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Abstract: In the last decade, advances in high-through-
put technologies such as DNA microarrays have made it
possible to simultaneously measure the expression levels
of tens of thousands of genes and proteins. This has
resulted in large amounts of biological data requiring
analysis and interpretation. Nonnegative matrix factoriza-
tion (NMF) was introduced as an unsupervised, parts-
based learning paradigm involving the decomposition of
a nonnegative matrix V into two nonnegative matrices, W
and H, via a multiplicative updates algorithm. In the
context of a p6n gene expression matrix V consisting of
observations on p genes from n samples, each column of
W defines a metagene, and each column of H represents
the metagene expression pattern of the corresponding
sample. NMF has been primarily applied in an unsuper-
vised setting in image and natural language processing.
More recently, it has been successfully utilized in a variety
of applications in computational biology. Examples
include molecular pattern discovery, class comparison
and prediction, cross-platform and cross-species analysis,
functional characterization of genes and biomedical
informatics. In this paper, we review this method as a
data analytical and interpretive tool in computational
biology with an emphasis on these applications.

Introduction

The rapid development in high-throughput technologies in the

past decade has given rise to large-scale biological data in the form

of expression profiles of tens of thousands of genes and proteins,

often with only a handful of tissue samples. One of the objectives

of a high-throughput experiment such as gene expression

microarrays is molecular pattern discovery. The focus is on

molecular pattern recognition via unsupervised clustering, and the

identification of clusters of samples or genes revealed by their

expression profiles. Analysis of genome-wide expression patterns

provides unique insights into the structure of genetic networks and

into biological processes not yet understood at the molecular level.

Class discovery aids in the identification of hidden features in gene

expression profiles that reflect molecular signatures of the tissue

from which the cells originated.

Dimensionality reduction and visualization are key aspects in

effectively analyzing and interpreting the high-dimensional data in

this setting. Such unsupervised approaches are useful and relevant

when there is no a priori knowledge of the expected gene

expression patterns for a given set of genes or for any phenotype

(such as experimental condition, tissue type, or patient). In studies

where such prior knowledge is available, the focus is on class

comparison or class prediction. In class comparison, the objective

is to identify differentially expressed genes between the different

classes of interest; in class prediction, however, the emphasis is on

building a predictive gene set based on the class labels and

expression profiles of known samples, and to apply it to a new

sample to predict its class. Once a list of potentially interesting

genes has been identified from these analyses, one is often

interested in characterizing these genes in terms of function. In this

paper, we review nonnegative matrix factorization (NMF) and its

applications in computational biology, with an emphasis on the

analysis and interpretation of high-throughput biological data such

as those above. We discuss and illustrate the properties of NMF

through examples from the literature, and provide an intuitive

interpretation of the factorization and its implicit sparse nature as

well as the nonnegativity constraints. In particular, we highlight its

unique parts-based, local representation and contrast it with other

well-known methods. In addition, we examine the usefulness of its

stochastic nature in selecting an appropriate model for a given

dataset and for faster implementation of the algorithm.

The paper is organized as follows. First, we introduce the basic

principles underlying this method and provide a summary of its

applications in computational biology. We then discuss properties

unique to the NMF approach in the analysis and interpretation of

large-scale biological data. Next, we address some of the

limitations of this approach, and, last, we provide a discussion

and some concluding remarks.

Throughout the remainder of the article, we will discuss the

NMF approach in the context of class discovery (i.e., clustering

samples) based on gene expression microarray experiments. This is

intended only to serve as an example so as to facilitate a cogent

illustration and ease of presentation of this approach. This

interpretation is easily extensible to other areas of application in

computational biology and should not in any way diminish the

scope of the paper.

The NMF Approach

Lee and Seung [1,2] introduced NMF in its modern form as an

unsupervised, parts-based learning paradigm in which a nonneg-

ative matrix V is decomposed into two nonnegative matrices

V,WH by a multiplicative updates algorithm. They applied it for
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text mining and facial pattern recognition. Prior to Lee and

Seung’s work, a similar approach called positive matrix factoriza-

tion from Paatero and Tapper [3] was applied as a dimension

reduction tool to problems in the environmental sciences and

astrophysics [3–7]. In the last few years, NMF has been widely

used in a variety of areas, including image processing and facial

pattern recognition [8–19], natural language processing such as in

text mining and document clustering (see [20–22] and references

therein), sparse coding [23–27], information retrieval [28,29],

speech recognition [30–33], video summarization [34], and

Internet research [35,36]. More recently, this approach has found

its way into the domain of computational biology. We discuss its

applications in this area in the next section. First, we introduce the

fundamental principles underlying this approach in the context of

a microarray study.

