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Abstract

The analysis of genomics data needs to become as automated as its generation. Here we
present a novel data-mining approach to predicting protein functional class from sequence.
This method is based on a combination of inductive logic programming clustering and rule
learning. We demonstrate the effectiveness of this approach on the M. tuberculosis and E.
coli genomes, and identify biologically interpretable rules which predict protein functional
class from information only available from the sequence. These rules predict 65% of the
ORFs with no assigned function in M. tuberculosis and 24% of those in E. coli, with an
estimated accuracy of 60—80% (depending on the level of functional assignment). The rules
are founded on a combination of detection of remote homology, convergent evolution and
horizontal gene transfer. We identify rules that predict protein functional class even in the
absence of detectable sequence or structural homology. These rules give insight into the
evolutionary history of M. tuberculosis and E. coli. Copyright © 2000 John Wiley &
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Introduction

The genomes of around 30 microorganisms have
now been completely sequenced (Magpie: http://
www -fp.mcs. anl. gov/ ~ gaasterland / genome . html;
Blattner et al., 1997; Cole et al., 1998; Goffeau et al.,
1996) as have those of the multicellular animals
Caenorhabditis elegans (C. elegans Sequencing Con-
sortium, 1998) and Drosophila melanogaster
(Adams et al., 2000). This new knowledge is
revolutionizing biology. Perhaps the most impor-
tant revelation from the sequenced genomes is that
the functions of only 40-60% of the predicted genes
are known with any confidence. For example, in
Saccharomyces cerevisiae, one of the most intensely
studied organisms, of the ca. 6000 predicted
protein-encoding genes (Goffeau et al., 1996), the
function of only ca. 60% can be assigned with any
confidence. The new science of functional genomics
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(Hieter and Boguski, 1997; Bussey, 1997; Bork et al.,
1998; Brent, 1999; Dyer et al., 1999) is dedicated to
determining the function of the genes of unassigned
function and to further detailing the function of
genes with purported function.

To meet the challenge posed by functional
genomics, new and highly ingenious experimental
techniques have been developed to analyse gene
function. These techniques permit large-scale and
parallel interrogation of cell states under different
stages of development and under particular envir-
onmental conditions. Such analyses may be carried
out at the level of transcription using hybridization
arrays (Lockhart et al., 1996; DeRisi et al., 1997;
Brown and Botstein, 1999; Alizadeh et al., 2000).
Similar analyses may be carried out at the level of
translation to define the proteome (Wilkins et al.,
1997; O’Connor et al., 1998; Blackstock and Weir,
1999). Most recently, the metabolome (Oliver, 1997;
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Figure I. Mapping of sequences into functional groups

Oliver and Baganz, 1998; Johnson et al., 2000) and
large-scale phenotyping (Rieger er al., 1999) have
emerged as other important approaches to func-
tional genomics.

Bioinformatics can greatly facilitate such efforts
by making accurate in silico predictions of gene
function based on nucleotide or residue sequence
alone. Such predictions make experimental determi-
nation of function simpler, as it is clearly more
efficient to test a high probability hypothesis than
to randomly test for possible functions. To predict
protein function directly from sequence, what is
abstractly required is a computable discrimination
function (Mitchell, 1997), which maps sequence to
biological function (Figure 1). The existing sequence
homology recognition methods can be viewed as
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Macromolecule metabolism...
Cell  Processes

Other
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— Central intermediary
metabolism...
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examples of such functions: methods based on
direct sequence similarity (Pearson and Lipman,
1988; Altschul er al., 1997) can be considered as
nearest neighbour-type functions (Duda and Hart,
1973) (in sequence space), and the more sophisti-
cated homology recognition methods based on
motifs/profiles (Taylor, 1998) resemble case-based
learning functions (Aha et al., 1991). The question
naturally arises whether there exist other, perhaps
more general, types of discrimination function?
Given the complexities of the relationship between
protein sequence and structure, this would a priori
seem unlikely. However, the natural way to identify
such functions would be to learn them empirically
from the annotated sequence databases using data
mining techniques (Piatetsky-Shapiro and Frawley,
1991; Chatfield, 1995; Fayyad et al., 1996;
Munakata,1999).

