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ABSTRACT This paper presents a natural coordinate
system for phylogenetic trees using a correspondence with the
set of perfect matchings in the complete graph. This corre-
spondence produces a distance between phylogenetic trees,
and a way of enumerating all trees in a minimal step order. It
is useful in randomized algorithms because it enables moves
on the space of trees that make random optimization strate-
gies “mix” quickly. It also promises a generalization to
intermediary trees when data are not decisive as to their
choice of tree, and a new way of constructing Bayesian priors
on tree space.

Motivation

Much of the current research effort in phylogenetic method-
ology is being done in the exploration of Tree Space, the space
of all phylogenetic trees with a given number of leaves n.¢

Both the parsimony and maximum likelihood criteria lead to
intractable combinatorial optimization problems on this
space.f Validation of the tree obtained by such algorithms is
hampered by the discreteness and complexity of this underly-
ing space. Efforts to visualize the space have used graphs with
vertices that are the possible trees and edges connecting trees
that differ by a move® of some sort. Most optimization algo-
rithms use randomized moves that try to find local optima,
using multiple starting points. Others follow the simulated
annealing approach to randomized optimization; these also
use random moves. A notion of neighborhood in this space
would be most useful for inferential purposes.

Here, we introduce a bijection known to combinatorialists
that allows construction of a coordinate system for phyloge-
netic trees. This system also admits a continuous interpolation,
thus suggesting a way of making continuous confidence state-
ments such as those provided by consensus of bootstraps or
other resampling or perturbation methods. Finally, it allows
the wealth of tools developed to study matchings (3) to be used
for phylogenetic trees.

This coordinate system provides a new set of natural moves
on the trees, providing at the same time distances in tree space
and either a way of doing complete enumeration by going
through all the trees in a step-by-step way or a means for doing
a random walk on tree space. These are useful for doing
simulated annealing for optimization. It is still an open prob-
lem to say how fast such a method would converge within a
certain percentage of the optima; however, some progress is
currently being made by the authors on the convergence to the
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FiG. 1. These two trees are considered identical.

uniform distribution for simple random walk (unpublished
work).P

A phylogenetic tree is a binary rooted tree with n labeled
leaves (see Fig. 1).i

Combinatorialists have known since 1870 that there are
more than an exponential number of such trees (5)4 Another
recent proof of this result identifies phylogenetic trees with
perfect matchings on (2n — 2) points (7).

What Is a Perfect Matching? A perfect matching on 2m
points is a pairing of the points into m groups of two—the
order within a group or between groups does not matter. Here
is a perfect matching on 10 points: (1, 4)(2, 10)(3, 6)(5, 9)(7,
8). It is easy to see there are (2m — 1)(2m — 3)...3 perfect
matchings on 2m points (so for m = 3 there are 15). There is
a natural bijection, which assigns a matching of 2m points to
a tree with m + 1 labeled leaves. Here is how the bijection is
created (see Fig. 2).

The first step is the labeling of ancestors.

Look at all of the sibling pairs already labeled [here it is (1,
S) and (3, 4)].

Choose the pair with the smallest child [which is (1, 5) in this
example].

Label that pair’s parent with the next available label (7 is put
on the node ancestral to 1 and 5).

Repeat until all ancestral nodes except the root are labeled
(see Fig. 3).

One now goes from this labeled tree to the matching, by
pairing off the siblings: (1, 5)(3, 4)(6, 7)(2, 8)(9, 10).

dTo whom reprint requests should be addressed. e-mail: susan@stat.
stanford.edu.

¢There is a good introductory presentation of trees and Tree Space at
the web site http://taxonomy.zoology.gla.ac.uk/~mac/landscape/trees.
html (M. A. Charleston, University of Glasgow, Glasgow, Scotland).

fFinding the best tree for the parsimony criterion is the NP-complete
problem of finding a rectilinear multidimensional Steiner tree (1).

€The moves used currently by tree building algorithms include Nearest
Neighbor Interchange (NNI) (2) or subtree pruning re-grafting (SPR)
and tree bisection/reconnection (TBR).

"The case of simple and metropolized random walk on the space of
permutations was studied (4).

Two semi-labeled trees are equal when the labeling only changes
within sibling pairs (symmetric around any parental node).

iThe authors of ref. 5 and later ref. 6 proved that there are

(2n — 2)!

m:(Zn—:i)X(2n—5)><...3=(2n—3)!!

semi-labeled trees with n leaves.
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F1G. 2. An initial phylogenetic tree with the leaves relabeled as
numbers. Here there are 6 = m + 1 leaves.

In the other direction, we build a tree from a matching on
2m points. First we recall that the tree will have m + 1 leaves
so that among all the sibling pairs in the matching there will be
at least one that is made up only of leaves. If there are several,
we choose the pair with the smallest child; this pair will be the
first sibling pair (or clade) written down in the tree.

Here is an example: (1, 3)(2, 6)(5, 8)(4, 9)(7, 10). There are
m = 5 pairs, so there will be 6 leaves labeled from 1 to 6, the
first available ancestral label is 7. The labeled sibling pairs we
start with are (1, 3) and (2, 6), of which (1, 3) has the smaller
child, so it is assigned the parent 7; then the next labeled pair
is (2, 6), and we assign it the next ancestor, thus building the
tree sequentially. In the end we obtain the tree of Fig. 1. This
is not the only bijection that can be constructed between
perfect matchings and phylogenetic trees.X Several rules are
possible for labeling the ancestors; for instance, we chose one
that is easy to follow on the tree.