Gene expression data from a set of microarray experiments is

typically presented as a matrix in which the rows correspond to

expression levels of genes, the columns to samples (which may

represent distinct tissues, experiments, or time points), and each

entry to the expression level of a given gene in a given sample. For

gene expression studies, the number of genes, p, is typically in the

thousands; the number of samples, n, is typically less than 100; and

the gene expression matrix, V, is of size p6n, whose rows contain

the expression levels of p genes in the n samples.

In terms of reducing the dimensionality of the data, the

objective in NMF is to find a small number of metagenes, each

defined as a nonnegative linear combination of the p genes. This is

accomplished via a decomposition of the gene expression matrix V

into two matrices with nonnegative entries, V,WH, where W has

size p6k, with each of the k columns defining a metagene and

where H has size k6n, with each of n columns representing the

metagene expression pattern of the corresponding sample. The

rank k of the factorization represents the number of latent factors

in the decomposition (in our case, the number of clusters). It is

generally chosen such that (n+p)k,np, i.e., a number less than n

and p. Here, the entry wia in the matrix W is the coefficient of gene

i in metagene a, and the entry haj in the matrix H is the expression

level of metagene a in the sample j. It should be noted that there is

a dual view of the decomposition V,WH, which defines

metasamples (rather than metagenes) and clusters the genes

(rather than the samples) according to the entries of W.

In order to find an approximate factorization for the matrix V,

cost functions that quantify the quality of the approximation need

to be defined. Such a cost function can be constructed using some

measure of distance between V and the product WH. Examples of

such measures include Euclidean distance and Kullback-Leibler

(KL) divergence [1,2,37,38]. In the context of facial pattern

recognition (and text mining) involving count data, Lee and Seung

[1] derived KL divergence based on reconstruction of an image

represented by V from WH by the addition of Poisson noise, i.e.,

V = WH+e, where e is a Poisson random variable.

Devarajan and Ebrahimi [39] generalized this approach based on

Renyi’s divergence and provided a unique framework for molecular

pattern discovery using NMF. This is also based on the Poisson

likelihood of generating V from WH [37]. Renyi’s divergence is

indexed by a parameter a(a?1) and represents a continuum of

distance measures that can be utilized for NMF based on the choice

of this parameter. Various well-known distance measures arise from

Renyi’s divergence as special cases [37]. For example, in the limiting

case a R 1, we obtain KL divergence given by

KL V WHkð Þ~
X

i,j

Vijlog
Vij

WHð Þij
{Vijz WHð Þij

" #
: ð1Þ

This generalization unifies various competing models into a unique

framework for NMF. Interestingly, Euclidean distance does not fall

under this class of distance measures.

For the problem of decomposing the gene expression matrix V

into metagenes (columns of W) and metagene expression patterns

(columns of H), our goal is to minimize the objective function defined

by the choice of the distance measure such as in Equation 1. Starting

with random initial values for W and H, the algorithm simulta-

neously updates these two matrices via multiplicative rules until

convergence to a local minimum is attained. Cluster membership for

each sample is then determined by its highest metagene expression

pattern [37,38]. Details of the algorithm are presented elsewhere

[2,19,23,25,26,37,38,39]. We discuss the stochastic nature of this

algorithm further in a later section.

Applications of NMF in Computational Biology

In this section, we provide a summary of recent work on NMF

with particular emphasis on applications in computational biology.

While we have attempted to provide a complete and up-to-date

review of its applications in a variety of problems, it is by no means

comprehensive. We briefly discuss these applications here, but many

of them are further discussed in detail in subsequent sections.

Molecular Pattern Discovery
The most common application of NMF in computational

biology has been in the area of molecular pattern discovery,

especially for gene and protein expression microarray studies. This

is an exploratory area characterized by a lack of a priori

knowledge of the expected expression patterns for a given set of

genes or any phenotype. However, NMF has proved to be a

successful method in the elucidation of biologically meaningful

classes. For instance, Kim and Tidor [40] applied NMF as a tool

to cluster genes and predict functional cellular relationships in

yeast using gene expression data, while Heger and Holm [41] used

it for the recognition of sequence patterns among related proteins.

Brunet et al. [38] applied it to cancer microarray data for the

elucidation of tumor subtypes. They developed a model selection

algorithm for NMF based on consensus clustering [42] that

enables the choice of the appropriate number of clusters in a

dataset. Similarly, Gao and Church [43] applied the Sparse NMF

approach [20] for uncovering cancer subtypes using microarray

data. A similar approach is described by Kim and Park [44].

