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Abstract
statnet is a suite of software packages for statistical network analysis. The packages implement
recent advances in network modeling based on exponential-family random graph models (ERGM).
The components of the package provide a comprehensive framework for ERGM-based network
modeling, including tools for model estimation, model evaluation, model-based network simulation,
and network visualization. This broad functionality is powered by a central Markov chain Monte
Carlo (MCMC) algorithm. The coding is optimized for speed and robustness.
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1. Introduction
statnet is a suite of software packages for statistical network analysis in R (R Development
Core Team 2007) that implements recent advances in the statistical modeling of random
networks. The models, based on statistical exponential families (“exponential-family random
graph models,” or ERGMs), generalize the p1 (Holland and Leinhardt 1981) and Markov
random graph (Frank and Strauss 1986) models first developed in the social network literature.
These in turn derive from developments in spatial statistics (Besag 1974). The general form is
sometimes referred to as “p-star” or “p*” in the social network literature (Wasserman and
Pattison 1996), reflecting its early origins.

Networks are a form of “relational data,” i.e., data whose properties cannot be reduced to the
attributes of the individuals (nodes) involved. The relation, or “tie,” is the object of (and unit
of) analysis. Relational data arise in many fields, and are central to the concept of “social” in
the social sciences. In typical applications, the nodes in a network represent individuals, and
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the links (edges) represent a specified relationship between individuals. Nodes can also be used
to represent larger social units (groups, families, organizations), objects (physical resources,
servers, locations), or even abstract entities (concepts, texts, tasks, random variables).

In network modeling, our goal is to predict the joint probability that a set of edges exists on
nodes in a network. An edge can be binary or valued, directed or undirected. In general, these
edges are not independent, and that is the challenge for both model specification and estimation.
ERGMs were developed to address the complex dependencies within relational data structures
and provide a flexible framework for representing them. Simple examples include degree
distributions, stars, nodal attribute-based mixing, triangles and other higher order cycles that
lead to clustering, and mutuality and transitivity in directed networks. These observed network
statistics are properly regarded as outcomes, and the goal of the model is to specify the process
that leads to their joint distribution. The terms in an ERG model that represent this process are
also network statistics. The statistics for process and outcome may sometimes coincide – for
example, a propensity for triad closure leading to a large number of triangles in a network
would lead to a model with a term for the number of triangles. But the same outcome may arise
from an alternative underlying process – for example, a propensity for within-group partners
leads to triad closure when groups are small (Goodreau, Kitts, and Morris 2008b), and this
would lead to a model with terms for the relative frequency of within-group ties. ERGMs
provide a statistical framework for evaluating alternative hypotheses about the processes that
lead to the observed outcomes.

The statnet suite of packages provides a comprehensive framework for ERGM-based network
modeling: tools for model estimation, for model evaluation and for model-based network
simulation. This broad functionality is powered by a central Markov chain Monte Carlo
(MCMC) algorithm that can easily handle networks of several thousand nodes or more, though
the size of the problem is dictated more by the number of edges (and edge attributes) than by
the number of nodes. See Hunter, Goodreau, and Handcock (2008a); Goodreau (2007);
Goodreau et al. (2008b) for examples of large networks that may be handled by statnet. For
statistical inference, MCMC is used to approximate the likelihood function by sampling the
space of possible networks. The sample is obtained by sequentially updating the values of
dyads in the network according to a random schedule using a Metropolis-Hastings algorithm,
creating a Markov chain of networks with the appropriate statistical properties (Hunter.
Handcock, Butts, Goodreau, and Morris 2008b). The sequence produced by this algorithm can
also be used as a method for simulating realizations of networks from the model, which in turn
can be used for model evaluation. The algorithm can also be used to produce a dynamically
changing network over time. The broad functionality of this MCMC algorithm provides a
unifying coherent framework for modeling, and it extends the potential scope of network
analysis: providing greater flexibility, range and insight into the generative principles of
network formation, and a foundation for the analysis of diffusion across network structures.

