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One of the greatest challenges in protein structure prediction is the
refinement of low-resolution predicted models to high-resolution
structures that are close to the native state. Although contempo-
rary structure prediction methods can assemble the correct topol-
ogy for a large fraction of protein domains, such approximate
models are often not of the resolution required for many important
applications, including studies of reaction mechanisms and virtual
ligand screening. Thus, the development of a method that could
bring those structures closer to the native state is of great impor-
tance. We recently optimized the relative weights of the compo-
nents of the Amber ff03 potential on a large set of decoy structures
to create a funnel-shaped energy landscape with the native struc-
ture at the global minimum. Such an energy function might be able
to drive proteins toward their native structure. In this work, for a
test set of 47 proteins, with 100 decoy structures per protein that
have a range of structural similarities to the native state, we
demonstrate that our optimized potential can drive protein models
closer to their native structure. Comparing the lowest-energy
structure from each trajectory with the starting decoy, structural
improvement is seen for 70% of the models on average. The ability
to do such systematic structural refinements by using a physics-
based all-atom potential represents a promising approach to high-
resolution structure prediction.

Amber force field � force field optimization �
protein structure prediction � all-atom potential

The past several years have witnessed significant progress in
the field of protein structure prediction (1–10), with con-

temporary methods being able to assemble the correct topology
for a large fraction of protein domains. Such approximately
correct models typically vary in their structural similarity to
the native state, with a rmsd (root mean square deviation) from
native that ranges from 1 Å to �6 Å. Models with a rmsd to native
of 1–2 Å are comparable to experimentally obtained structures and
can be used in a broad range of applications, including studies of
reaction mechanisms and virtual ligand screening (2). In contrast,
the range of applicability of lower-resolution models (with a 3- to
6-Å rmsd from native) is smaller (2). Structure prediction methods
often use a coarse-grained protein representation to enhance the
conformational search efficiency. To further improve model qual-
ity, it is possible that additional structural details need to be
included. A tempting approach is to use an all-atom detailed
protein representation for the final stages of structure prediction,
but despite considerable effort, all-atom refinement has seen little
success (11–13). Over the years, there have been individual exam-
ples of successful refinement (11–16), with the best improvement of
�2 Å (12, 16) and the largest refinement benchmarks consisting of
a small set of proteins (12, 13, 17–19). Although isolated examples
of refinement have been reported, the methods are far from
routine; in reality, most models deteriorate instead of improve.

In protein structure prediction and refinement, the challenge
is twofold: one needs an effective conformational search scheme
and an energy function whose global minimum is in the protein’s
native state. Moreover, the energy surface should be funnel-like
so that the potential can drive the structure toward lower energy,
more native-like conformations. For this to occur, the energy

function must have a correlation with native structure similarity
(20). Previously (21), we explored the possibility of creating a
funnel-like shape for the Amber ff03-based potential (22) by
global optimization of the weights of the individual energy
components. The optimized force field had a significant corre-
lation with native similarity and, for decoy evaluation, could
recognize the native conformation among decoy structures for a
large fraction of proteins examined. Here, we test the refinement
ability of the newly derived potential on a representative bench-
mark set of 47 proteins (among them, eight proteins were a part
of the training set used in the optimization of the force field, and
the remaining 39 proteins composed the testing set), each having
a diverse set of compact all-atom decoy structures. In the
following, we first describe the correlation of the energy with
native-likeness of the decoys obtained in the refinement con-
formational search. Next, we discuss the improvement of decoy
structures within each individual refinement trajectory. Finally,
we present the results of structural refinement over the best
initial models in the entire decoy ensemble and discuss the ability
of the force field to select structures close to the native state from
the entire decoy set.

