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Life relies on the efficient performance of molecular codes, which
relate symbols and meanings via error-prone molecular recogni-
tion. We describe how optimizing a code to withstand the impact
of molecular recognition noise may be understood from the sta-
tistics of a two-dimensional network made of polymers. The noisy
code is defined by partitioning the space of symbols into regions
according to their meanings. The ‘‘polymers’’ are the boundaries
between these regions, and their statistics define the cost and the
quality of the noisy code. When the parameters that control the
cost–quality balance are varied, the polymer network undergoes a
transition, where the number of encoded meanings rises discon-
tinuously. Effects of population dynamics on the evolution of
molecular codes are discussed.

biochemical networks � information theory � polymer networks �
rate-distortion theory

In the living cell, information is carried by molecules. The
outside environment and the biochemical circuitry of the cell

churn out fluxes of molecular information that are read, pro-
cessed, and then stored in memory by other molecules. The cell’s
information-processing networks often need to translate a sym-
bol written in one class of molecules into another symbol written
in a different molecular language. This requires a code-table that
translates between the two molecular languages. Perhaps the
best-known example is the genetic code-table that translates 64
DNA base triplets into 20 amino acids (1, 2). One may think of
such a code-table as a mapping—a probabilistic one because of
the inherent noise—between the space of molecular symbols,
e.g., the base triplets, and the space of molecular meanings, e.g.,
amino acids. The notion of mapping between two molecular
spaces occurs also in biological codes of a much larger scale; for
example, the transcriptional regulatory network that controls
gene expression by DNA-binding proteins. This network may be
seen as a mapping from the space of regulatory proteins to the
space of their respective DNA binding sites. Evolution poses the
organism with a semantic challenge: its code-tables must assign
meanings to symbols in a manner that minimizes the impact of
the molecular recognition errors while keeping down the cost of
resources that the code-table necessitates. The present work
describes a treatment of this biological optimization problem in
terms of the statistical mechanics of polymer networks.

In the biophysical reality of the cell, actual polymer networks
are essential for structural stability and motility (3, 4). However
in the present context of coding, polymer networks are just
mathematical entities that prove useful for describing the code-
table and studying its optimization: Molecular recognition is
inherently noisy because it involves energy scales that are not
much larger than the typical thermal energy kBT. To reflect these
recognition errors, the space of symbols is depicted as a graph
in which symbols are vertices and edges connect vertices that are
likely to be confused by misreading (Fig. 1). A code-table is then
constructed by assigning meanings to each vertex. This can be
pictured as coloring the vertices according to their meaning (2),
which partitions the graph into ‘‘islands of meanings.’’ The
boundaries between these islands form a network, which can be
likened to a self-assembling network of polymers or self-avoiding

random walks (Fig. 1). Polymer networks are natural in this
context because they are related to the notion of space parti-
tioning that is central to coding theory (5). But the resemblance
to a polymer network is not merely structural. Optimizing the
fitness of the mapping is shown to be equivalent to minimizing
the free energy of the polymer network. Such an optimal
mapping must balance the three conflicting needs for maximal
error tolerance, for maximal diversity, and for minimal cost.
During evolution, the code-table adapts by altering the network
in response to changes in the equipoise of these three evolu-
tionary forces.

In the present work, we first discuss how the partition of the
symbol space by the polymer networks determines the fitness of
the code-table, where mathematical definitions of fitness and its
determinants, error-load, diversity, and cost are given. Next, we
discuss one purpose of the present work, which is to show that
the fitness function of the code-table corresponds to the free
energy of the polymer network. Thus, it suggests that the
problem of optimizing the code-table is equivalent to calculating
the equilibrium statistics of the polymer network. A second
purpose is then to use this equivalence to examine the code
optimization problem in parameter regimes that are hard to
access otherwise. In particular, it is used to identify a first-order
transition, in which the number of meaning islands changes
abruptly in response to varying the error-tolerance–diversity–
cost balance. Finally, to put the model within a context of
population dynamics, we discuss possible aspects of metastabil-
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Fig. 1. The code-table as an information channel and the relation to polymer
networks. The code-table is an information channel or mapping that relates
a space of meanings (Left), which are depicted as colors, to a symbol space
(Center). The symbol space is a graph, hexagonal in this example, in which
vertices are symbols and edges connect symbols that are likely to be confused
by reading. The code-table induces a coloring pattern on the symbol space,
which divides it into meaning islands (dotted lines). In the triangular dual
graph (Right), the boundaries between meaning islands form a network of
‘‘polymers’’ (thick solid lines).
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ity, mutations, and genetic drift that may affect the evolution of
the code.