To test the hypothesis that data mining could be
used to find general types of discrimination func-
tions for predicting function, we focused in on the
use of protein functional hierarchies. We believe
the recognition of the value of such hierarchies to
be one of the most important conceptual advances
in functional genomics (Riley & Labedan, 1996).
An example of such a hierarchy is that for
M. tuberculosis taken from the Sanger Centre:
TB_gene _list: http://www.sanger . ac.uk/Projects/
M_tuberculosis/gene_list_full.shtm (Figure 2). In this
hierarchy, the protein L-fuculose phosphate aldolase
(Rv0727¢c, fucA) has a top-level class assignment
‘small-molecule metabolism’, a second-level class

Level 3

Carbon compounds

Amino acids and amines
Fatty acids

Phosphorous compounds

— Polyamine synthesis...

— Purines, pyrimidines, nucleosides
and nucleotides...

— Biosynthesis of co-factors, prosthetic
groups and carriers...

[ Lipid biosynthesis...

[ Polyketide and non-ribosomal
peptide synthesis...

— Broad regulatory functions...

Figure 2. An example subset of the genes functional hierarchy in M. tuberculosis. The gene L-fuculose phosphate aldolase is in
the Level 3 class ‘carbon compounds’. This example has only three out of four possible classification levels
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‘degradation’, and a third-level class ‘carbon com-
pounds’ (see Figure 2). Such hierarchies are gener-
ally either in a strict tree e.g. (the Sanger Centre’s
M. tuberculosis TB_gene_list; and Monica Riley’s E.
coli EC_gene_list: http://genprotec.mbl.edu : 80/start),
or as directed acyclic graphs DAGs (Kell and
King, 2000), e.g. MIPS Saccharomyces cerevisiae
SC_gene_list: http://www.mips.biochem.mpg.de/proj/
yeast/catalogues/index.html (It is significant that
these hierarchies bear a close resemblance to
engineering diagrams showing the hierarchical orga-
nization of systems, e.g. in a motorbike the electrical
subsystem, the braking subsystem, etc. This way of
organizing knowledge goes back to Aristotle.) These
hierarchies are important because they provide
frameworks for structuring our knowledge of the
components of cells and so provide the grouping
together of functionally related proteins. The exis-
tence of such groupings (classes) opens up the
possibility of generalizing over the objects in the
class (induction: finding something generally true
about the objects in a class). The novel approach
taken in this paper is to find, using data mining,
general properties that are true of the sequences in
particular functional classes and not true for any other
functional class. These properties of the sequence can
then be used to predict functional class from sequence.

Materials and methods

We selected the genomes of Escherichia coli and
Mycobacterium tuberculosis for study. E. coli is
probably the best characterized extant genome and
is a Gram-negative organism. We used 4289 open
reading frames (ORFs) (Blattner et al., 1997) and
took the functional assignments from GenProtEC
(EC_gene_list). M. tuberculosis, is a Gram-positive
actinomycete and is probably the prokaryote
genome of greatest medical importance. We used
3924 ORFs (Cole et al, 1998) and took the
functional assignments from the Sanger Centre
(TB_gene_list). The assignment of function for
both organisms is organized in a strict hierarchy
(tree), where each higher level in the tree is more
general than the level below it, and the leaf nodes
are the individual functions of proteins. These
functional classes are what we wish to predict
from sequence. The organization of function in M.
tuberculosis and E. coli is quite different, reflecting

Copyright © 2000 John Wiley & Sons, Ltd.
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their quite different biology and long evolutionary
separation. We attempted to learn discriminatory
functions for every level of the functional hierarchy
of both organisms.

The basic methodology for each genome was:

1. Generate the database: retrieve the identified
ORFs (putative proteins) and the known func-
tional assignments [note that some ORFs will be
shown not to code for proteins and there are
errors in annotation of function (Brenner, 1999),
and this adds ‘noise’ to the data-mining process
(Mitchell, 1997)]; then compute for each ORF in
the genome a set of descriptors based solely on
information available from the sequence.

2. Data mining: learn (induce) rules that map
sequence descriptions to function; test these
rules on ORFs not used in learning the func-
tion.