Results and Discussion
Correlation of the Energy with Native Similarity as Measured by the
Template Modeling Score (TM-Score). The ability of a force field to
refine a model and select the native or close to native structure
by using energy as the selection criterion is related to the
correlation of its energy with native structure similarity. The
force field used in this study had an average correlation coeffi-
cient of energy with TM-score [a measure of structural similarity
(23) whose range is (0, 1], with a TM-score of 0.3 for the best
structural alignment of a pair of randomly related structures and
1.0 for identical structures] of 0.59 after global optimization as
calculated on a large decoy set of 58 proteins (21). Moreover, for
47% of the tested proteins, the correlation coefficient was
significant, above 0.60. However, the decoys were generated by
using a different force field, the ff03 Amber potential (22). This
high correlation coefficient of energy with native-likeness might
be an artifact of optimization and could be lost during a thorough
conformational search that is driven by the new potential. To
explore this issue, we calculated the correlation coefficient (CC)
between the energy and TM-score for the structures generated
during conformational refinement by using the optimized force
field for the 39 protein test set [see supporting information (SI)
Table S1]. The resulting average value of CC was 0.59, with 46%
of the proteins having the CC above 0.60; this corresponds well
to previously obtained values after force field optimization and
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decoy ranking (21). Therefore, during the conformational
search, the characteristics of our optimized energy landscape are
preserved. Fig. S1 shows examples of the energy–TM-score
clouds for the unoptimized original ff03 force field and decoys
generated with the original ff03 potential (Fig. S1 A), the opti-
mized force field and decoys generated with the original ff03
potential (Fig. S1B), and the optimized force field and decoys
generated with the optimized force field during the refinement
runs (Fig. S1C).

For selection of the correct structure on the basis of energy,
the most important quantity is the correlation of the minimum
energy structure at a given TM-score with native structural
similarity. This correlation of energy vs. TM-score for decoys
obtained during the refinement search was 0.44, with 46% of
proteins having a CC �0.6 and 51% having a CC �0.5. The
corresponding correlation for the decoy set used in force field
optimization and decoy ranking was 0.49, with 33% of proteins
having a CC �0.6 and 53% having a CC �0.5.

Refinement of Protein Decoys. Improvement within a trajectory. For
each member of the 39-protein test set, the ability to refine 100
starting structures spanning a range of TM-scores was examined.
During refinement, the TM-score and C� rmsd improve for the
majority of the decoys. In Fig. 1, the TM-score (A) and C� rmsd
(B) to the native structure of the lowest-energy decoy from each
refinement trajectory are compared with the initial decoy TM-
score and rmsd. For TM-score compared to rmsd, we observe a
more pronounced improvement than decoy deterioration. This
reflects the fact that the force field was optimized as a function
of the TM-score, not the rmsd. Furthermore, the TM-score is
generally more sensitive to native-like features. Sometimes im-
provements in TM-score may cause an increase of rmsd from the
native structure, e.g., when the core of a protein is improved at
the cost of moving a protein’s termini farther from the native
state. Below rmsd values of 1 Å (or TM-scores above 0.9), the
force field cannot differentiate among structures. This insensi-
tivity is evident in Fig. 1, where the native structures (TM-score
close to 1) drift away from the crystal structures on average by
�0.1 TM-score unit or by a rmsd of 1 Å. This drift defines the
resolution of the force field, which corresponds to a C� rmsd of
�1 Å from the native state.

On average, with respect to the initial structure and over the
whole range of native similarity, 70% of decoys improve their
TM-score, 18% get worse, and 12% are unchanged (Fig. 1 A).
When rmsd (Fig. 1B) is used, 70% of decoys improve, 28%
deteriorate, and 2% are unchanged. In Fig. 1C, we show the
fraction of decoys that improved by more than a given rmsd value
with respect to the decoy’s initial rmsd. For 37% of decoys with
initial rmsd of 3–4 Å, we observe improvement of �0.5 Å, and
for 14%, the improvement was �1.0 Å. There are 28 cases of

improvement compared to only 3 cases of deterioration larger
than 2 Å (with the largest improvement being 3.63 Å and largest
deterioration being 2.21 Å).