Model and Results
Fitness of Molecular Codes. Information in the cell is recorded in
molecules and then retrieved and translated into other molecules
by a code-table. To discuss how the organism optimizes such a
code-table, we represent the table as an information channel or
a mapping that relates a meaning space, in which nm meanings
reside, to a symbol space, which contains ns symbols (Fig. 1). The
code-table maps (or encodes) meanings to symbols and thus
partitions the space of symbols into meaning islands whose
boundaries form a polymer network. In this section, we first
calculate the fitness of a code-table as a function of the mapping
as specified by the polymer network. The code fitness is com-
posed of contributions due to the diversity of the code-table, its
average error load, and the cost of constructing the molecular
coding apparatus. There are two sources of noise in our simple
description of the coding system, noise while reading and noise
in the mapping itself. Recognition errors while reading a symbol
are represented by the symbol graph whose edges connect
symbols that misreading may confuse. The impact of this noise
is included in the error-load component of the fitness. Noise in
the mapping, which is implemented in error-prone molecular
recognizers, is represented as a statistical average over an
ensemble of polymer networks. This second recognition problem
requires additional resources and is included in the cost (which
together with the error load is defined below).

A code-table does not necessarily map all of the nm available
meanings to symbols but may possibly map only nf � nm out of
them. The larger is the number of encoded meanings nf, the more
diverse is the code. Diversity contributes to the fitness of the
code because it increases the chance that when the organism
needs to read, write, or process a certain meaning it can
accurately encode it as one of the available symbols. However,
diversity of meanings also increases the probability for misread-
ing errors: To reconstruct the meaning encoded by a certain
symbol, the organism has to read it. Because the molecular
reading apparatus is not perfect, it may sometimes confuse this
symbol with one of its neighbors in the graph (Fig. 1). If many
meanings are encoded then, on average, the meaning islands
defined by the network are smaller. In this finer network, the
chance of confusing symbols of different meanings is larger,
which costs the organism in a higher error load.

To find the error load, one needs to specify a partition into
meaning islands and examine the average chance to cross by
misreading the boundaries between the islands. We specify a
partition (see Fig. 1) by assigning to each edge i–j a binary variable
Eij that indicates whether the edge is on the boundary between two
meaning islands (Eij � 1) or inside of an island (Eij � 0). Misreading
along the edge, which confuses i with j, occurs with a probability rij,
while rii is the probability to correctly read i. There may be two
possible outcomes of misreading: If both symbols are in the same
island and are therefore synonymous, then misreading bears no
load because the translated meaning does not change. If the
symbols reside in two different islands and are therefore nonsyn-
onymous, then the fitness of the organism decreases by one fitness
unit. The contribution of an i–j misreading to the error load can be
therefore quantified as rijEij and the total error load is a sum over
all edges, ¥i�j rijEij.

The need for diversity is an evolutionary force that counteracts
the need to minimize error load. Our model assumes for
simplicity that the contribution of diversity to the fitness is linear
in nf, the number of encoded meanings. The quality HE, of a
given network pattern E, is then a linear combination of the error
load and the diversity,

HE � �
i�j

r ijEij � wDn f, [1]

where the parameter wD measures the significance of diversity
relative to error load. We use a sign convention in which an
optimal code of high quality corresponds to low values of HE.
The quality depends on the coloring pattern of the code-table,
which determines its error load and diversity. As illustrated in
Fig. 1, each coloring pattern is determined by the network of
boundaries between the islands, which is equivalent to a network
of polymers. The quality is governed by the interplay between
error load and diversity: If the reader were ideal rij � �ij, then it
would have been advantageous to decode as many meanings as
there are available symbols, nf � ns. However, because the
molecular reader is not perfect, it is preferable to decode fewer
meanings to minimize the effect of misreading errors. The
quality HE corresponds to a ‘‘microstate’’ specified by a deter-
ministic network configuration E. The stochastic mapping of the
molecular code is a ‘‘macrostate,’’ which is represented by an
ensemble of such configurations and is calculated below. The
code quality HC is defined as the ensemble average of quality
over all microstates, HC � �HE�.