To generate the database to mine we retrieved for
each organism the ORFs and their known func-
tional assignments. The description of each ORF is
only based on features that can be computed from
sequence. The most commonly used technique to
gain information about a sequence is to run a
sequence similarity search, and this was used as the
starting point in forming the descriptions. The basic
data structure is based on the result of a PSI-
BLAST search. We used the parameters (Altschul
et al., 1997). e=10, h=0.0005, j=20, NRProt
16/11/98 for M. tuberculosis, and NRProt 05/10/99
for E. coli). For each ORF, and for each protein
identified as having sequence similarity to it, we
formed an expressive description based on: the
frequency of singlets and pairs of residues in the
protein; the phylogeny of the organism from
which the protein was obtained-from SWISS-
PROT (Bairoch and Apweiler, 2000); SWISS-
PROT keywords (membrane; transmembrane;
inner_membrane; outer_membrane; repeat; plas-
mid; alternative_splicing); the length and molecular
weight of the protein, its pl and molecular
composition (ProtParam_tool: http://lwww.expasy.ch
Itools/protparam.html) (only for E. coli); and the
protein’s predicted secondary structure using Prof
(Ouali and King, 2000) (only for E. coli). This
description resembles a ‘phylogenic profile’
(Marcotte et al., 1999) but is more general. The
main differences in describing phylogeny are that
the Datalog description includes information on:

Yeast 2000; 17: 283-293.
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All the species with detected homologies.

. The actual phylogenic classification of each
species — allowing generalization over any level
of taxa.

3. The significance (evolutionary distance) of the

predicted homology.

4. The sizes of the predicted homologous proteins.

5. Keywords describing the predicted homologous

proteins, especially those relating to membrane

binding.

N —

For E. coli, 10 097 865 facts were generated and
5895649 for M. tuberculosis (see Table1 for
details).

We mined this database to generate rules that
predict protein functional class from sequence
description. We used two complementary forms of
data mining: inductive logic programming (ILP)
(Muggleton, 1991; Lavrac and Dzeroski 1994) and
propositional rule learning (Mitchell, 1997). These
forms of data analysis differ from traditional
statistical methods in that they are based on using
a symbolic language to describe the examples and
inductive theories formed. In propositional rule
learning the language used is that of attribute
vectors (propositional logic). A characteristic of
attribute vectors is that all the information about a
particular example can be put into a single row of a
table. Rules (theories) are of the form: if a
conjunctions of conditions (attributes having cer-
tain values) is true for an example, then the example
belongs to a particular class. For example, a rule
for classifying bacteria is: if ‘resistant to gamma
radiation’ =true and ‘cell wall contains ornithine’ =
true, then genus = Deinococcus. Such rules are called
‘propositional classification rules’. An efficient way
of learning such rules is to first learn an inter-
mediate structure known as a decision tree. In a
decision tree, each node is a test of an attribute and
the leaves are classes. It is in general computatio-
naly infeasible to learn an optimal decision tree, but
greedy approaches based on recursively choosing
the best attribute test have been shown to be very
effective (Mitchell, 1997). We used the popular C4.5
and C5 decision tree-based methods for learning
propositional rules (Quinlan, 1993).

ILP uses the rich language of logic programs to
describe examples and theories. This language is
more expressive than that of attribute vectors
(propositional logic). Logic programs are based on
first-order predicate logic and are equivalent in

Copyright © 2000 John Wiley & Sons, Ltd.

R. D. King et al.

expressive power to standard computer languages,
such as Fortran and Java. This greater expressive
power allows ILP to find solutions to problems that
cannot be solved using standard statistical or neural
network techniques (which are based on attribute
vectors), and enables results to be learnt that are
more human-understandable (King ez al., 1992;
Lavrac and Dzeroski 1994; King et al., 1996).

We used the ILP data-mining programme
WARMR (Dehaspe et al., 1998). This programme
is designed for the prototypical data mining task of
finding all frequently occurring patterns of a
particular type. WARMR employs an efficient
levelwise method similar to the Aprior algorithm
(Fayyad et al., 1996), which allows it to be used on
very large databases. The algorithm is based on a
breadth-first search of the pattern space (which is
ordered by the generality of patterns) (Mannila and
Toivonen, 1997). Pruning is based on the mono-
tonicity of specificity with respect to frequency — if a
pattern is not frequent then none of its specializa-
tions can be frequent. This learning method allows
fast and efficient on large databases.

