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Conference Review

Can replication save noisy microarray data?
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Abstract
Microarray experiments are multi-step processes. At each step — the growth of cul-
tures, extraction of mRNA, reverse transcription, labelling, hybridization, scanning,
and image analysis — variation and error cannot be completely avoided. Estimating
the amount of such noise and variation is essential, not only to test for differential
expression but also to suggest at which level replication is most effective.

Replication and averaging are the key to the estimation as well as the reduction of
variability. Here I discuss the use of ANOVA mixed models and of analysis of variance
components as a rigorous way to calculate the number of replicates necessary to
detect a given target fold-change in expression levels. Procedures are available in the
package YASMA (http://www.cryst.bbk.ac.uk/wernisch/yasma.html) for the statistical
data analysis system R (http://www.R-project.org). Copyright  2002 John Wiley &
Sons, Ltd.

The power of averaging

In the following, I assume that the results of a
replicated microarray experiment are log2 ratios
of fluorescent intensities in the two channels of
a two-dye experiment comparing an experimental
condition with a control condition. Any necessary
background correction and normalization has been
applied and each gene is associated with a series of
log2 ratio values from replicated experiments. The
statistical assumption is that log2 ratio values are
normally distributed around their true mean. Genes
with no differential expression have a true mean
of 0. Any deviation of a mean log2 ratio from this
base line indicates over- or underexpression.

Averaging is the key to the estimation of the
true mean. Figure 1 demonstrates the fact — well-
known from elementary statistics — that the aver-
age of a growing number of replicates approaches
the true mean with decreasing variability. It shows
50 simulations from a normally distributed random
variable with mean µ = 0.5 and variance σ 2 = 1.
The sample means of increasingly larger samples
are indicated by open circles connected by a line.
Notice that even though the variability is large (if

these were log2 ratios of a real gene its fold-change
would range from eight-fold under- to eight-fold
overexpression), the true mean can be reliably esti-
mated, provided enough replicates are considered.
The reason for this improved accuracy with repli-
cation is that the variance σ 2

m of the sample mean
is inversely proportional to the number n of repli-
cates, σ 2

m = σ 2/n .

How many arrays do I need?

The exact number of replicates necessary to detect
overexpression of a gene reliably depends on
several parameters. First, the underlying variance
σ 2 must be obtained (in the next section I discuss
variance estimates from microarray data). Next, a
significance level α needs to be specified for the
probability of a type I error, i.e. the probability that
a neutral gene with zero mean is falsely called as
overexpressed. A gene with sample mean m will
be called, if 1 − � (m/σm) ≤ α (where � is the
standard normal cumulative distribution function).
Finally, a minimum log2 ratio value t (target
change) for overexpression, as well as a level β
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Figure 1. Sample means of increasingly larger samples of
a normally distributed random variable with mean 0.5 and
variance 1

for the type II error of not calling an overexpressed
gene, must be provided.

The probability p that a gene with true mean 0
has a sample mean of at least t0 is:

p = 1 − �

(
t0
σm

)

where σm is the variance of the sample mean and �
is the standard normal distribution. Similarly, the
probability q that a gene with true mean t has a
sample mean smaller than t0 is:

q = 1 − �

(
t − t0
σm

)

From the requirement that p ≤ α and q ≤ β, after
a few transformations we obtain an upper limit for
the acceptable variance of the sample mean:

σm ≤ t

�−1(1 − α) + �−1(1 − β)
(1)

With σ given, a minimum number of replications
n is now easily derived from σm = σ/

√
n . (If

there are only a few degrees of freedom for the
estimation of σ , then � needs to be replaced by
the t distribution. If n is part of the calculation of
the degrees of freedom, the above equation needs
to be solved in an iterated fashion.)

In the above example, σ = 1. If the target t is
a log2 ratio value of 0.5 (1.41 fold-change), which
should be detectable at a significance level of 0.05,
then n ≥ 10.82, i.e. 11 replicates are needed if

we accept that half of the overexpressed genes
might go unnoticed (β = 0.5, although this is a
very conservative estimate). If we want to detect at
least 75% of overexpressed genes (β = 0.25), the
number of necessary replicates rises to 22.

Hierarchical replication

Microarray experiments are done in stages, and at
each stage replication can be used for averaging
and reduction of variation. Examples are the grow-
ing of several cultures of the same mutant, multiple
mRNA extractions, multiple spots on one array,
or even multiple image analyses. Considering that
replications on each level come at different costs,
estimating their relative contributions to overall
variation can help designing cost-efficient exper-
iments.

To be more specific, let us assume that replica-
tion has been conducted in the following way. nC
cultures are grown separately, each one hybridized
on nA arrays, and each array scanned and analysed
as image nI times. This results in a total of nC nAnI
array data sets replicated in a hierarchical fashion
(hybridizations nested in cultures, scannings nested
in hybridizations). One difficulty with the analysis
of such experiments is that replicates are no longer
independent of each other, e.g. replicates from the
same culture will show some correlation in their
noise, due to the common underlying variation in
the culture.

Assuming linearity of effects and a normal distri-
bution of noise, an analysis of variance components
allows us to calculate the variance contributions at
different levels in such hierarchical designs (see
Oehlert [1]) for an accessible introduction to this
topic). Analysis of variance components is similar
to a standard ANOVA analysis but recognizes that
some effects are random. For example, if the same
culture was used in all future microarray experi-
ments, the culture effect would be a fixed factor
in an ANOVA analysis. The likelier scenario is
that new cultures are grown every time, and the
culture effect enters the analysis as a random fac-
tor. Usually, we are interested in noise inherent in
the process of growing new cultures or hybridizing
to new arrays. Consequently, such factors are best
analysed as random factors.

In the hierarchical experimental setting described
above, the overall variance of cultures σ 2

C and
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the overall variance of arrays σ 2
A are usually

very small and can be ignored once raw intensity
data have been normalized. What remains are the
variances related to genes, such as the gene-culture
variance σ 2

GC the gene-array variance σ 2
GA and the

residual variance σ 2 stemming from multiple image
analyses. These variance components all contribute
to the variance σ 2

m of the mean of log2 ratios for a
particular gene:

σ 2
m = σ 2

GC

nC
+ σ 2

GA

nC nA
+ σ 2

nC nAnI
(2)

If such variance components have been derived
from preliminary studies, then this equation com-
bined with equation 1 allows the calculation of the
number of cultures, of arrays per culture, and of
image analyses per array, necessary to achieve a
desired resolution in differential gene expression.

Simply increasing the number nC of cultures is the
best way to decrease variability. If different costs
are involved in producing cultures and arrays or
image analyses, then some balance between num-
bers of cultures, arrays and image analyses might
be better. The best combination of such numbers
can be obtained by optimizing σ 2

m under the addi-
tional constraints on costs.
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