The ultimate goal, however, is to refine structures to near
experimental accuracy, i.e., below 2- to 3-Å C� rmsd to the native
state. In our benchmark, as shown in Fig. 1B, a significant
fraction of decoys improved to such accuracy; we refined 12%,
10%, and 4% of all of the decoys to an rmsd below 3, 2.5, and
2 Å, respectively, starting from structures with initial rmsd
greater than the given threshold. Especially encouraging is that
some of the refinements to near experimental accuracy occurred
for the decoys that were 4–6 Å away from the native state; there
are also improvements from above 3 Å to below 1.5 Å. The
fractions of decoys that improved to an rmsd of 2 and 3 Å with
respect to their initial rmsd to the native state are presented in
Fig. 1D. We observed refinement below 2 Å rmsd for 34% of
decoys with initial rmsd between 2 and 2.5 Å; an rmsd below 3
Å was obtained for 54% of decoys with an initial rmsd between
3 and 3.5 Å. Refinement below an rmsd of 2 Å is seen for decoys
that were as far from the native state as 4 Å; improvement below
3 Å rmsd was seen even for decoys with initial rmsd 6 Å to the
native structure. An improved sampling scheme may allow us to
achieve larger improvement in structure and enable the refine-
ment to experimental accuracy for decoys more structurally
distant from the native state (above 4 Å).

More detailed analysis of the refinement results, demonstrat-
ing a domination of structural improvement over deterioration
can be found in Fig. S2. Note that the native state is reasonably
stable and deteriorates on average by only �0.05 TM-score unit,
or 0.65 Å in rmsd.

We also analyzed the improvement of different structural
protein elements, i.e., helices, �-sheets, and loops. In Fig. 2 A–C
and A�–C�, the C� rmsd to the native structure for helices (Fig.
2 A and A�), �-sheets (Fig. 2 B and B�), and loops (Fig. 2 C and
C�) for the lowest-energy decoy from each trajectory is shown
with respect to its initial rmsd (see Materials and Methods for
secondary structure definitions). In Fig. 2 A–C, we consider all
of the secondary structure elements of a given type from the
native structure superimposed together onto related elements in
a decoy (e.g., all of the regions that are helical in the native
structure were superimposed with the same regions in the
decoy). This comparison, therefore, includes both the relative
orientation and geometry of all secondary structure elements. In
this analysis, we obtained improvement for 67%, 81%, and 66%
of decoys over helical, �-sheet, and loop regions, respectively.
The average improvement/deterioration was 0.41/0.27 Å for
helices, 0.48/0.24 Å for �-sheets, and 0.58/0.39 Å for loop
regions. The distribution of structural improvements with re-
spect to the initial rmsd over secondary structure is shown in
Fig. S3 A–C. For example, improvements larger than 1.0 Å are
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Fig. 1. For all refinement trajectories, results of decoy structure refinement within each trajectory (100 decoys per protein, 39 proteins). (A and B) TM-score
(A) and C� rmsd (B) to the native structure of the lowest-energy decoy after refinement versus decoy’s initial TM-score (A) or C� rmsd (B). (C) Fraction of decoys
that refined by more than a given C� rmsd threshold (for 0.2-, 0.5-, 1.0-, 1.5-, and 2.0-Å rmsd thresholds) with respect to their initial native similarity. (D) Fraction
of decoys that refined to (or remained within) the accuracy of 2-Å (black) and 3-Å (gray) C� rmsd to the native state with respect to their initial native similarity.
Fractions of decoys were calculated in 1-Å bins.
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observed for �10% and 23% of decoys with initial rmsd between
3 and 4 Å over helical (Fig. S3A) and �-sheet (Fig. S3B)
structures, respectively, and for �25% of decoys with initial
rmsd between 4 and 5 Å over loop regions (Fig. S3C).

