center), and the subsequent structural repair (right). In
all panels, green represents a flexible region of the protein or the fold tree and a yellow point
indicates where a specific φ/ψ angle change occurs.
A: For a rigid-body move, domain A (blue) is kept fixed while domain B (red) samples the
conformational space around A, causing the linkers to break. The linkers are repaired using a
combination of three-residue fragment insertions and CCD loop closure. The fold tree shows
a fixed jump connecting the two parts of domain A in black and the flexible jump connecting
domains A and B in green. Both the linkers are flexible so that they can be repaired.
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B: For a loop-building move, one linker (green) is built by inserting a three-residue fragment
at the point shown in yellow. The insertion of a fragment breaks the linker, and CCD is used
to reclose the linker. In the fold tree, only the linker that is being repaired is flexible.
C: For an insertion-flop move, small φ/ψ angle movements are made in one linker (yellow)
while allowing the other linker to break. The broken linker is then rebuilt. This “flops” around
the insertion domain. In the fold tree, only one jump is used to hold the host domain together.
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Figure 3. High-resolution energy landscape (score versus rmsd) for the local search on the
development set
Rmsd is calculated over all Cα atoms of the protein. (•) Decoy structures, ( ) refined native
structure (using high resolution algorithm).
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Figure 4. Low-resolution energy landscapes (score versus rmsd)
Rmsd is calculated over all Cα atoms of the protein. (•) Decoy structures.
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Figure 5. High-resolution energy landscapes (score versus rmsd)
Rmsd is calculated over all Cα atoms of the protein. (•) Decoy structures, ( ) refined native
structure (using high resolution algorithm), ( ) ten refined structures for the lowest rmsd
structure from the low-resolution search (only shown for cases where the lowest-rmsd structure
from the low-resolution search provides a high-resolution final prediction that is closer to the
native structure and lower in energy than any of the refined structures from the ten top-scoring
low-resolution decoys.)
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Figure 6. Examples of accurate predictions with native-like insert domain orientation and side-
chain packing
(A) Signal processing protein (1owq, Cα rmsd = 0.70Å). (B) Hypothetical protein TM0936
(1p1m, Cα rmsd = 0.64Å). (C) Flavocytochrome C3 (1qjd, Cα rmsd = 0.70Å). (D) NADPH-
dependent oxidoreductase (1vj1, Cα rmsd = 0.60Å). The native structures are in dark shades
with the host domain in blue, insert domain in red, linkers in orange. Structures were
superimposed using only the host domain coordinates.
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Figure 7. Low-resolution energy landscape using different rmsd measurements for biliverdin
reductase A (1gcu)
Left: Score vs. rmsd over all Cα atoms of the insert domain after superimposing the host domain;
Right: Score vs. rmsd over Cα atoms of only the linker residues after superimposing the linkers.
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Figure 8. Examples of challenging complexes where prediction failed
Native structure and best scoring decoy structures for leucyl-tRNA synthetase (1h3n) and C-
terminal binding protein 3 (1hku) with the host domain in blue, insert domain in red, and linkers
in orange, with the native structure in darker shades. (A) The best scoring decoy structure for
leucyl-tRNA synthetase creates a more compact structure than the native structure (B). (C) In
the best scoring decoy structure for C-terminal binding protein 3, more contacts occur when
the insert domain is rotated 180° from the native structure (D).
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Figure 10. Algorithm flow charts
(A) Low-resolution mode; (B) Details of the loop-building algorithm for low-resolution mode;
(C) High-resolution mode.
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