Besides the quality of the code, which combines its error load
and diversity, the code fitness must also account for the cost of
the molecular machinery that performs the mapping. Molecular
codes are physically implemented by recognition interactions
between the meanings, the symbols, and sometimes other inter-
mediary molecules, such as the tRNA in the genetic code (1).
High specificity of recognition improves the quality of the code
because it enables more accurate mapping. However, highly
specific binding requires a higher binding energy, which in
general necessitates larger binding sites. It is plausible to assume
that the cost of the code is proportional to the average size of the
binding sites and therefore to the average binding energy (6).
This is because the cost of synthesizing the molecules and
maintaining their genes is proportional to their size. To estimate
the cost, one notes that the binding probability scales like the
Boltzmann exponent of the binding energy (in units of kBT), Pb
� exp(Eb). It follows that the cost, which is equal to the average
binding energy �Eb�, can be approximated by the average �ln Pb�,
which is minus the entropy of the mapping of meanings to
symbols, �SC (see Methods). This entropy averages over the
ensemble of all possible mappings, which is determined by all
possible networks and the number of possible ways to color every
such network.

Finally, the overall fitness of the code FC is estimated by a
weighted sum of the quality and the cost, FC � HC � wC � SC,
where the parameter wC measures the significance of the cost
with respect to quality. FC is like a free energy of all possible
colorings of the code-table and may be derived from the
partition function ZC,

ZC � exp��FC/wC� � �
mappings

exp��HE/wC). [2]

Within this analogy, the quality HE plays the role of energy, and
wC is an effective temperature. The ensemble average in ZC is
due to the probabilistic nature of the molecular mapping. At high
wC, codes are fuzzy and smeared over many network configu-
rations, whereas at low wC, they are sharper because the mapping
is almost deterministic. In principle, one can derive the code-
table by performing the summation in Eq. 2 (6), but in practice
this is a burdensome task that can be performed only numerically
and even this only for codes of limited size. Tractable analytic
results exist mostly at the limit of high wC. In this regime, the
code table undergoes a second-order phase transition from a
noncoding state of no correlation between meanings and sym-
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bols to a coding state, in which such correlation has just emerged
(2, 6–8).

The cost–quality balance of the code-table is analogous to the
balance in an engineered noisy information channel between the
average distortion in the channel H, which measures its quality,
and the channel’s rate I, which measures the cost of the channel
by estimating how many bits are required to encode one mean-
ing. Rate-distortion theory (9) focuses on the fundamental
problem of optimizing a noisy information channel, which can be
formalized as the following question: What is the minimal rate
I required to assure that the distortion in the channel will be less
than a certain desired value H? This optimal rate-distortion
curve is calculated by minimizing a functional F � H 	 wCI,
where H, I, and F are analogues of HC, �SC, and FC, respectively.
The ‘‘temperature’’ wC � ��H/�I, the slope of the optimal curve,
measures the increase in quality due to an additional bit of
information. In the biological context, wC is expected to decrease
with the complexity the organism and its environment: A
complex organism transmits more information. It is therefore in
the interest of this organism to pay a larger cost to improve the
quality of its codes, and wC � �HC/�SC is lower. Similarly, a richer
environment is also ‘‘colder.’’ At low wC, the quality HC domi-
nates the free energy FC and the code-table tends to one of the
many minima of HE. Derivation of the optimal code in this
regime is difficult, even numerically, because of the rugged
landscape of HE. As we discuss below, the polymer network
formalism offers insight into this regime and, specifically, sug-
gests a first-order coding transition.

Statistics of Polymer Networks on the Dual Symbol Graph. To for-
malize the analogy of molecular codes to polymer networks, we
need to examine the dual of the symbol graph on which the
network resides. To find the dual graph, one embeds the symbol
graph in a surface (10). In the example of Fig. 1, the symbol
graph is a hexagonal lattice that is embedded in a torus and the
dual is a triangular lattice (see Methods). It is evident that the
vertex-coloring pattern of the symbol graph corresponds to a
connected ‘‘polymer’’ network whose monomers are a subset of
the edges of the dual graph (Fig. 1).

By counting the number of edges and vertices in the polymer
network one can derive the number of meaning islands nf in the
quality HE (Eq. 1). For this purpose, we introduce another binary
variable, Vi, that indicates whether a vertex i of the dual graph
is part of the polymer network (Vi � 1) or not (Vi � 0). Then,
the numbers of occupied edges ne, occupied vertices nv, and
islands nf are related through the definition of Euler’s charac-
teristic � � nv � ne 	 nf (10),

nf � � � ne � nv � � � �
i�j

Eij � �
i

Vi. [3]

� is determined by the topology of the surface in which the
symbol graph is embedded; for example, � � 0 for the torus in
Fig. 1. By substitution of Eq. 3 into Eq. 1, we find that the code
quality is HE � ¥i�j(rij � wD)Eij 	 wD¥iVi � wD�, and the code’s
partition function is therefore ZC � ¥E,VNEV exp(�HE/wC),
where the summation is over all valid network configurations.
The factor NEV is the number of possible ways to color a given
pattern specified by the fields E and V. As is common in
biological codes, it is assumed henceforth that there are many
more meanings than available symbols, nm 

 ns � nf, so the
combinatorial factor can be estimated as NEV � exp(nf ln nm).
By substituting into ZC the approximated NEV with the island
number nf taken from Eq. 3, the partition function becomes

ZC � exp��	� /wC��
E,V

� �
i�j

exp��
 ijEij/wC��
i

exp��	Vi/wC�� , [4]

with the coefficients 	 � wD 	 wC ln nm and 
ij � (rij � wD) �
wC ln nm.