In Fig. 2 A�–C�, we considered each secondary structure
element separately (e.g., each individual helix from the native
structure was superimposed onto the related region in the
decoy). In this analysis, only refinement of the secondary
structure is considered, without the orientation component. We
see improvement for 70%, 76%, and 50% of decoys for the
helical, �-sheet, and coil regions, respectively. The distribution
of structural improvements with respect to the initial rmsd over
individual secondary structure elements is shown in Fig. S3
A�–C�. Improvements larger than 1.0 Å are observed for �3%,
21%, and 2% of decoys with initial rmsd between 3 and 4 Å over
helical (Fig. S3A�), �-sheet (Fig. S3B�), and loop (Fig. S3C�)
regions, respectively.

In Fig. 2 A�–C�, the assignment to secondary structure class
between the native structure and decoys is compared. The
fractions of the native helical (Fig. 2 A�) and �-sheet (Fig. 2B�)
content improve for the majority of the decoys. The fraction of
native coil (Fig. 2C�) decreases; we observe some tendency of
our force field to turn coil residues into helical conformation.

Refinement is seen on average for all secondary structure
types, including loop regions, which are recognized as the most
difficult to refine. Both the orientation and geometry of indi-
vidual secondary structure elements improve. However, the
refinement of loops is more pronounced in the correction of their

relative orientation than in the improvement of the internal
structure of individual loops.

Our force field was optimized only with respect to the corre-
lation of the energy with the main-chain native similarity; the
side-chain geometry has been neglected in the optimization
process. Despite this neglect, we observe an average improve-
ment in the �1 dihedral angles of the side chains in the protein
interior. Fig. 2D shows the �1 rmsd of the buried side chains to
the native structure for the lowest-energy decoy from each
trajectory with respect to the initial decoy’s �1 rmsd (see
Materials and Methods for explanation of the �1 rmsd calculation
and the definition of buried side chains). Side-chain packing
improves for 68% and declines for 32% of the decoys, as judged
by �1 rmsd. The extent of improvement is large for larger initial
distortions of �1 (Fig. 2E); the largest improvements are �40°.
In Fig. 2F, the fraction of decoys that improved their side-chain
packing below a given threshold of �1 rmsd is shown with respect
to the initial �1 rmsd. For 20% of the decoys with an initial �1
rmsd between 40° and 50°, the �1 rmsd decreases below 40°.

In Fig. S4, we show the fractions of decoys that improve/
deteriorate for each protein in the entire 47-protein set. For most
proteins, more than 50% of the decoys improve. Only 4 proteins,
1a19A, 1b9wA, 1c1yB, and 1dt4A, have less than a 50% im-
provement (with only 1b9wA and 1dt4A having more deterio-
rations than improvements). There are 9 proteins in the set that
contain disulfide bonds (1a43, 1aazA, 1bunB, 1bvnT, 1cc7A,
1dtdB, 1f94A, 1b9wA, and 1cbp). Their refinement results are on
average worse (61% improvement and 26% deterioration, as
measured by the TM-score) than those for the remaining

Fig. 2. Results of decoy structure refinement within each trajectory (100 decoys per protein, 39 proteins) for different structural elements. (A–C and A�–C�) C�

rmsd to the native structure of the lowest-energy decoy after refinement versus the decoy’s initial C� rmsd, for helical (A), �-sheet (B), and loop (C) regions when
all the native secondary structure elements of a given type are superimposed together onto the corresponding decoy regions, and for helices (A�), �-sheets (B�),
and loops (C�) when individual secondary structure elements from the native are superimposed onto related decoy regions. (A�–C�) Comparison of fractions of
the native secondary structure in the refined (lowest-energy decoy from each trajectory) and the initial decoy, for helical (A�), �-sheet (B�), and loop (C�) regions.
(D–F) Refinement of packing of buried side chains. (D) �1 rmsd (degrees) to the native structure of the lowest-energy decoy after refinement with respect to �1
rmsd of the initial structure. (E and F) Fraction of the lowest-energy decoys that improved their �1 rmsd by more than (E) or below (F) a given threshold with
respect to �1 rmsd of the initial structure. Fractions of decoys were calculated in 10° bins.
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proteins. This observation indicates the need to include a
disulfide bond potential in the force field; this inclusion is
especially important for small proteins whose fold is mainly held
together by S–S bridges.