Carrasco et al. [45] applied NMF for unsupervised clustering of

array comparative genomic hybridization data and identified

distinct genomic subtypes as well as patient subgroups in multiple

myeloma (MM). Their analysis uncovered four distinct subclasses,

revealing the molecular heterogeneity of MM and the division of

the traditional hyperdiploid class into two subclasses.

Devarajan and Ebrahimi [37,46] successfully applied NMF as a

tool for dimensionality reduction and visualization as well as in

kinetic expression profiling for analyzing microarray data

(Devarajan et al., manuscript in preparation). Pascual-Montano

et al. [47,48] and Carmona-Saez et al. [49] described a method for

two-way clustering of gene expression profiles using non-smooth

NMF. Pascual-Montano et al. [50] also provided an analytical tool

called bio-NMF for simultaneous clustering of genes and samples.

For more details, the interested reader is referred to http://www.

dacya.ucm.es/apascual/bioNMF/. Wang et al. [51] introduced

Least Squares NMF that incorporated variability of individual

measurements in microarray data. They demonstrate improved

performance in terms of identification of functionally related genes

based on annotations in the Munich Information Center for

Protein Sequences (MIPS) database [52].
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Class Comparison and Prediction
Recently, NMF has also been applied in a supervised learning

framework such as class comparison and class prediction. Fogel et al.

[53] applied this method to identify ordered sets of genes and utilize

them in their sequential analysis of variance (ANOVA) procedure for

identifying differentially expressed genes using microarray data.

They demonstrate improved performance over traditional ANOVA

in terms of power and consistency. Okun and Priisalu [54] applied it

as a dimension reduction tool in conjunction with several

classification methods for protein fold recognition. They show

superior performance (in terms of misclassification error rate) of

three classifiers based on nearest neighbor methods when applied to

NMF reduced data relative to the original data. Similar applications

in magnetic resonance spectroscopic imaging and fold recognition

are presented in [55] and [56], respectively.

Cross-Platform and Cross-Species Characterization
Rapid advances in high-throughput technologies have resulted in

the generation of independent large-scale biological datasets using

different platforms in different laboratories. It is important to assess

and interpret potential differences and similarities in these datasets in

order to enable cross-platform and cross-species analyses and the

eventual characterization of such data. Tamayo et al. [57] describe

an approach called metagene projection for such an analysis and

interpretation. Using leukemia and lung cancer data, they

demonstrate that metagene projection reduces noise and technolog-

ical variation while capturing invariant biological features in the

data. Furthermore, they show that this approach enables the use of

prior knowledge based on existing datasets in analyzing and

characterizing new data [58]. In metagene projection, the

dimensionality of a given dataset is reduced using NMF based on

a pre-specified rank k factorization. An independently obtained test

dataset can then be projected onto this lower, k-dimensional space of

metagenes. This is accomplished via the Moore-Penrose generalized

pseudo-inverse of W to obtain the projected matrix Hp = W21V (for

details, see [57]). The pseudo-inverse is then applied to the test

dataset and analyzed in the context of the metagenes that

characterize the original data. This approach implicitly incorporates

the sparse, local representation of NMF and utilizes groups of co-

regulated or functionally relevant genes.

Biomedical Informatics
Text mining is concerned with the recognition of patterns or

similarities in natural language text. The application of NMF in

this area goes back to the original paper by Lee and Seung [1].

Other applications include [20,21] and references therein. In this

context, the matrix V is a summary of a corpus of documents in

which the rows and columns represent, respectively, the words in

the vocabulary and documents in the corpus. The entries of V

denote the frequencies of words in each document. NMF is

applied to identify subsets of semantic categories and to cluster the

documents based on their association with these categories.

Chagoyen et al. [22] present an interesting application of this

approach in computational biology. Here, literature profiles are

created from a corpus of documents relevant to large sets of genes

and proteins using common semantic features extracted from the

corpus. Genes are then represented as additive linear combina-

tions of the semantic features, which can be further used for

studying their functional associations. The authors elucidate the

advantages of using NMF in identifying and interpreting the

semantic features compared to other methods. Existing informa-

tion about the biological entities under study can thus be used via

NMF to establish putative relationships among subsets of genes

and proteins that characterize a subset of the data.

Functional Characterization of Genes
Pehkonen et al. [59] utilize NMF for analyzing functional

heterogeneity within a gene list and identifying homogeneous

functional groups. In their approach, NMF is applied to the sparse,

binary matrix formed on the basis of associations of relevant genes

with functional classes obtained from the Gene Ontology database

[60]. A non-nested hierarchical clustering scheme showing the

over-represented functional groups from the gene list is created

from different rank factorizations and demonstrated to better

characterize groups of genes compared to current approaches. For

details, please refer to [59]. This methodology is implemented in

the program called GENERATOR (GENElist Aimed Theme-

discovery execuTOR).