The combined ILP propositional data-mining
methodology used was as follows (see Figure 3):

1. Clustering: randomly select 2/3 of the ORFs as
training data and 1/3 as test; run WARMR on
the training data to identify frequent patterns in
the descriptions (e.g. a frequent pattern was the
occurrence of the keyword ‘transmembrane’ in
high molecular weight proteins); convert the
identified frequent patterns to Boolean indicator
attributes (i.e. if an ORF has the above frequent
pattern, then a particular attribute has the value
true: if this patterns is not present, then the
attribute has the value false).

2. Rule learning: randomly select 1/3 of the ORFs
in the training data as validation data; use C4.5
or C5 on the training data (excluding the
validation data), to learn rules that predict
function from the descriptional attributes; select
the best learnt prediction rules on the basis of
their performance on the validation data; and
test their performance on the test data.

3. Prediction: apply the prediction rules to ORFs
which have not been assigned a function.

Rules were selected to balance accuracy with
unidentified gene coverage. For any application, the
correct balance of accuracy and coverage depends on
the relative cost of making errors of commission and

Yeast 2000; 17: 283-293.
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Table |. The basic descriptors used to describe ORFs

Descriptor

Explanation

amino_acids_R
amino_acid_ratio_R
amino_acid_pairs_RS

amino_acid_pair_ratio_RS

sequence_length
molecular_weight
aliphatic_index
hydro

Pl
atomic_comp_E

The number of residues of type R in the sequence

The percentage composition of residues of type R

The number of residue pairs of type R, S in the sequence

The percentage composition of residue pairs of type R, S

The number of residues in the sequence

The computed molecular weight

The computed aliphatic index

The grand average of hydropathicity (GRAVY); the value was discretized, | for low values, increasing up to 5 for
high values

The theoretical isoelectric point (pl) for this ORF

The ORF's atomic composition of element E; where E is one of the following: carbon (C), hydrogen(H),
nitrogen(N), oxygen(O) or sulphur(S)

hom(P)
e_val_rule(P, E)
e_val_lteq(P, X)
e_val_gt(P, X)
psi_val_rule(P, It)
psi_iter_lteq(P, X)
psi_iter_gt(P, X)
species(P, Species)
classification(P, Class)
mol_wt_rule(P, X)
mol_wt_Iteq(P, X)
mol_wt_gt(P, X)
keyword(P, Word)
ss(S, T)

nss(Sl, S2, T)

ss_alpha(s, gt, X)
ss_beta(S, gt, X)
ss_coil(S, gt, X)

nss_alpha(Sl, S2, gt, B)

nss_beta(Sl, S2, gt, X)

nss_coil(S1, S2, gt, X)

P is a homologous protein found by PSI-BLAST

P is a homologous protein found by PSI-BLAST with sequence similarity measure E

P is a homologous protein found by PSI-BLAST with sequence similarity measure less than X

P is a homologous protein found by PSI-BLAST with sequence similarity measure greater than X

P is a homologous protein found by PSI-BLAST on iteration It

P is a homologous protein found by PSI-BLAST on iteration less than X

P is a homologous protein found by PSI-BLAST on iteration greater than X

The protein P comes from species Species

The protein P comes from a species with SwissProt phylogenic classification Class

The protein P has discretized molecular weight X

The molecular weight of P is less than X

The molecular weight of P is greater than X

The SwissProt keyword Word describes protein P

Position S is predicted to be a secondary structure element of type T

Given the secondary structure at position S1, the neighbouring position S2, with S2=S1 +2, has a secondary
structure prediction of type T

Position S is predicted to be an alpha-helix of length greater than X (similarly Iteq instead of gt)
Position S is predicted to be a beta-strand of length greater than X (similarly lteq instead of gt)
Position S is predicted to be a coil of length greater than X (similarly Iteq instead of gt)

Positions S1 and S2 (where $2=S1 +2) are predicted to be alpha-helices of length greater than X
(similarly Iteq instead of gt)

Positions S1 and S2 (where S2=S1 4 2) are predicted to be alpha-helices of length greater than X
(similarly Iteq instead of gt)