The code partition function ZC (Eq. 4) sums over all possible
networks. The building blocks of these networks are self-
avoiding polymers that fuse to each other at junctions. Within the
analogy to physical networks, Eq. 4 may appear as a summation
over two chemical ‘‘species’’—one that resides on the edges with
‘‘excitation energies’’ (or chemical potentials) 
ij, and one on the
vertices with the excitation energy 	. However, these two species
are not really independent and cannot be summed separately. A
vertex is occupied if and only if its coordination number is at least
two because ‘‘dangling ends’’ or isolated vertices are forbidden.
Similarly, an edge is occupied if and only if it connects two
occupied vertices. The relevant chemical species are the mono-
mers, i.e., pairs of a vertex and a neighboring edge that carry
energies of 	 	 
ij and the possible k-fold junctions (k 
 2). The
formation of a k-junction replaces k ends that contribute each an
energy of 	/2 by one vertex of energy 	 so that the overall energy
change is (1 � k/2)	. Performing the summation over all possible
networks proves to be tricky because the vertex and edge
occupations are not independent. Below, we employ the n � 0
formalism to resolve this configuration counting problem.

Correspondence Between Code Optimization and Spin Networks. The
n � 0 formalism was devised by de Gennes to examine polymer
solutions (11, 12). Recently, it was applied also to microemul-
sions, micellar solutions, and dipolar fluids (13–15). At the basis
of this approach is a mathematical equivalence between a system
of self-excluding polymers and a system of interacting n-
component magnets, in the limit of vanishing number of com-
ponents, n � 0. The n � 0 formalism is reviewed elsewhere (12,
13). Here, we only discuss concisely the basic idea and use this
approach to show that the statistics of the code-table (Eqs. 2 and
4) can be mapped to that of the zero-component magnets.

To demonstrate the equivalence between the code-table prob-
lem and the spin system, let us consider the dual of the symbol
graph on which the polymer network resides (Fig. 1) and assign
to each of the edges i � j an n-component magnetic spin Sij. The
interaction is represented by a spin-Hamiltonian HS and the spin
partition function is ZS � �exp(�HS)�, where � . . . � denotes the
average over all possible spin orientations. A peculiar feature of
this system in the limit of zero components (‘‘the n � 0
property’’) is that all averages over products of spins vanish
except for the quadratic averages �Sij

2� � 1, where Sij is any of the
components of Sij. This property enables mapping of the spin
lattice to the network ensemble by tailoring a spin Hamiltonian
HS and a consequent spin partition-function ZS, in which an �Sij

2�
term appears if and only if the corresponding edge i–j is occupied
in the network partition function ZC. It is shown below that this
correspondence is accomplished by the Hamiltonian HS,

HS � ��
i

h i, hi � ai� �
j�i�

�1 � bijSij� � �
j�i�

bijSij � 1� ,

[5]

where j(i) are all of the neighbors of i, and the coefficients ai and
bij are related to the 	 and 
ij parameters (Eq. 4). The functions
hi are the contributions of each vertex i to HS and consist of all
possible products of two or more edges around i. Each of these
products corresponds to a possible edge occupation state in a
network (Fig. 2). The one- and zero-edge configurations are
forbidden in the network and are therefore subtracted from hi
(the second and third terms).

How this form of the Hamiltonian HS ensures the equivalence
is clear by expanding ZS in a power series, ZS � �exp(�HS)� �
��i exp(hi)� � ��i(1 	 hi 	 hi

2/2 	 . . . )�. Because of the n � 0
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property, the infinite series can be exactly truncated at the
second term and we obtain ZS � ��i(1 	 hi)�, which is a sum over
averages of spin products. In this sum, the only nonvanishing
terms are those in which each spin Sij appears exactly twice. In
those configurations, Sij must appear in both contributions of hi

and hj. As illustrated in Fig. 2, it is evident that such a spin
configuration corresponds to a network configuration and the
weight of this term in the partition function is a product of the
bij-s and the ai-s of the occupied edges and vertices. From all of
this, we find that the spin partition function is

ZS � exp��FS� � �exp��HS�� � �
E,V

�
i�j

b ij
2Eij �

i

a i
Vi, [6]

with the same occupation variables Eij and Vi that are used to
count network configurations in the code partition function ZC

(Eq. 4). Finally, to obtain the one-to-one correspondence one
needs to identify the ‘‘fugacities’’ in Eqs. 4 and 6, bij

2 � exp(�
ij/
wC) and ai � exp(�	/wC), which results in identical partition
functions, ZC � ZS (up to an irrelevant factor), and free energies,
FC � FS. In the following, this correspondence is used to gain
insight into the noisy coding system from a mean-field solution
of the spin system.