Other Applications
Tresch et al. [61] applied this method for the identification of

muscle synergies, while Kim et al. [62] used it to determine neural

activity patterns. Hiisilä et al. [63] applied this and other dimension

reduction methods for assessing the dependencies between tran-

scription factor binding sites. Other areas of applications of this

method for problems involving large-scale biological data include

color and vision research [64], structure-based drug design [65,66],

and magnetic resonance imaging [55,56,67].

Parts-based Local Representation

There are several methods applicable for unsupervised clustering

besides NMF. These include, but are not limited to, hierarchical

clustering (HC), self-organizing maps (SOM), principal component

analysis (PCA), vector quantization (VQ), K-means clustering, and

multi-dimensional scaling. Hastie et al. [68] provide a comprehen-

sive overview of these methods. Ross and Zemel [69] note that when

data are represented as vectors, parts manifest themselves as subsets

of the data dimensions that take on values in a coordinated fashion.

While this is relevant to these methods in general, none of them have

a sparse, parts-based local representation—a property that appears

to be unique to NMF. Donoho and Stodden [70] provide an elegant

geometric interpretation of NMF and discuss the conditions under

which this approach gives a correct parts-based decomposition. In

this section, we explore this particular property of NMF in detail, in

the context of several applications.

Interpretation of the Factored Matrices
The metagene coefficient wia quantifies the influence of the ath

metagene expression pattern haj on the gene expression of the ith

sample, represented by the corresponding column of the gene

expression matrix V. For a rank k factorization, the relative

magnitudes of the non-zero entries in each of the k metagenes

reflect the relevance of the corresponding genes, and the expression

pattern of each metagene across the n samples (represented by each

row of H) reflects the relevance of the corresponding latent factor.

Here, k is the number of clusters or hidden variables in the

decomposition. The NMF framework is graphically illustrated at

http://www.dacya.ucm.es/apascual/bioNMF/model.html.

The NMF representation also ensures that a single metagene

expression pattern influences multiple samples. Lee and Seung [1]

graphically illustrate this feature in the form of a network. In

essence, the metagenes provide a summary of the behavior of

genes across the samples, while the metagene expression patterns

provide a summary of the behavior of samples across the genes.

There is strong evidence suggesting that the metagenes and the

metagene expression patterns have a sparse, parts-based repre-

sentation of the gene expression data [1,37,38,39,40,43,46–50],

potentially identifying local hidden variables or clusters.
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NMF can be viewed as an approach for modeling the generation

of gene expression measurements for samples (observable variables

given by columns of V) from metagene expression patterns (hidden

variables given by columns of H) [1]. In the context of clustering

samples represented by the columns of V, the parts identify groups of

samples that belong to specific clusters and are represented by the

expression patterns of metagenes across samples (or the rows of H).

In addition, genes with corresponding non-zero metagene coeffi-

cients represent groups that are co-expressed in samples. These parts

provide a reduced representation of the original data, and their co-

activation can be viewed as that corresponding to co-regulation or

co-expression of groups of genes. Similarly, we can interpret the parts

in other areas of application. For instance, in facial pattern

recognition where each column of V corresponds to a face, the

parts represent the various parts of a face such as nose, mouth, etc.;

in text mining and document clustering, where each column of V

contains word counts from documents, the parts represent the

different semantic categories.

Let us consider the widely used leukemia data available from

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi as an il-

lustrative example. This dataset consists of 5,000 gene expression

measurements each from 38 bone marrow samples from acute

myelogenous leukemia (AML) and acute lymphoblastic leukemia

(ALL). There are 27 ALL samples consisting of 19 B type and 8 T

type, and 11 AML samples. For a rank k = 2 factorization, let w1

and w2 represent the two metagenes (columns of W) and let h1 and

h2 represent the corresponding metagene expression profiles (rows

of H). The sparseness of the metagene coefficients is illustrated in

Table 1, based on a single run of the NMF algorithm using

Equation 1. In this table, we list the fraction of genes whose

corresponding metagene coefficients lie in the indicated range.

The histograms and densities of w1 and w2 are shown in

Figure 1A–1D. Only 53 and 77 genes, corresponding to w1 and

w2, respectively, have coefficients that are at least 10 in magnitude.

These genes may potentially behave in a strongly correlated

fashion in a subset of the samples; this is determined by their

metagene expression profiles across the 38 samples, h1 and h2.