Positions S1 and S2 (where S2=S1 4 2) are predicted to be alpha-helices of length greater than X
(similarly Iteq instead of gt)

The descriptors above the bold line are propositional. X is an amino-acid residue; there are considered to be 21 residues, the standard 20 plus x
(for repetitive sequences). The descriptors: aliphatic_index, hydro, pl, and atomic_comp_E were generated using the ProtParam programme.
The values described in the table by X' are discretized into five classes (I very low, 2 low, 3 medium, 4 high, and 5 very high). The E value of a
PSI-BLAST search is a measure of the probability of a sequence match being homologous (note that a low value means a high sequence similarity);
it can also be considered as a measure of evolutionary relatedness of the homologous protein. For secondary structure descriptors, positions refer
to the order in the predicted secondary structure. If, for example, an ORF has the following predicted secondary structure:
oooccccccaaaaaccccccc S would translate into: the st alpha-helix secondary structure prediction is of length 4; the Ist coil secondary
structure prediction is of length 6; the 2nd alpha-helix secondary structure prediction is of length 5; the 2nd coil secondary structure prediction is
of length 7; and the Ist beta-strand structure prediction is of length 3.

omission (Provost and Fawcett, 1997) (making Results and discussion

incorrect predictions

vs. missing genes). The

system can be tuned to select different balances. For both M. tuberculosis and E. coli it was possible
The prediction rules were then applied to genes that to find good rules that predict function from

have not been assigned a function.

Copyright © 2000 John Wiley & Sons, Ltd.

sequence at all levels of the functional hierarchies
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OREFs of assigned function ORFs of unassigned function

Generate sequence
descriptions \
Database for clustering
2/3 | 13
ILP clustering
using WARMR |
Database for rule Method
learning validation

2/3 173 ‘

Rule learning Testing
using C4.5 andC5
Rules Selected rules Predictions > Exp erlmeptal
confirmation?

Figure 3. Flow chart of the data mining methodology. This hybrid approach has proved successful in the past on other
scientific discovery tasks (Dehaspe et al., 1998). It is powerful because the clustering improves the representation for learning
(using the expressive power of ILP) and the discrimination step efficiently exploits the pre-labelled examples. Good rules
were selected on a validation set and the unbiased accuracy of these rules estimated on a test set

Table 2. Learning results for M. tuberculosis and E. coli

M.tuberculosis E. coli

Level | Level 2 Level 3  Level4  Level | Level 2 Level 3
Number of rules found 25 30 20 3 I3 I3 13
Rules predicting more than one homology class 19 18 8 \ 9 10 3
Rules predicting a new homology class 14 I5 I 0 9 5 3
Average test accuracy 62% 65% 62% 76% 75% 69% 61%
Default test accuracy 48% 14% 6% 2% 40% 21% 6%
New functions assigned 886 (58%) 507 (33%) 60 (4%) 19 (1%) 353 (16%) 267 (12%) 135 (6%)

The number of rules found are those selected on the validation set. A rule predicts more than one homology class if there is more than one
sequence similarity cluster in the correct test predictions. A rule predicts a new homology class if there is a sequence similarity cluster in the test
predictions that has no members in the training data. Average test accuracy is the accuracy of the predictions on the test proteins of assigned
function (if conflicts occurred, the prediction with the highest a priori probability was chosen). Default test accuracy is the accuracy that could be
achieved by always selecting the most populous class. ‘New functions assigned' is the number of ORFs of unassigned function predicted. It would
have been better to use cross-validation or some similar resampling method (Mitchell, 1997) to estimate the variance in these values; however, this
would have been computationally infeasible because of the large size of the databases. The test accuracy estimates may be too pessimistic, as
proteins may have more than one functional class but only one of these is considered correct (see examples in the text). However, it is also
possible to argue that estimates are too optimistic, as the ORFs of unassigned function come from a different distribution from that used to train
the rules. Only by empirically testing the prediction rules can the true accuracy of the rules be determined

Copyright © 2000 John Wiley & Sons, Ltd. Yeast 2000; 17: 283-293.
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If the percentage composition of lysine in the ORF is > 6.6%,

then its functional class is ‘macromolecule metabolism’