Some examples of refined structures are shown in Fig. 3. The
largest observed improvement in TM-score was 0.32 (from 0.53
to 0.85 for 1b07A). Based on the above results, we conclude that
our optimized force field enabled significant and systematic
refinement of protein structures with respect to the set of initial
decoy structures.

The focus of our method is the refinement of already folded
and well packed models predicted by a coarse-grained method
(e.g., TASSER). Therefore, our potential was optimized (21) for
decoys within the rmsd range of 0–8 Å and TM-score range of
1–0.4 to the native state. For more distant structures, a corre-
lation of energy with native similarity is not expected. Therefore,
we did not test the ability to refine the decoys with an initial rmsd
to the native structure �8 Å. However, most of the conforma-
tions sampled during our search that had a C� rmsd �8 Å had
high energies.
Structure refinement from an ensemble of structures below a given
TM-score. Previous analysis showed the refinement performance
within each decoy trajectory; the lowest-energy structure was
chosen from each decoy trajectory and separately compared with
the starting decoy. In this section, we analyze the improvements
over the best structure in the entire ensemble of the initial decoys
whose TM-score was smaller and rmsd was larger than a given
native structure similarity threshold. We considered TM-score
thresholds of 0.8, 0.7, . . . , 0.4 and C� rmsd ranges of 2.0, 3.0, . . . ,
6.0 Å to the native state. For example, for a 0.7 TM-score
threshold, for each protein we consider all of the refinement
trajectories that started from structures with a TM-score �0.7.
From each trajectory, the lowest-energy decoy is chosen; the
decoys are then sorted by energy, and the best of the top five
refined decoys is compared against the best initial structure
within the given range; in this example, the best initial structure
will have a TM-score �0.7, and we explore whether the top five
lowest-energy refined structures have a TM-score �0.7.

A significant correlation of the bottom of the TM-score/rmsd-
energy cloud is necessary to successfully choose the good
structure on the basis of its energy. Therefore, in this analysis we

focus only on the 20 proteins in the test set (marked in Table S2)
that had an energy–TM-score correlation at the bottom of the
energy–TM-score cloud �0.50. Such an analysis resembles a real
prediction/refinement scenario, where a prediction method de-
livers many low-resolution models of unknown native similarity
and the goal of refinement procedure is to improve structure
over the best model.

In Fig. 4 the TM-score (A) and C� rmsd (B) to the native
structure of the best of five lowest-energy decoys from all of the
refinement trajectories starting from structures in a given TM-
score range is compared with the best initial decoy TM-score or
rmsd in this range. Overall, we see more improvement than
deterioration with respect to the best initial structure in the
specified TM-score range, with maximum of 81% of proteins
having structural improvements in the range of TM-score �0.6
(Fig. S5A), and 78% of proteins having structures that improve
in the range of rmsd �3 Å (Fig. S5). In conclusion, this stringent
test of the refinement ability of our method gives promising
results.