These expression profiles and their densities are shown in the top

(Figure 2A and 2B) and bottom (Figure 2C and 2D) panels of

Figure 2, respectively. Here, ‘‘L’’ and ‘‘M’’ denote, respectively, an

Figure 1. Gene coefficients. (A) Histogram of gene coefficients, metagene 1. (B) Histogram of gene coefficients, metagene 2. (C) Density of gene
coefficients, metagene 1. (D) Density of gene coefficients, metagene 2.
doi:10.1371/journal.pcbi.1000029.g001

Table 1. Distribution of metagene coefficients: Leukemia
data, k = 2.

Coefficient w1 w2

,1 0.730 0.840

,3 0.950 0.910

.10 0.010 0.015

doi:10.1371/journal.pcbi.1000029.t001
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ALL and an AML sample. It is evident from this figure that there

is a clear separation between the ALL and AML samples.

Interpretation of Nonnegativity Constraints
The nonnegativity constraints in NMF are compatible with the

intuitive notion of combining parts to form a whole, i.e., they

provide a parts-based local representation of the data. This is in

contrast to a holistic representation of the data provided by VQ

and the distributed representation provided by PCA [1]. A parts-

based model not only provides an efficient representation of the

data but can potentially aid in the discovery of causal structure

within it and in learning relationships between the parts [69]. In

NMF, the factorization results in a reconstruction of the original

data by the addition of parts due to the nonnegativity constraints,

while in PCA it is a superposition of the orthogonal components

with arbitrary signs that lack intuitive meaning and physical

interpretation. In some applications, negative coefficients may

contradict physical reality. For instance, in image reconstruction,

the pixels in a greyscale image with negative intensities cannot be

meaningfully interpreted.

The nonnegative coefficients also have an elegant interpretation

from a neuroscience perspective. For instance, they can be

interpreted as the firing rates (and synaptic strengths) of neurons in

the brain, and the nonnegativity constraints account for the

additive firing rates that are co-activated in physiological

perception. Lee and Seung [1] propose that these constraints on

firing rates may be important for developing sparse, parts-based

representations for perception. The coefficients could also be

interpreted as the magnitudes of muscle activation patterns that

can aid in the identification of muscle synergies [61].

In the context of our gene expression theme, the nonnegative

coefficients in each metagene are easily interpretable as the relative

contribution of genes, unlike PCA and VQ. Returning to our

leukemia example, we observe that only a small fraction of the genes

(1% and 1.5%, respectively, corresponding to the two metagenes w1

and w2) significantly contribute towards the delineation of the ALL

and AML samples. The identification of such a small subset of active

genes is possible only due to the nonnegativity constraints which is a

requirement for such a parts-based representation.

The perception of the whole is simply an additive linear

combination of its parts represented in the metagenes and

metagene expression profiles. Due to the nonnegativity con-

straints, orthogonality of metagenes and metagene expression

profiles cannot be achieved in practice. However, this is an

extremely useful property, since the dependence among the gene

expression profiles typically present in a microarray study can be

captured by overlapping metagenes. This property makes NMF

particularly well-suited for the analysis of large-scale biological

data, where it is essential to capture relationships underlying inter-

connected biological pathways or processes. In terms of this

property, NMF has been shown to be superior to other dimension

reduction methods (see [20] and references therein). While the

Figure 2. Expression profile. (A) Density of expression profile, metagene 1. (B) Density of expression profile, metagene 2. (C) Expression profile
across samples, metagene 1. (D) Expression profile across samples, metagene 2.
doi:10.1371/journal.pcbi.1000029.g002
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decomposition V,WH is linear, it is important to note that the

computation of the update rules for W and H is non-linear due to

the nonnegativity constraints [1].

Enforcing Sparseness
While the original NMF approach has been shown to have a

naturally sparse, parts-based, and local representation as seen in

[1,37,38,39,40,45,46], there is also some evidence that points to a

parts-based but holistic (rather than local) representation produced

by NMF [19,23–25]. Lee and Seung [1] note that sparseness in

both the metagenes and metagene expression profiles is crucial to

a parts-based representation. The nonnegativity constraints may

be a necessary condition for such a parts-based representation, but

they may not be sufficient to achieve sparseness. In such a case, it

may be desirable to explicitly enforce sparseness on the metagenes

and the metagene expression patterns. Recent work has focused on

imposing such explicit sparseness constraints on the entries of H or

W or both [19–21,23–26,43,44,47–50]. This is generally achieved

via the addition of appropriate penalty terms to the objective

function defined by the distance measure of our choice. For

instance, one could impose a constraint on the metagene

expression patterns H. An example of such a constraint is the

sum of the entries of H, SajHaj. Other penalty terms can also be

used as appropriate (see [19–21,25,43]). Using KL divergence as

defined in Equation 1, our objective function would then be

KL V WHkð Þ~
X

i,j

Vij log
Vij

WHð Þij
{Vijz WHð Þij

" #

zl
X

aj

Haj ,

ð2Þ

where l.0. The parameter l quantifies the trade-off between

goodness-of-fit of the model (defined by KL divergence) and

sparseness.