Figure 4. Rule TB_C50_|_26 a top-level rule from M.
tuberculosis. This rule is 85% (11/13) accurate on the test set
(the probability of this result occurring by chance is estimated
at 1.2 x 107 as the class ‘macromolecule metabolism’ covers
ca. 25% of examples). The rule correctly predicts the
following proteins (rpsG (S7), rpsl (S9), rpsL (S12), rpsT
(S20), rpl) (L10), rpIP (L16), rpIS (LI19), rpIX (L24), rpmE
(L31), rpmJ (L36), infC (IF-3)). These proteins are all involved
in protein translation. When the training data are included,
the rule covers 46 out of the 58 proteins known to be
involved in ribosomal protein synthesis and modification. The
two errors (of commission) made in the test data were
groEL2 and Rv3583c, a ‘putative transcriptional regulator’.
The rule predicts the function of five ORFs classed as
‘conserved hypotheticals’ (Rv566, Rv854, Rv910, Rv2185,
Rv2708) and 10 ORFs classed as ‘unknowns’ (Rv123, Rv810,
Rv909, RvI893, RvI955, Rv2061, Rv2517, Rv2819, Rv2822,
Rv3718). The prediction rule is consistent with protein
chemistry, as lysine is positively charged which is desirable
for interaction with negatively charged RNA. The choice of
lysine over arginine for the positively charged residue may be
connected with the high GC content of the M. tuberculosis
genome (2) — lysine is coded by the codons AAA and AAG
while arg is coded by CGU, CGC, CGA and CGG

289

(Table 2). The test accuracy of these rules is far
higher than possible by chance. In M. tuberculosis,
of the ORFs originally in the ‘conserved hypothe-
tical’ or ‘unknown’ function classes, 985 (65%) were
predicted to have a function at one or more levels
of the hierarchy. In E. coli, of the ORFs with no
assigned function (‘unknown function’ and ‘mis-
cellaneous’ classes), 525 (24%) were predicted to
have a function at one or more levels of the
hierarchy. The rules are estimated to have accura-
cies in the range 60-80%. The rule learning data, the
rules and the predictions are all given at the
site:  http://lwww.aber.ac.uk/ ~ dcswww/Research/bio/
ProteinFunction/. We illustrate the value of the
rules by describing, in Figures 4, 5 and 6, three of
the rules learnt.

The number of these predictions varies by level in
the functional hierarchy, with most predictions
being made at the top level. We found this
surprising as, at the start of the investigation, we
did not believe it would be possible to find rules
that recognized such broad functional classes as, for
example, between ‘small molecule metabolism’ and
‘macromolecule metabolism’. The most valuable
predictions are those at the lower levels, as these
can be tested most easily experimentally. At this

ratio A

a homologous

and
normal molecular weight

If the ORF's percentage composition of the dipeptide tyr—arg is <= 0.54 A
no homologous protein was found annotated with the keyword “alternative_splicing” A
a homologous protein was found in H. sapiens A
a homologous protein was found of low sequence similarity A

no homologous protein was found of very high sequence similarity and a very low asn

a homologous bacterial protein was found with a very high molecular weight A
‘proteobacteria’ protein was found annotated with the keyword
‘transmembrane’ and with a high molecular weight A

no homologous protein was found in E. coli with very high leu percentage composition

then function is ‘small-molecule metabolism, degradation, fatty acids’
(N B: the syntax has been modified for readability)

Figure 5. Rule TB_C50_3_3 is a level 3 rule for M. tuberculosis. This rule is 80% (16/20) accurate on the test set (the
probability of this result occurring by chance is 4.8 x 10~ '®). It correctly predicts nine acyl-CoA synthases (fadDé, fadD9,
fadD10, fadDI I, fadD15, fadD18, fadD25, fadD26, fadD34), six enoyl-CoA hydratases (echA4, echAl4, echAl5, echAl6,
echAl8, echAl9), and the fatty-acid f-oxidation complex a-subunit (fadB) which is homologous to enoyl-CoA hydratases.
The acyl-CoA synthases and enoyl-CoA hydratases are not thought to be homologous. The four errors (of commission)
made by this rules were: pks16 (a possible polyketide synthase); sucD (succinyl-CoA synthase alpha chain); nrp (an unknown
non-ribosomal peptide synthase); and mbrF (mycobactin/exochelin synthesis). It is interesting that two of these errors, sucD
and pksl6, are involved in lipid metabolism. Although the prediction rule is quite complicated and non-intuitive, the rule
clearly is effective and cannot be explained by chance; it must therefore represent some real biological regularity