Mean-Field Solution of the n � 0 Spin System. To solve for the
optimum of a noisy molecular code, we employ a standard
variational mean-field technique (13–15). We approximate the
spin probability distribution by a product of independent single-
spin distributions, � � �ij�ij(Sij), which is used to construct a
variational least upper bound on the free energy of the system
FS (see Methods). By this mean-field procedure, it is straight-

forward to find that the average spin, sij � �Sij�ij(Sij)�, is given by
the relation

sij � gij�1 �
1
2

gij
2��1

, [7]

where gij are effective fields that involve the spins on neighboring
edges, gij � aibij[�k(i)j(1 	 biksik) 	 �l(j)i(1 	 bjlsjl) � 2]. In a
similar fashion, we obtain the mean-field free energy, FS �
�¥ihi 	 ¥i�j [gijsij � ln(1 	 gij

2/2)]. The first term in FS is the
average Hamiltonian, which is the quality of the average code,
while the last term is entropic and accounts for the cost. The
self-consistency relations (Eq. 7) are polynomial equations in
the average spins, which link every spin sij only to the spins on
the neighboring edges. Although in the general case a solution
is obtained only numerically, it is much simpler to solve than the
typical rate-distortion expression (e.g., ref. 6). More importantly,
it provides insight into the ‘‘low-temperature’’ (low wC) regime
where the landscape of the code’s free energy is rugged and
therefore hard to calculate.

To make use of the equivalence between the spin system and
the coding network, we need to express the average network
occupancies, eij � �Eij� and vi � �Vi� as a function of the average
spin sij. The average edge-occupancy is given by eij � (1/2)� ln
ZS/� ln bij � gijsij/2, a consequence of Eqs. 5–7. Likewise, the
average vertex-occupancy is vi � � ln ZS/� ln ai � hi (see Meth-
ods). Thus, one can calculate the average network configuration
(that is the average code) for any value of the fugacities ai and
bij, or for the equivalent control parameters of the coding system,
wD, wC, rij, and nm. This is demonstrated below, where a
first-order ‘‘coding transition’’ is deduced from the spin
formalism.

Mean-field models similar to the one used here are standard
in n � 0 treatments of self-assembling systems, such as polymer
and micellar solutions (14, 15) and networks (13). The basic idea
of the mean-field approach is to replace the spin–spin interac-
tions by an interaction of a single spin with an effective field (the
gij polynomials). This procedure vastly simplifies the problem
and enables a relatively simple solution. However, this simplicity
comes at the cost of disregarding the long-range spatial corre-
lations between the spins and the corresponding correlations
between the edges and the vertices. This implies, for example,
that one can estimate the mean connectivity in the network but
cannot tell how many loops it contains. In general, a mean-field
treatment merely approximates qualitatively the behavior of
thermodynamic functions. However, the accuracy of this approx-
imation improves when each spin interacts with many neighbors.
Therefore, when the symbol graph is highly connected—such as
the graph of the genetic code, where each codon has nine
neighbors—the mean-field approximation is expected to be
relatively accurate and provides a basis to more elaborate
models.

A First-Order Coding Transition. The equivalence of the spin system
and the code-table enables us to follow the evolution of the
code-table in response to variation of the control parameters
that govern its optimization: the cost weight wC, the misreading
matrix rij, the diversity weight wD, and the number of meanings
nm. These parameters are not independent but related through
the spin fugacities, a and bij, or the equivalent edge and vertex
energies, 	 and 
ij. It proves convenient to represent these
relations in terms of the normalized diversity, D � wD/wC 	 ln
nm � �ln a � 	/wC, and the normalized misreading probabilities,
Rij � rij/wC � �ln(abij

2) � (	 	 
ij)/wC.
To examine the response of the code-table to variation of the

four control parameters, we consider, for the sake of simplicity,
regular symbol graphs, in which all of the vertices and edges are
equivalent. Regular symbol graphs are useful in biological