Network analysis is a rapidly growing field, and there are now a number of computer packages
available that provide a wide range of analytical tools. The methodology in these packages
falls into three general classes: descriptive techniques, permutation methods, and generative
models. The classes range roughly along a continuum, from capturing static regularities in
network structure to testing models for the emergence of that structure.

Descriptive techniques include the traditional social network summaries drawn from the graph
theoretic literature and reviewed in Wasserman and Faust (1994). These seek to characterize
the systematic patterns observed in networks (e.g., the degree distribution, the number of
triangles, the centrality of nodes, or the centralization of the network as a whole), but there is
no real statistical inference associated with these methods. Descriptive techniques are featured
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in established packages like UCINET (Borgatti, Everett, and Freeman 1999) and Pajek
(Batagelj and Mrvar 2007), and they are included in the sna (Butts 2007) package in R.

Permutation methods employ computationally intensive resampling to perform statistical
inference for traditional statistical models on networks (e.g., the quadratic assignment
procedure, QAP, for matrix regression). In this approach, the dependence among observations
is treated simply as an obstacle to statistical inference that the permutation distribution allows
one to ignore. Such procedures are available in UCINET (Borgatti et al. 1999), sna and
netperm (Butts 2006), and also in some traditional statistical environments like Stata
(StataCorp. 2007).

Generative models provide a full stochastic representation of the process of network formation,
which allows the dependence among observations to become the focus of the model. Simple
examples include the Bernoulli model and the preferential attachment model, each of which
represents a single type of network generating process, and the log-linear models for nodal
attribute mixing that provide a class of generative mixing models. ERGMs are a very general
class of generative models, which includes the Bernoulli, preferential attachment and mixing
models as special cases. When fully specified, generative models also provide a framework
for model evaluation and inference. Such fully specified ERGMs are currently available in
statnet and stocnet (Boer, Huisman, Snijders, and Zeggelink 2003).

2. Overview of statnet components
statnet (Handcock, Hunter, Butts, Goodreau, and Morris 2003b) is written in a combination
of the open-source statistical language R (R Development Core Team 2007) and (ANSI
standard) C (Kernighan and Ritchie 1988). It is usually used interactively, via a command line,
from within the R graphical user interface. It can also be used in non-interactive (or “batch”)
mode to allow longer or multiple tasks to be processed without user interaction.

The statnet suite of packages, which includes two required components and several optional
components, is available on the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/ and also on the statnet project Web site at
http://statnetproject.org/ The suite can be installed directly over the Internet using the
install.packages command within R as described in Goodreau, Handcock, Hunter, Butts,
and Morris (2008a). To obtain a list of the functions available in any of the statnet packages,
type help (package = “<pkg name>“), as in

R> help(package = “ergm”)

To obtain further information about a particular function, such as the ergm function within the
ergm package, type help (“ergm”)  or simply ?ergm for short.

The individual component packages of the statnet suite are listed below. Most of these
packages are described in detail in the subsequent articles in this volume.

2.1. Required packages: ergm and network
• ergm is a collection of functions to fit, simulate from, plot and evaluate exponential-

family random graph models. The main functions within the ergm package are
ergm, a function to fit exponential-family random graph models in which the
probability of a network is dependent upon a vector of network statistics specified by
the user; simulate, a function to simulate random networks using an ERGM; and
gof, a function to evaluate the goodness of fit of an ERGM to the data, ergm contains
many other functions as well; for a guide to the basic types of functionality these
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functions provide, see Hunter et al. (2008b), Morris, Handcock, and Hunter (2008),
and Goodreau et al. (2008a) in this volume.

• network is a package to create, store, modify and plot the data in network objects.
The network object class, defined in the network package (Butts, Handcock, and
Hunter 2007; Butts 2008a), can represent a range of relational data types and it
supports arbitrary vertex/edge/network attributes. Data stored as network objects
can then be analyzed using all of the component packages in the statnet suite.

2.2. Optional packages
The optional packages sna, degreenet, latentnet, and networksis are all available on CRAN:

• sna: A set of tools for traditional social network analysis (Butts 2008b).
• degreenet: This package was developed for the degree distributions of networks It

implements likelihood-based inference, bootstrapping, and model selection, and it
includes power-law models such as the Yule and Waring as well as a range of
alternative models that have been proposed in the literature. (Handcock 2003b). The
theory behind these methods is described in Jones and Handcock (2003a,b); Handcock
and Jones (2004, 2006).