The previous analysis provided insight into the quality of
decoy structures that are likely to be improved by this refinement
procedure. Next, we explore our ability to select good protein
structures out of the entire ensemble of structures that would be
generated in a realistic prediction scenario. Thus for each
protein, we analyze the TM-score and rmsd to the native state
of the best of five lowest-energy decoys (highest TM-score or
lowest rmsd) from the entire set of decoy structures sampled
during the refinement search. In Fig. S6, we show the fraction of
proteins for which the best of five lowest-energy refined struc-
tures had a TM-score larger (Fig. S6A) or rmsd lower (Fig. S6B)
than the specified threshold value. Here, we consider all 39 test
proteins that were not used for force field optimization (21). A
stringent test of the force field that reflects real prediction
conditions is to examine the quality of the lowest-energy struc-
tures when native decoys are excluded. Sixty-eight percent of the
proteins have best-of-five lowest-energy structures with a TM-
score to the native state above 0.70 (Fig. S6A, gray bars) and 77%
have a C� rmsd below 3.5 Å (Fig. S6B, gray bars). When the
trajectory of the native structure is included, for 87% of proteins,
the best-of-five lowest-energy structures has a TM-score to the
native state above 0.7 and for 90% it has a C� rmsd below 3.5 Å

Fig. 3. Examples of refinement for 1b07A (A) and 1a0b (B). Models (yellow)
are superimposed onto the native structure (blue).
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Fig. 4. Results of the refinement of decoy structures over the entire ensem-
ble of decoys above a given native similarity threshold (each circle represents
one protein; the 20 testing proteins with energy–TM-score correlation coef-
ficient larger than 0.5 for the bottom of the energy–TM-score cloud are used).
(A and B) TM-score (A) and C� rmsd (B) to the native structure of the best-of-
five lowest-energy decoys after refinement with respect to the TM-score of
the best initial structure within a given native similarity bin; e.g., for a
threshold of 3 Å, for each protein we consider all the decoys with initial rmsd
in the range 3–8 Å, and we compare the lowest initial rmsd in this range
against the rmsd of the best-of-five lowest-energy decoy after refinement
that had initial structure within this range. The analysis is repeated for each
native similarity bin, i.e. 0.8–0.2, 0.7–0.2, . . . , 0.4–0.2 for TM-score, and 2–8,
3–8, . . . , 7–8 Å, for rmsd (this explains why there are more than 20 circles in
the figure).
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(Fig. S6, black bars). Structures coming from the native trajec-
tory are usually better packed than decoys and therefore favored
by energy. The discrepancy between results when the native
trajectory is included/excluded points out the need for better
conformational sampling.

We additionally consider the quality of the lowest-energy
conformation (results not shown in Fig. S6). When native decoys
are excluded, 59% of proteins have the lowest-energy structure
with a TM-score above 0.70, and when native decoys are
included, 79% have the lowest-energy structure with a TM-score
above 0.70; 66% (native decoys excluded) and 82% (native
decoys included) of proteins have the lowest-energy structure
with an rmsd below 3.5 Å. Based on the above results, we
conclude that the ability of the force field to find the native-like
structures among decoys is quite good.

Analysis of Possible Reasons for the Observed Refinement. We
performed numerous analyses to establish the significance of our
refinement results. One of the common problems in the training
of potential functions is the decoy generation procedure (20).
Some decoy sets contain certain characteristics that are easy to
memorize during training, but are not transferable to other
decoy sets. A classic example is the effect of ‘‘swollen’’ decoys,
where the decoy set has a large correlation between native
similarity and radius of gyration (CCRG) (21). With such a
correlation, the recognition of the nearest-native structure is
trivial: just pick the best-packed model. In contrast, the average
CCRG for decoys in our set of 47 proteins is small (0.4). To
ensure that the improvements are not dominated by those
proteins with highest CCRG, for each protein we compared the
correlation between native-similarity and the radius of gyration
with the fraction of decoys that improved during the refinement.
Although the fraction of improvements is on average a little
higher for proteins with high CCRG, such a cross-correlation is
only 0.4. There are proteins whose decoy set has a very low
CCRG (e.g., 0.15) and yet �70% of their models improve during
refinement. Improvement in structure quality dominates over
deterioration also for decoys that are better packed than the
native structure (smaller radius of gyration). Monitoring the
extent of decoy improvement with respect to the contact order
(24) of the decoys, instead of the radius of gyration, gives similar
results. Although significant improvements are observed more
often for decoys with lower contact order, the overall correlation
between the rate of improvement and the initial contact order
with respect to the native is low. Finally, we also found that
structure improvement does not depend on the number of
hydrogen bonds (normalized by the protein length). Decoys of
�-type structures tend to refine slightly better than �-helix-
containing protein structures, but a larger protein set is needed
to confirm this tentative observation.