9 2 3 8

47 1

6 5

Fig. 2. Correspondence of the polymer networks to n � 0 spin systems. The
solid lines denote boundaries between the meaning islands induced by the
code on the dual graph (Fig. 1 Right). In the spin model, to each edge a spin
Sij is assigned. Each vertex i contributes to the spin Hamiltonian HS a factor hi,
which accounts for all possible edge occupancies around this vertex. By the
construction hi (Eq. 5), if a vertex is occupied then at least two of the adjacent
edges are occupied. In the present example, a four-junction at vertex 1 (red),
which corresponds to a factor a1b13S13b14S14b16S16b17S17, connects to three
linear elements (magenta), e.g., a7b71S71b79S79, and one three-junction
(green), a3b31S31b32S32b38S38. The corresponding contribution to the spin par-
tition function ZS is an average over all of the spin orientations. This contri-
bution does not vanish because each spin appears exactly twice in the product
because Sij appears exactly once in both edge configurations of i and j. The
weight of this contribution is the product of the bij-s and ai-s for each edge and
vertex in the product.
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context. For example, a regular graph may approximate the
symbol graph of the genetic code, where each of the 64 codons
has 9 neighbors (2). Regular graphs may also describe large
symbol spaces, for example the space of DNA binding sites of the
transcription system, whose structure is not exactly known but
whose average coordination number q is well determined. Reg-
ularity of the symbol graph implies uniform misreading rij � r
and, as a result, homogenous average spin sij � s, and occupan-
cies, eij � e and vi � v. Because of symmetry, we need to solve
a single self-consistence relation s � g(1 	 g2/2)�1 (Eq. 7) with
g � 2ab((1 	 bs)q�1 � 1). The free energy per vertex of the dual
graph is given by f � �h 	 (q/2)gs 	 (q/2)ln(1 	 g2/2), where h �
a((1 	 bs)q � qbs � 1) and q is the coordination number.

The resulting phase diagram of the regular symbol graph
exhibits a line of first-order transitions, where the number of
encoded meanings jumps discontinuously from nf � 1, with a
mapping that encodes a sole meaning, to a number nf 
 1 that
scales extensively with the size of the symbol graph ns (Fig. 3).
The state nf � 1 is termed noncoding, because the code-table in
this state conveys no information because only one symbol is
used. When a coding state, nf 
 1, emerges the coding system is
capable of conveying information at a rate of log2 nf bits/symbol.
Tracing the behavior of the free energy f as the scaled misreading
R is varied (Fig. 3A), we find that at high R the system is at the
noncoding, no-network state, as manifested in the profile of f by
a global minimum at s � e � v � 0. This is because the system
prefers to reduce the impact of misreading errors, which are too
costly at a high R, at the expense of diversity. As R decreases, the
system reaches the first-order transition, which occurs after a
second, coding state minimum, sC  0, emerges and exhibits
f(sC) � f(0) � 0.

In the D–R plane (Fig. 3B), the phase transition line ap-
proaches a straight line, R � (1 � 2/q)D, which corresponds to
a q-fold junction whose ‘‘energy’’ equals the thermal energy wC,
	 	 (q/2)
 � wC. In other words, the system undergoes a phase
transition when q-junctions become thermally excitable. Because
q-junctions are the majority species, the emergent network is
dense and highly connected. The transition line indicates various
pathways that the system can take toward the formation of a
network at a coding state: increasing the number of available
meanings nm, increasing the diversity parameter wD, and de-
creasing the misreading r.

At the transition, the number of meaning islands nf jumps
abruptly and becomes proportional to the number of symbols
(Fig. 3C). nf is given by Euler’s characteristic (Eq. 3) with the
average edge occupancy e � gs/2 and vertex occupancy v � h.
This implies that the number of meanings per symbol is nf/ns �
�/ns 	 (p/2)e � (p/q)v, where p is the coordination number in the
symbol graph and q in the dual graph. The curves of the vertex
and edge occupancies approach a common high D limit, e, v 3
e0 � a(bs)q, where the resulting meanings/symbol ratio is nf/ns �
p(1/2 � 1/q)e0. For planar regular graphs, 1/p 	 1/q � 1/2 and
nf/ns � e0. In Discussion, we examine possible effects of popu-
lation dynamics on the evolution of the code.