Gao and Church applied the method outlined in [20] to cancer

microarray data and explicitly enforced sparseness via the sum of

squares of the entries of H. They demonstrated improved

performance (in terms of misclassification error rate defined as

the proportion of samples misclassified by the algorithm across all

clusters) over standard NMF as well as identified subsets of co-

expressed genes that may be involved in cancer. Pascual-Montano

et al. [47,48,50] adopt a different approach for enforcing

sparseness. They utilize a smoothing operator to simultaneously

enforce sparseness on both W and H. Regardless of the approach,

enforcing sparseness on the metagenes and metagene expression

patterns across samples aids in the detection of sharp boundaries

between different classes. We noted earlier that orthogonality of

metagenes and metagene expression profiles cannot be achieved in

practice due to the nonnegativity constraints. However, the

enforcement of sparseness constraints decreases their overlap,

thus resulting in localized, disjoint groups of samples or genes,

respectively.

Capturing Context-Dependent Patterns
In contrast to traditional clustering and dimension reduction

methods, NMF has been demonstrated to identify subtle, context-

dependent biological patterns as well as being less sensitive to the

selection and/or perturbation of input genes utilized in the

factorization. Such context dependency is not captured by

standard two-way clustering approaches [38]. For instance,

NMF has been shown to be capable of identifying patterns that

exist in only a subset of the samples, whereas standard methods

focus on the overall structure in a dataset (i.e., on samples for

which similarity in expression extends across all genes), thus

overlooking the subtle features that represent relevant biological

patterns [1,38,40]. In essence, NMF aids in the elucidation of

localized patterns of similar expression by identifying a small

subset of genes that act in a strongly correlated fashion in a subset

of the samples. As noted before, such localized patterns may point

to groups of co-regulated or functionally relevant genes

[38,43,47,48,50]. For example, groups of genes and samples that

show high coefficients for a given metagene (column of W) and the

corresponding metagene expression pattern (row of H), respec-

tively, may be strongly related in a subset of the data, thus

constituting a gene-sample bi-cluster. Pascual-Montano et al.

[47,48] utilize this feature and have developed bioNMF, a data

analytical tool for identifying gene expression bi-clusters [50].

In a study of functional cellular relationships in yeast, Kim and

Tidor [40] observed that genes with relatively high coefficients in

the metagenes were dominated by only a few functional categories.

They showed that NMF outperformed all other methods applied,

including SVD and K-means, in predicting functional relationships

between experiments with comparison to the MIPS classification

and the Yeast Proteome Database (YPD) [52]. They note that out

of the 100 strongest functional relationships detected by NMF, 35

and 58 could be verified by MIPS and YPD, respectively, far

exceeding those of the other methods used. Similarly, Gao and

Church [43] investigated genes with high metagene coefficients

corresponding to each of the three clusters, ALL-B, ALL-T, and

AML, in the leukemia data described before. Among these, they

identified genes that were enriched in chemokines, oncogenes,

tumor suppressor genes, and DNA repair genes.

Stochastic Nature of NMF Algorithm

NMF has proved to be an attractive method for the effective

analysis and interpretation of large-scale biological data

[37,38,39,40,41,43–51,53-57,59,61–63]. However, due to its non-

negativity constraints, it suffers from an algorithmically more complex

implementation relative to a traditional clustering method like HC

that is based on pairwise distance computations. There is a substantial

gain in computational time due to the matrix representation of the

NMF update rules. These rules guarantee convergence of the

algorithm to a local minimum based on random initial values for W

and H. However, the algorithm may not converge to the same

solution on each run due to the stochastic nature of initial conditions,

thus requiring it to be run multiple times based on random initial

values for W and H. The algorithm groups the samples into k clusters,

where k is the pre-specified rank of the factorization. As noted before,

class membership for each sample is determined based on the highest

metagene expression profile [37,38].

Model Selection: Choice of k
The stochastic nature of the algorithm has been shown to be

rather useful in providing methods for evaluating the consistency

and robustness of its performance. Studies have shown that 50–

200 NMF runs are usually sufficient to provide stability to the

clustering [37,38]. As the number of runs increases, the metagene

expression patterns across the samples become more localized with

decreasing overlapping support, resulting in a sparse, localized,

and compact representation [38]. This stochastic feature can be

effectively utilized to assess whether a given rank k provides a

biologically meaningful decomposition of the data.