Conclusions. In our previous work (21), we optimized a physics-
based, all-atom energy function derived from the Amber ff03
potential to improve the correlation between native similarity
(represented by the TM-score) and energy. Here, we tested the
ability of such a funnel-shaped potential to refine decoys of 47
single-domain, nonhomologous proteins with different folds, 39
of which were not a part of the optimization protein set. When
the lowest-energy structure from the particular refinement con-
formational search trajectory is compared with the starting
decoy, we observe structural improvements for 70% of the
models on average; 10% of decoys refined to near experimental
accuracy, below 2.5 Å. Such systematic refinement results sug-
gest a promising approach to high-resolution structure predic-
tion. In a more stringent test, when the best (of five lowest-
energy) refined structures selected by their energies are
compared against the best available starting decoy within a given
native similarity range, we see improvement for the majority of

proteins that have a significant correlation of energy with
TM-score.

As we discussed previously (21), the optimized force field used
here does not include the electrostatic energy and generalized
Born solvation (25) terms present in the original Amber ff03
force field (22). For the set of compact decoys used for force field
optimization, these energy terms were uncorrelated with native-
likeness and their relative weights were small. The lack of these
terms might cause the appearance of some low-energy, unphysi-
cal structures during the conformational search, e.g., the burial
of hydrophilic residues in the protein core. However, during the
course of our refinement simulations, we did not observe such
low-energy unphysical structures. Their absence can be attrib-
uted partially to the rather local conformational search during
refinement that starts from already packed structures. For
purposes of refinement, the exclusion of these energy compo-
nents carries the advantage of faster energy evaluation and
concomitantly more extensive conformational sampling for a
given amount of simulation time.

We do not observe a significant correlation between the
successful refinement and decoy radius of gyration, contact
order, or number of hydrogen bonds per residue. Decoys of
�-type structures tend to refine slightly better than those of
�-type structures, probably because of the relatively large con-
tribution of the hydrogen bond energy that is more sensitive to
the misfolding of �-sheets, whereas the geometry of helices is
rather insensitive to such effects. Finally, based on the results for
small disulfide-bonded proteins, a better treatment of S–S
bridges is required.

The direct comparison with the results of others is difficult
because each group uses different procedures, refinement cri-
teria, and different sets of proteins; however, none of the
previously examined sets was large enough to be statistically
significant. The status of previous work can be found in the SI
Text.

Overall, we have demonstrated successful refinement for the
majority of testing proteins over a range of lengths and with
different secondary structure classes. The protein decoy struc-
tures systematically improve over all ranges of native similarity
and for all major structural elements, i.e., helices, �-sheets, and
loops; only for structures below the resolution of the potential,
i.e., with a rmsd to native below 1 Å or a TM-score above 0.9,
does this conclusion not hold. We also see improvement of
side-chain packing in the interior of the protein. However, it is
important to recognize that these results have been demon-
strated for protein structures that satisfy the following: (i) the
proteins are single-domain monomers, without cofactors; (ii) the
decoys are compact, spanning the range of 0–8 Å C� rmsd to
the native structure; and (iii) the conformational search typically
did not explore global changes in structures. It may be possible
to apply our refinement protocol to low-resolution decoys
directly generated by the TASSER coarse-grained force field (1)
so that we can begin to address the end game of protein structure
prediction: protein structure refinement that has been a long-
sought goal of hierarchical approaches to protein structure
prediction.