• latentnet: A package to fit and evaluate latent position and cluster models for
statistical networks based on Hoff, Raftery, and Handcock (2002) and Handcock,
Raftery, and Tantrum (2007). The probability of a tie is expressed as a function of
distances between these nodes in a latent space as well as functions of observed dyadic
level covariates. For details about this package, see Krivitsky and Handcock (2007)
in this volume.

• networksis: A package to simulate bipartite networks with fixed marginals through
sequential importance sampling (Admiraal and Handcock 2007).

Additional optional packages are available on request, as described below.
• dynamicnetwork: A set of tools for visualizing dynamically changing networks

(Bender-deMoll, Morris, and Moody 2008).
• netperm: A package for permutation Models for relational data (Butts 2006). It

provides simulation and inference tools for exponential families of permutation
models on relational structures.

• rSoNIA: Provides a set of methods to facilitate exporting data and parameter settings
and launching SoNIA, which stands for Social Network Image Animator (Bender-
deMoll and McFarland 2003). SoNIA facilitates interactive browsing of dynamic
network data and exporting animations as a QuickTime (Apple Inc. 1999) movies.

3. Principles of ERGM-based network modeling
ERGMs represent the generative process of tie formation in networks, and there are two basic
types of processes: dyadic dependent and dyadic independent. A dyad refers to a pair of nodes
and the relations between them. Dyadic dependent processes are those in which the state of
one dyad depends stochastically on the state of other dyads. A classic example is the concept
that “the friend of my friend is my friend” — the presence of a friendship tie in dyads (i,j) and
(j,k) increases the probability of a friendship tie in dyad (i,k). Dyadic independent processes
exhibit no direct dependence among dyads: An example is the related social concept that “birds
of a feather flock together” — if the two nodes in a dyad have similar attributes, the probability
of a friendship tie is increased. The state of the dyad depends on the attributes of the two nodes,
but not on the state of other dyads.
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The distinction between these two types of processes affects the specification, estimation and
behavior of ERG models. Models with only dyadic independent terms have a likelihood
function that simplifies to a form that can be maximized using standard logistic regression
methods. Intuition about how these models behave is usually straightforward, as for logistic
regression models. By contrast, models for processes with dyadic dependence require
computationally intensive estimation and imply complex forms of feedback and global
dependence that confound both intuition and estimation.

It can be difficult to specify a sensible model that contains dyadic dependent terms, since a
model that seems reasonable may in fact have very counterintuitive implications. A good
example comes from the recent literature on clustering in networks. Clustering is often
represented as a tendency to form closed triangles, and a common summary measure is the
“mean clustering coefficient,” the number of triads with all three ties present divided by the
number with at least two ties present. A natural ERGM analog for this is a model with two
terms — the edge density and the mean clustering coefficient — and corresponding parameters
θ ⃗ = (θ1,θ2) The intuition seems straightforward; the density term governs the overall number
of ties and the clustering term captures the propensity for, or against, triad closure relative to
a Bernoulli random network. In most social networks, we would expect θ2 to be positive. But
the distribution of networks produced by this model (obtained through simulation) displays a
bizarre pattern. First, for many combinations of possible values of the parameters in θ⃗, the
model produces networks that are either full (every tie exists) or empty (no ties exist) with
probability close to one. Second, even for parameters that do not produce these extremal
networks, such as those illustrated in Figure 1, the distribution of networks produced by the
model is often bimodal; one mode has low density and high triad closure, the other has high
density and low triad closure. The model almost never produces networks at the average density
and triad closure.

The technical term for this behavior is “model degeneracy,” and a detailed exposition of the
topic and the example above can be found in Handcock (2003c) or Handcock (2003a). The
intuition behind this problem is relatively simple. If we specify a model that is unlikely to
produce the observed network, then one of two things can happen when this model is fit to the
data: the maximum likelihood estimator (MLE) may exist, but it will not provide a good fit to
the data, as in Figure 1; or the MLE may not exist, and the estimation will not converge properly
(as in the extremal case above). Degeneracy is an indication of model mis-specification – not
a shortcoming of the MCMC estimation procedure.