Monti et al. [42] developed a methodology called consensus

clustering for evaluating the performance of any unsupervised

clustering algorithm based on resampling methods. It represents the
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consensus across multiple runs of the algorithm and quantifies the

stability of the discovered clusters. It can also be utilized to assess the

sensitivity of a stochastic method like NMF to random initial

conditions. Model selection procedures that quantify the robustness

of the factorization via consensus clustering have been developed

and applied to NMF [37,38]. In the case of NMF, its stochastic

nature is utilized in the evaluation process, where information from

each run of the algorithm is combined as outlined below.

Suppose that we are applying NMF to cluster n samples. For a

factorization of given rank k, each run of the algorithm results in an

n6n connectivity matrix C with an entry of 1 if samples i and j cluster

together and 0 otherwise, where i,j = 1,…,n. The consensus matrix C̄

is simply the average connectivity matrix obtained over multiple runs

of the NMF algorithm. Final sample assignments and cluster

visualization are based on the re-ordered consensus matrix. The

robustness of each factorization is evaluated by computing the

cophenetic correlation coefficient r where 0#r#1. A high value of r
indicates homogeneous clusters. Brunet et al. [38] advocate the use

of r as a single measure for choice of the appropriate number of

clusters by plotting r for various choices of the number of clusters k.

Returning to the leukemia example, we applied factorizations of

ranks k = 2,3,4,5 based on Equation 1 for 200 runs each. Figure 3

plots r versus k where r starts falling off sharply after k = 2.

Figures 4 and 5 show heat maps of the re-ordered consensus

matrices based on HC for k = 2,3 (for details see [38]). The

homogeneity of coloring seen in these graphs indicate the presence

of 2 and 3 clusters of samples, delineating the ALL and AML

classes as well as the B and T subtypes within the ALL class.

Again, ‘‘L’’ and ‘‘M’’ denote, respectively, an ALL and an AML

sample, while ‘‘B’’ and ‘‘T’’ denote the two ALL subtypes. In each

case, two samples are misclassified by the method.

Other approaches to handling the information across multiple

runs are also possible [40,42]. For example, Kim and Tidor [40]

plotted the root-mean-squared error (RMSE) between the original

and NMF-reconstructed data as a function of the rank k and used

it to choose the appropriate value of k. While the use of RMSE is

appropriate when the factorization is based on Euclidean distance,

it is important to note that other cost functions require the error to

be modified accordingly. For a given rank k factorization, they also

demonstrate reproducibility of the metagenes across multiple runs

in terms of correlation between pairs. Furthermore, they show that

NMF is robust to the addition of noise to the original data based

on the mean correlation of the corresponding metagenes across

multiple runs, suggesting its potential usefulness as a noise-

reduction filter.

Implementation of the NMF Algorithm
The implementation of the steps in the model selection

procedure outlined above is computationally very intensive for

any real large-scale biological dataset. However, the stochastic

nature of the algorithm enables each of these steps to be run

independently and simultaneously. These steps can be repeated for

multiple random initial conditions for W and H, and the

information from the independent runs combined via consensus

clustering. Thus, the NMF algorithm lends itself easily to a parallel

implementation that would greatly increase speed and efficiency.

Devarajan and Wang [71] outlined such a parallel implementation

of this algorithm on a Message-Passing Interface/C++ platform

(http://www-unix.mcs.anl.gov/mpi/mpich2/) using high-perfor-

mance computing clusters.

Recently, there have also been other efforts to optimize the

implementation of this algorithm. Okun and Priisalu [54,72] have

reported faster convergence of the algorithm when feature scaling

is applied to the original p6n data matrix V, i.e., each of the p rows

of V is normalized to have values between 0 and 1. Their results

indicate an increase in speed of at least 11 times in the

convergence of iterations due to such normalization, depending

on the number of latent factors k used in the factorization.

Identifying Hierarchical Structure
It is also possible to have overlapping metagenes, i.e., genes with

non-zero coefficients can appear in multiple metagenes, indicating

the role of a single or a group of genes in multiple pathways or

processes. The stochastic nature of the algorithm can also be

Figure 3. Cophenetic correlation coefficient.
doi:10.1371/journal.pcbi.1000029.g003
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exploited towards identifying the involvement of such a group of

genes. This is in contrast to most standard approaches for

clustering large-scale biological data, with a few exceptions [51].

These standard methods provide only a single solution determined

by the dominant or overall structure in the data where genes and

samples are assigned to only one cluster, thus limiting the

possibility of identifying overlapping expression patterns [38].

One of the attractive features of NMF is that, unlike HC, it does

not force a hierarchy into the data structure but identifies one when it

is present. By specifying the desired rank of the factorization, one can

uncover substructures in the data in an ordered sequential manner.