Materials and Methods
Conformational Search. To search protein conformational space, we used the
newly developed A-TASSER program, described previously (21). A-TASSER (for
atomic-TASSER) represents the protein at atomic detail and employs the
Replica Exchange Monte Carlo (REMC) (26, 27) search method with a Parallel
Hyperbolic Sampling (PHS) acceptance criterion (28) to reduce higher energy
barriers. A-TASSER uses three types of moves that change the torsional angles
of the molecule: local ‘‘fixed end’’ moves (29), end moves, and the side-chain
moves. During refinement, the bond lengths and valence angles were fixed at
the values taken from the relaxed starting structures, after a gradient-based
minimization with Amber ff03 force field (22). A detailed description of the
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A-TASSER search scheme can be found in the SI Text and in our previous work
(21). We do note that enhancements in the move set are required.

Force Field. The potential energy function used in this study to refine protein
models is calculated according to Eq. 1:

Eff03/HB/R � wDIHEDIH � wVDWEVDW � wVDW1– 4EVDW1– 4

� wSAESA � wHBEHB. [1]

In Eq. 1, the following abbreviations and symbols are used: E, total energy; w,
weight of a given energy component; DIH, dihedral term; VDW, van der Waals
component; VDW1–4, van der Waals energy for atom pairs separated by less
than four bonds; SA, surface area-dependent term (the hydrophobic compo-
nent of the solvation free energy); and HB, hydrogen bond term. The EDIH,
EVDW, EVDW1–4, and ESA energy terms are identical with those used in the ff03
Amber force field. The EHB hydrogen bond energy was implemented by
following the DSSP approach (30) and was described previously (21). The
weights of the energy terms, w (Table S3), were adjusted by using a global
optimization method (31) for a large set of decoy structures of a representa-
tive 58-protein set (21). Optimization was aimed at maximizing the correlation
of the energy with TM-score (23) and the energy gap between the native state
and the decoys. The force field used in this study has an average correlation
coefficient of energy with TM-score of 0.59 and ranks structures with TM-score
�0.9 (native-like) as the lowest in energy for 72% of proteins, as calculated for
the protein decoy set used in the optimization study (21).

Protein Set and Starting Decoy Structures. We tested our method on 47
proteins, a subset of a previously prepared (23) comprehensive benchmark set,
which covers the PDB library (32) with lengths from 41 to 200 residues at 35%
sequence identity. The chosen proteins span lengths from 54 to 123 residues
and represent different secondary structural classes. The list of proteins can be
found in Table S1. Among them, eight (marked in Table S1 and in Fig. S4) were
a part of the training set used in the optimization of the force field (21). These

were excluded from most analyses to avoid any possible memorization effects.
Only Fig. S4 shows results for all 47 proteins; all other results include only the
39 testing proteins. For each protein, we randomly chose 100 decoys from the
force field optimization decoy set such that they span the range of C� rmsd to
the native structure from 0 to 8 Å. These 100 decoys per protein and the native
structures in all-atom representation were starting models in our refinement
benchmark.

Refinement Protocol. For each decoy, we ran an A-TASSER search consisting of
1,000 swaps between replicas and 200 steps of Parallel Hyperbolic Sampling of
each replica between swaps. From each decoy trajectory, the lowest or the
best of the five lowest-energy structures were selected for analysis. No clus-
tering was used in decoy selection.

Selection of Secondary Structure Elements. The helices, �-strands, and loop
regions of protein were defined by using the DSSP program (30) as applied to
the native structure. Only continuous elements longer than three residues
were considered.

Selection of Buried Side Chains. The side chain was considered buried in the
interior of a protein if its surface accessible area in the native structure was
�50% of the surface accessible area of the free amino acid flanked by single
glycine residues. The surface accessible area of each side chain was calculated
by using DSSP (30).

rmsd over �1 Dihedral Angles. The rmsd over �1 dihedral angles was calculated
as the rmsd between the set of �1 dihedral angles for buried side chains in the
native structure and the �1 dihedral angles of the same side chains in the decoy
structure.
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