The solution to the degeneracy problem is to specify a model that is a better fit to the data, but
this is often more difficult than usual. With linear models, for example, the estimated
coefficients are linear functions of the observed data. These closed-form solutions can be used
to construct predicted values, and mis-specification can be diagnosed by comparing observed
to predicted values. With ERGMs, if the model is mis-specified and fails to produce an MLE,
the analyst can be left with little information to help guide the re-specification of the model.

A technique that commonly leads to degeneracy when representing dyad dependent processes
is the use of simple configuration counts or proportions (e.g., the number of triangles or the
mean clustering coefficient) as model covariates. It may seem natural to represent a
disproportionately high number of triangles in a network by a triangle term in the model. But
because a single edge can complete a large number of triangles, the dyadic dependence effects
amplify quickly, so a model with a positive coefficient on a triangle term will almost always
lead to degenerate behavior. This is a form of “collapse” or threshold behavior well known in
complex systems.
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The goal is to develop substantively meaningful models in which the dependent process is
properly constrained: to represent the additional heterogeneity in the process of tie formation
that limits the range of dependence. One plausible mechanism is strong attribute mixing, which
would reduce the impact of dependence beyond the preferred group of nodes: a triad created
within the group is more likely than a triad created between groups. Another mechanism is a
nonlinear impact of the dependent configuration, e.g., a tie completing two triangles is not
twice as likely as a tie completing one triangle, but something less than that. This is similar to
the classic declining marginal returns models in economics. The ergm package provides a
flexible framework for representing such processes with “curved exponential family
models” (Hunter and Handcock 2006). These allow one to specify a single ergm term that is
a parametric summary of an entire distribution of statistics, such as degree statistics, instead
of a nonparametric specification that uses one term for each value in the distribution.

In some cases, model re-specification will simply require selecting different ergm terms from
the list included in the ergm package (Handcock, Hunter, Butts, Goodreau, and Morris
2003a). In other cases, it may require coding a new ergm term using the methods provided for
user-coded terms. As discussed in Morris et al. (2008), the terms in an ERGM are network
statistics that must be calculated for the observed network, and for each step of the MCMC
sequence. So every term requires its own algorithm. This is another way in which network
ERGMs differ from traditional statistical models. In a traditional linear model, for example,
the covariates are measured prior to estimation, and while they might be transformed as a part
of model specification, most transformations are simple arithmetic operators on one or more
vectors, and most interactions are simple products of vectors. Network statistics, by contrast,
may require complex algorithms for their construction (e.g., a cycle census over the whole
network). statnet includes code for many of the most common network statistics used in the
social network field, but the terms relevant for any particular network, or for networks outside
the social sciences, may be different. Re-specifying an ERGM may not just be a simple matter
of adding another term to the model; it may require writing a piece of program code to represent
that term.

statnet provides a range of diagnostic tools to help identify when a model is degenerate,
discussed in Goodreau et al. (2008a) and (Hunter et al. 2008b). Since statistical methods for
simulating stochastic random networks have only recently been developed, the models and
parameter values relevant to real networks are only beginning to be understood. A good
discussion of model specification for social networks can be found in Snijders, Pattison.
Robins, and Handcock (2006).

4. Other capabilities
statnet is a package that is undergoing long term development, and the statnet development
team is continually adding functionality. We welcome your comments and even suggestions,
though naturally we can not promise to respond to all requests! We also welcome inquiries
about becoming a member of the statnet development team. We sponsor a statnet mail list
for questions and discussions; sign-up is through the statnet Web page at
http://statnetproject.org/. Further information about statnet is also available at the Web site.
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Figure 1.
Darker gray indicates higher probability density in this plot showing the true distribution of
networks according to a particular two-statistic ERGM containing edge density and mean
clustering coefficient. The population mean vector, specified by a particular choice of the
model parameters, is shown at the intersection of the two dotted lines. The fact that there is
very little probability mass near this mean is emblematic of degeneracy.
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