Brunet et al. [38] and Devarajan [37] have demonstrated the ability

of NMF to identify hierarchical and nested sub-structures using

cancer microarray data. Brunet et al. [38] noted that NMF has

higher resolution than HC and is more stable than SOM as well as

being more robust and less sensitive to a priori selection of genes.

They also show that NMF always converges towards a fixed attractor

irrespective of random initial conditions in comparison with a similar

stochastic method like SOM.

For instance, in applying HC to the leukemia data to cluster the

tissue samples, they note that the tree structure produced by HC

depended very much on the choice of the linkage metric used in

constructing the dendogram. Furthermore, they observed that the

performance of HC varied depending on the number of input genes

Figure 4. Heat map of re-ordered consensus matrix, k = 2.
doi:10.1371/journal.pcbi.1000029.g004
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used in the clustering. Similarly, the authors applied SOM to this

data and observed that for k = 2, the clustering was unstable and

depended on the random initial conditions, while for k = 3, the

method was unable to recover the three tumor types (for details see

[38]). In sharp contrast, NMF with rank k = 2 was able to consistently

recover the distinction between the ALL and AML types. This is

reflected in the homogeneity in coloring of a heat map of the re-

ordered consensus matrix shown in Figure 4 and the high cophenetic

correlation coefficient for this case (see Figure 3). Likewise, a rank

k = 3 factorization was able to consistently recover the distinction

between the ALL-B and -T subtypes as seen in Figure 5.

Some Limitations

A review of this widely applicable method would not be

complete without a discussion of its limitations. As noted earlier,

NMF is an algorithmically more complex method to implement,

and convergence can be slow. This is further compounded by the

stochastic nature of the algorithm despite its obvious advantages as

outlined in the previous section. The standard NMF formulation

does not incorporate statistical dependencies between the

metagenes or metagene expression patterns, nor does it identify

any structural relationships between them. Also, the parts-based

Figure 5. Heat map of re-ordered consensus matrix, k = 3.
doi:10.1371/journal.pcbi.1000029.g005
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representation may be holistic, rather than local, depending on the

type and nature of the data being studied [19,23–25]. The

nonnegativity constraints that are critical to such a representation

may not be sufficient to achieve sparseness in some situations.

Then, one would have to explicitly enforce sparseness by the

addition of appropriate penalty terms to the cost function being

used in the decomposition. In such cases, it is also possible that a

parts-based, local representation may require fully hierarchical

models with multiple levels of hidden variables rather than the

single level used in this approach [1]. The issue of normalization of

the observed data prior to NMF analysis is an important problem

and one that has not been systematically studied. Some

normalization methods have been suggested in the literature

[50,54,72], but it would be useful to assess and compare the

impact of different methods on the decomposition itself.

Discussion

In the NMF formulation, both the metagenes and the metagene

expression patterns are nonnegative and sparse, and this is a key

requirement for a parts-based local representation. Sparseness has

been demonstrated to capture context-dependent biological

patterns based on only a small subset of genes or samples. The

alternating feature of the algorithm as defined by the multiplicative

update rules facilitates simultaneous inference and learning

[1,2,37] from the metagenes and metagene expression patterns.

The stochastic nature of the NMF algorithm provides a means to

evaluate its sensitivity towards random initial conditions as well as

in assessing whether a given rank k provides a biologically

meaningful decomposition of the data. Furthermore, this feature

has been successfully utilized in identifying hierarchical structure

within the data and in the implementation of parallel algorithms to

increase speed and efficiency. Perhaps one of the most useful

applications of NMF is in metagene projection, for cross-platform,

cross-species analyses and interpretation of large-scale biological

data. This approach not only reduces noise and technological

variations in the data but can also incorporate prior knowledge in

characterizing new datasets.

In the previous section, we noted that NMF does not account

for dependencies in the metagenes or metagene expression

patterns. However, in certain applications, it may be relevant to

explicitly include or exclude dependencies in these hidden

variables. For instance, independent component analysis (ICA)

[73,74] is an approach that produces statistically independent non-

Gaussian components. There has been some work extending ICA

to include nonnegativity constraints [75–77]. It would be

potentially useful to extend this to include other dependent

structures within these hidden variables.

In summary, NMF is an emerging new paradigm for large-scale

biological data analysis and interpretation. It offers tremendous

potential for applicability in a wide variety of computational

biology problems as evidenced by the recent surge in literature.

The relevance of this approach for text mining and document

clustering also makes it a potentially indispensable tool in

biomedical informatics. Last but not least, its applicability is not

just limited to biological problems but encompasses diverse areas

such as image and sound processing, text mining, and information

retrieval.
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