Discussion
The mean-field solution allows us to draw an approximate fitness
landscape where the evolution of the code takes place. In
general, this code fitness landscape FS(sij) (see Eq. 6) resides in
a high-dimensional code space, whose coordinates are the
average spins sij or their conjugates, the average edge occupan-
cies eij. Each point in this space is a vector s � (sij . . .) of
dimension equal to the number of edges, which represents a
possible code. Symmetry may reduce this dimensionality, and for
the regular symbol graph it becomes one-dimensional f(s) (Fig.
3). We imagine a population of ‘‘organisms,’’ simple informa-
tion-processing systems, which compete according to the fitness
of their codes. Each organism is depicted as a point in code space
positioned at its code s, and the population is described by a
probability density �(s). The preceding discussion assumed
implicitly that, as the control-parameters change, the evolution
of the code more or less follows the track of the optimum in code
space. In other words, the population density is a delta-
distribution located at the optimal FS. We conclude this work by
considering several more realistic scenarios. First, we discuss the
possibility that the coding system is stuck at metastable subop-
timal states. Then, we consider mutations and genetic drift that
may broaden the population toward codes of less optimal fitness.

Metastable Suboptimal Codes. Even when the global optimum in
the code fitness is at a network state, sC  0, the no-network
state, s � 0, may remain locally stable for some parameter range
(Fig. 3B). To locate the metastable state, one examines the
curvature of the free energy at its s � 0 extremum, which in the
case of an isotropic symbol graph is f� � �2f/�s2 � 1 � 2(q � 1)eR.
A metastable state exists as long as this curvature is positive. We
find that the curvature changes its sign at the line R � ln(2q �
2), which corresponds to a ‘‘monomer’’ (a vertex plus an edge)
of energy 	 	 
 � wC ln(2q � 2). This may be further clarified
by considering the limit of the vertex/edge occupancy ratio near
the no-network state, v/e3 q/2. Because there are q/2 edges per
vertex, this indicates that the dominant building block of the
dilute network is the monomer. Thus, a coding system becomes
unstable exactly when the monomers become ‘‘thermally excit-
able,’’ compared to the q-junctions that are excitable at the
coding transition.

Effects of Mutations and Genetic Drift in the Codes Space. So far, it
was assumed that the population of organisms is sharply con-
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Fig. 3. The free energy and phase diagram of the code-table. (A) Free energy
f (Upper) and the edge occupancy e (Lower) of the regular hexagonal symbol
graph (Fig. 1) at scaled diversity D � 3.0 and scaled misreading R � 3.2, 3.0, 2.6,
2.3 (legend). All of the curves exhibit an extremum at the no-network state s �
0. At the coloring transition (green curve), the second minimum that corre-
sponds to the network state sC is at f(sC) � f(0) � 0. At lower values of R, the
network state becomes the global minimum. At R � (2q � 2) the no-network
state is destabilized (black). The dashed curve traces the loci of the network
state as R varies. These loci are found at the intersection of the edge density
e � gs/2 and the ellipse 2s2 	 (2e � 1)2 � 1 (Lower). (B) Phase diagram of the
coding (network7 no network) transition (solid line) in the D–R plane. The
dashed line bounds the region of metastability, beyond which the no-network
state is destabilized. (C) Vertex occupancy v, edge occupancy e, and ratio
meanings/symbol nf/ns along the transition line (see text).
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centrated around a certain optimal or metastable, suboptimal
code. This scenario applies to large populations at negligible
mutation rates �. Let us consider two possible effects of
population dynamics that may smear the population over the
code space, mutations and genetic drift. These effects were
analyzed in detail within the framework of rate-distortion theory
(6) and are discussed here only schematically, in the context of
the present polymer network model.

We consider a population that is localized around a fitness
optimum f0 at an optimal code s0, where the landscape is
approximately f(s) � f0 	 1⁄2f �(s � s0)2 [a regular graph with a
one-dimensional fitness f(s) is assumed for simplicity]. Mutations
drive the organisms to diffuse into somewhat less optimal regions
of the code space. This effect may be described in terms of
reaction-diffusion dynamics of the probability distribution (6),
�t� � ���s

2� � f(s)�, where the first term is due to mutations
and the second represents reproduction at a rate �f(s). It is
straightforward to find that this dynamics tends to a steady state,
in which the population is broadened into a Gaussian, �(s) �
exp[�( f�/2�)1/2(s � s0)2] of width that scales like �(�/f�)1/4 (6).
It implies that the width of a population at a metastable state
(s � 0) will diverge near the metastability limit ( f� � 0) just
before the Gaussian migrates to the coding state (sC  0).

When the effective population size N is relatively small,
f luctuations in the reproduction rate, termed genetic drift,
become significant. In this regime, the dynamics is characterized
by long periods when the population is localized around a fitness
optimum, which are separated by fast diffusive migrations to new
optima (6). The dynamics of the distribution is known to reach
a Boltzmann partition, �(s) � exp(�Nf(s)), where the popula-
tion size plays the role of an inverse temperature. Relatively
small populations (which are ‘‘hot’’ in this sense) are expected to
be partitioned by genetic drift between the available fitness
optima. For example, the two minima of the free energy f(s) (Fig.
3) will be populated according to their fitness values.