Copyright © 2000 John Wiley & Sons, Ltd. Yeast 2000; 17: 283-293.
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If the ORF is not predicted to have a B-strand of length < 3 A
a homologous protein from class Chytridiomycetes was found

then function is ‘cell processes, transport/binding proteins’

Figure 6. Rule EC_C50_2_CSH_44, a second level E. coli
rule. This rule is 86% (12/14) accurate on the test set (the
probability of this result occurring by chance is estimated at
4% 1077 as the class ‘transport/binding proteins’ covers ca.
16% of examples). The rule correctly predicts the following
proteins: gntT, bl514, ugpE, ytfT, livH, yebl, hisC, b2546, yjgT,
yejB, codB, b0831. These are transport proteins currently
mainly classified into the ABC superfamily. Its errors (of
commission) are: nrfD, which is classed as ‘energy metabo-
lism, carbon’ but has ‘a putative STP transport domain’
(illustrating the problem of assigning only one functional class
per protein); and cyoE, which may also have a transport role.
The rule predicts 24 ORFs of unassigned function: b0007,
b0155, b0328, b0371, b0787, b0788, b0790, b0813, b0818,
bI5I15, bl688, bl752, b2317, b2365, b2578, b2689, b3009,
b3071, b3151, b3522, b3819, b4210, b1599, b4262. The rule
is based on a mixture of structural and phylogenic data.
Analysis shows that homology to the Chytridiomycetes
mitochondrial protein cytochrome c oxidase (polypeptide )
is important. The structural attribute selects the transport
proteins from other homologues. The significance of the
primitive fungi class Chytridiomycetes is unclear

level of detailed prediction it is relatively easy to
envisage experiments to confirm the predictions.
For example, in M. tuberculosis ORF Rv2752 is
predicted to have the functional class ‘small-
molecule metabolism, degradation, fatty acids’. If
this ORF was knocked out and the fatty acid
composition of the organism changed, then this
would be consistent with the hypothesis. The rule
learning data, the rules and the predictions, are
given at http://www.aber.ac.uk/ ~ dcswww/Research/
bio/ProteinFunction/.

Perhaps the most convincing evidence for the
ability to predict function from sequence is revealed
by analysis of some of the errors made. For
example, rule TB_C50_3_6 is a level three rule for
M. tuberculosis which predicts the functional class
‘small-molecule metabolism, energy metabolism,
miscellaneous oxidoreductases and oxygenases’. It
is 60% accurate (6/10) on the test set, and the four
errors of commission are: nirB [nitrite reductase
flavoprotein], fabGl [3-oxoacyl-(ACP) reductase],
fabG3 [3-oxoacyl-(ACP) reductase], and amiD
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Table 3. Comparison of the use of ILP (Warmr) data
mining on E. coli

Method Level | Level 2 Level 3
Accuracy: propositional 64% 63% 41%
Accuracy: propositional 4+ ILP 75% 69% 61%
Unassigned ORFs: propositional 359 245 63
Unassigned ORFs: propositional +ILP 353 267 135

The accuracies are the test set accuracies and the unassigned ORFs
predicted are those not annotated in EC_gene_list.

[probable amidase]. Of these nirB, fabGl and
fabG3 are clearly reductases, and amiD is a related
enzyme. It is very hard to see how such biologically
meaningful ‘errors’ could have arisen by a systema-
tic methodological error. This highlights the generic
problem that existing functional hierarchies often
give only one function per gene (Kell and King,
2000).

To test the value of using the ILP step in the
learning process, we compared results with and
without ILP on E. coli (Table 3). The table shows
that using the ILP descriptors increases both the
estimated accuracy of the rules learnt and their
coverage of unannotated ORFs.

For those proteins correctly predicted by each
rule, we carried out all-against-all PSI-BLAST
searches. If all the proteins could be linked together
by PSI-BLAST scores <10, then the proteins were
considered homologous (this is a very liberal
definition). We found that many of the predictive
rules were more general than possible using
sequence homology. This was shown in two ways:
the rules correctly predict the function of sets of
proteins that are not homologous to each other;
and they correctly predict the function of proteins
that are not homologous to any in the training data
(Table 2). Such rules provide a way of predicting
function in the absence of recognizable sequence
homology.