In the previous sections, we have shown that each organism
experiences ‘‘internal’’ noise due to stochastic molecular recog-
nition in its coding system. The internal noise affects the fitness
of the code through the error load and the cost (16). On top of
this, mutations and genetic drift add ‘‘external’’ sources of noise,
which may drive parts of the population away from the optimal
code. The existence of metastable states may further delay the
transition to a coding state. The present model and its conclu-
sions suggest that the n � 0 polymer network formalism is a
potential tool to study several other aspects of noisy coding
systems.

Methods
Cost of a Code-Table. The cost of a code-table is traditionally measured by the
mutual information I between the symbols and the meanings that they
encode, I � SME 	 SSY � SMS, where SME and SSY are the entropies of the
meaning space and symbol space, respectively, and SMS is the joint entropy of
these two spaces. The entropy of meanings SME is determined by their given
distribution P	, SME � �¥	P	 ln P	, and similarly, SSY � �¥iPi ln Pi � ln(ns). These
are constant terms in the cost I that we can neglect, and consider only the joint
entropy SMS, which can be optimized by tuning the average partition pattern
eij. SMS is simply the entropy of all of the possible coloring patterns as
determined by all possible networks and the number of possible ways to color
every such pattern. It follows that the cost is therefore minus the coloring
entropy I � �SMS � �SC.

Graph Embedding and the Dual Graph. The embedded graph divides the surface
into faces or cells, hexagons in our example (Fig. 1). Then, one finds the dual
graph by the following correspondence (10): Every vertex in the symbol graph
corresponds to a cell in the dual (a triangle in this example) whereas every cell
in the symbol graph (a hexagon) corresponds to a vertex of the dual. The
correspondence between the edges in the symbol graph and its dual is
one-to-one; every edge corresponds to the edge that crosses it in the dual. The
resulting dual graph is a triangular lattice. The hexagonal lattice is a regular
graph in which all of the vertices have the same coordination number.
However, the embedding procedure described here applies to any connected
graph whether it is regular or not.

Mean-Field Approximation. The spin probability distribution decouples into a
product of independent single-spin distributions, � � �ij�ij(Sij). We use a
variational inequality, which sets an upper limit on the spin free energy, FS �

FM � ��HS� 	 T�� ln ��, where � satisfies probability conservation, ��� � 1. We
augment FM with a Lagrange multiplier to account for probability conserva-
tion, L � FM 	 ���, and take the derivative �L/��ij � 0. The resulting distribu-
tions are �ij(Sij) � exp(gijSij)/�exp(gijSij)�, where the effective fields are gij �
�HS/�Sij � �(hi 	 hj)/�Sij � aibij[�k(i)j(1 	 biksik) 	 �k(j)i(1 	 bjksjk) � 2] with sij

� ��Sij� � �Sij�ij(Sij)�. From the n � 0 property, it follows that �exp(gijSij)� � ¥k

gij
k�Sk�/k! � 1 	 gij

2/2 and �Sijexp(gijSij)� � gij. This leads to the self-consistency
relations, sij � �Sij�ij(Sij)� � �Sij exp(gijSij)�/�exp(gijSij)� � gij(1 	 gij

2/2)�1 (Eq. 7). In
a similar fashion, we obtain the mean-field approximation for the free energy,
FS � FM � �¥ihi 	 ¥i�jgijsij � ¥i�j ln(1 	 gij

2/2), and it is easy to verify that Eq.
7 defines the extremum �FS/�sij � 0. Eq. 7 is analogous to the self-consistency
relation of an Ising magnet, s � sinh(gs)/cosh(gs); the different form is due to
the truncation of the power-series expansion of the hyperbolic functions
thanks to the n � 0 property. Solving Eq. 7 for gij as a function of sij, we find
that the solution can be described graphically as the points where the function
eij � gijsij/2 crosses the ellipse 2sij

2 	 (2eij � 1)2 � 1 (Fig. 3A).

Use of Euler’s Characteristic. When we apply Eq. 3, an underlying assumption
is that the embedding is cellular (10); i.e., every meaning island is homeomor-
phic to an open disk. This is not necessarily true when the number of islands
is less than the number of holes in the surface, that is the genus, � � 1 � �/2.
In this case, some islands are expected to wrap between two holes and
therefore are not homeomorphic to a disk. However, in the ‘‘thermodynamic
limit’’ of many islands per hole, nf 

 ���, the embedding is mostly cellular and
is well approximated by Eq. 3.
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