The other rules were based on homology.
Although these rules are not doing anything that
could not be done in principle by existing homology
prediction methods, they are still valuable. They
provide a novel way of detecting homology, and
this is one of the most important processes in
bioinformatics. It is to be expected that, combined
with standard homology detection programmes
such as PSI-BLAST, the prediction rules could
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predict more distant homologies than existing
methods alone.

The rules discovered are important in two ways:
they make predictions that are useful in determining
the functions of ORFs of currently unknown
function, and they provide evolutionary insight.
The actual function of an ORF can only be
determined by ‘wet’ experiment. However, bioinfor-
matic techniques, such as sequence homology
detection, and the prediction rules presented here,
can make such experimental determination simpler.
We look forward to the testing of our predictions
by other workers, and we are designing automatic
methods to test the rules ourselves.

The existence of general rules for predicting
biological function raises the question of their
evolutionary causation. How are such rules possi-
ble, given the notoriously complicated mappings
between function and structure, and structure and
sequence? Several possibilities exist: the rules are
paralogous (Henikoff et al., 1997; Tatusov et al.,
1997), with homology so distant as to be undetect-
able by sequence analysis; or convergent evolution
has occurred, forcing proteins with similar function
to resemble each other; or horizontal evolution has
transferred functional related groups of protein into
the organisms. Evidence in favour of a role for
distant homology is that it was possible to predict
function better than random, based on predicted
secondary structure alone; and secondary structure
is better conserved over evolution than sequence
(Park et al., 1997). Evidence against this is that we
have found little evidence for common SCOP
database (Murzin et al., 1995) ‘superfamily’ and
‘fold’ classifications for proteins predicted by the
same rule. Convergent evolution seems to be the
dominant factor in rules such as M. tuberculosis
rule TB_C50_1_26 (Figure 4). Evidence for hor-
izontal transfer of genes into M. tuberculosis and E.
coli is the importance of phylogeny in many rules
where a paralogous explanation seems to be ruled
out.

One limitation with the current approach is that
many of the rules, despite being accurate, are often
quite complicated (e.g. Figure 5), and their biologi-
cal basis comparatively difficult to understand. It is
to be hoped that refinements in the background
knowledge used to describe the sequences will
remove some of these problems, although it would
be naive to expect extremely simple explanatory
rules for all functional classes. Improvements in the
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background knowledge used for learning and the
learning techniques should also increase the accu-
racy and coverage of the predictions. At present
only some of the functional classes can be predicted,
which may be partly a reflection on that these
classes are more natural or appropriate. There is
also a pressing need for the semantics of what is
meant by a ‘function’ to be made explicit in
functional genomics. Some relevant work has been
done in this area in engineering (Chittaro et al.,
1993). One important feature to note about the
current rules is that they are time-dependent. For
example, in Figure 6, if more sequences become
known from Chytridiomycetes, then the rule would
not necessarily be valid. In such cases it is
important to distinguish between the inference rule
and the likely causation of the regularity in the
data; prediction rules need not be causative (Jaynes,
1994).

The rules presented in this paper are organism-
specific (either for M. tuberculosis or E. coli);
however, this is not an essential feature of the
method. We learnt such rules because there does
not exist a single consistant functional hierarchy
that encompasses both M. tuberculosis and E. coli.
This is partly due to the radically different biology
in the two species, requiring different functional
classes (King and Kell, 2000). It is also due to a lack
of coordination in sequence annotation. This latter
problem has now been recognized and work has
started on controlled vocabularies and ontologies
(e.g. Ontology: http://www.geneontology.org/). When
such ontological work has annotated a sufficient
number of species, it will be possible to search for
pan-specific rules relating sequence to functional
class.

The approach taken in this paper to predicting
biological function is complementary to those using
data mining to analyse other forms of bioinformatic
data, such as expression profiles, pathway analysis,
structural studies, etc. Information from these
diverse sources will be able to be combined together
to produce more powerful predictions than any
single one in isolation.
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