Comparison to the Existing Notation. Biologists standard-
ized their representation of trees by using a one-line paren-
thesized expression called the New Hampshire or Newick
format.! The matching notation can be enriched the same way
the Newick format enriches the parenthesis notation, so that
the Newick tree with branch lengths is noted ((1:1,4:1):3,
((2:1,3:1),5:2):1) and the corresponding matching notation
wouldbe (2:1,3:1)(1:1,4:1)(5:2,7:1)(6:3,8:1). There
is still room outside the matching’s parentheses to add weights
for each sibling pair.

FiG. 3. The tree of Fig. 2 with internal nodes labeled.

kThe author of ref. 8 have a general bijection between k-partitions and
trees of degree (k — 1), and combinatorialists have also developed the
correspondence from parentheses (which is equivalent to unlabeled
tree topologies) and many different classes of objects, all counted by
Catalan Numbers (7).

IFelsenstein (9) traces the history of the choice of this format.
™This can be seen by the parenthesis coding of the two trees of Fig. 1:
(45,2, 6)), (7, 1)3)) and (L, 7)3), (((6, 2).5).4)). ,
nHere is the algorithm for forming the matching from the parenthesis

representation:

1. Order the labels within the parenthesis.

2. Go through the characters until a right bracket follows a left
bracket and a comma.

3. Put this in the set of available pairs. Repeat 2,3 until the end of the
line.

4. Go through the list of available pairs and find the one with the
smallest child. Replace this pair by next available parent label and
add it to the list of sibling pairs. Repeat 2,3,4 until the end.
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Unfortunately the Newick notation is not a bijection; there
are several such representations for the same tree.™ But there
is a simple algorithm for going from the Newick notation to the
matching notation.”

Using Matchings to Build Distances in Tree Space. Many
distances proposed for measuring dissimilarities between trees
are based on different ways of representing them. The corre-
spondence with matchings allows comparisons based on meth-
ods used for permutations. For instance, one can count the
number of transpositions needed to make one matching into
another. To make (1, 4)(2, 6)(3, 5) into (2, 3)(4, 6)(1, 5), one
needs to transpose 4 and 5, thus obtaining (2, 6)(3,4)(1, 5), and
then transpose 3 and 6. Thus two moves are necessary to
transform the first matching into the second. For instance, the
distance between the trees in Figs. 1 and 2 is four in this metric.

Counting the number of such moves between the two
matchings gives a distance between trees that is easy to
compute and is naturally invariant to irrelevant changes in
labeling.®

The correspondence between matchings and trees opens up
several new possibilities that are easy to visualize and compute
in matching space. Here is a brief menu.

Gray Codes for Phylogenies. Combinatorialists often seek
ways of walking through the space of all objects in a step-by-
step way. This is also useful for evaluating phylogenetic
algorithms by running through all cases. The example treated
shows how it is done with 4-leaved trees but the same method
generalizes to any number of leaves.P

Fig. 4 shows all 15 trees on 4 leaves; two trees are connected
if they are at distance one.

The problem at hand is to find a path through this graph that
goes through each vertex once and once only; we will thus have
enumerated all the trees from the first to the last with a
minimal number of changes.d

Another enumeration scheme used on tree space (13) uses
a branch and bound method for enumerating phylogenetic
trees that make moves that are not always simple transposi-
tions; therefore, it is not a Gray code in a reasonable sense.

Fourier Analysis in Tree Space. Matchings admit a natural
action of the permutation group which gives a spectral analysis
for collections of trees. The group theory also allows analysis
of the natural random walk on trees corresponding to random
transpositions in matching space (see also ref. 4).

(((5,3,4)),6),(1,2)) = ((1,2),(((3,4),5),6))

((1,2), ((3,4),5),6) — (7, (3, 4),5), 6)) 1,2)
(7, (((3, 4), 5), 6)) - (7. ((8,5), 6)) (1,2) (3, 4)
(7, ((8,5), 6)) - (7, (9, 6) (1,2) 3,4) (5. 8)
(7, (9, 6)) - (7,10)  (1,2)(3,4) (5,8) (6,9)

The inverse algorithm is simpler: replace the largest parent label by
its children sibling pair.

(1,2) 3,4) (5,8) (6,) (7,100 —  (1,2)(3,4) (5. 8) (7, (6,9))
(1,2) (3,4) (5,8) (7, (6,9)) - (1,2) (3,4) (7, (6, (5, 8)))
(1,2) (3,4) (7, (6, (5, 8))) nd ((1,2), (6, (5, (3, 4)))

°Some other distances considered are similar to those used to compare
permutations as described in ref. 10.

PThis was first done by Frank Gray (11) in an analog coding of digital
data that ensured that an error in transmission would have a minimal
effect on the output. See ref. 12 for examples of several such coding
schemes in statistical applications.

9dThis is equivalent to a Hamiltonian path on the graph of Fig. 4. Here
is a list of matchings in such an order for trees on 4 leaves:

a (2,3)(4,5 (1,60 f (2,3)(1,5 4,6) k (1,3)(2,5) (4,6)
b (2,4)(3,5(1,6) g (1,4(2,3)(5,6) I (1,3) (2,4) (5,6)
c (3,4 (2,5 1,6) h (1,4 (2,5 3,60 m (1,2)(3,4)(5,06)
d (3,4(1,5)(2,6) i (1,4 (3,5 2,60 n (1,2) (3,5 (4,6)
e (2,4(1,53,6) j (1,3) (4,5 2,60 o (1,2) (4,5 (3,6)

Note that from one line to another only two pairs differ. The letters
correspond to the labels of the matchings in Fig. 4.
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FiG. 4. The graph of all matchings on 6 points.

Relaxing the Matchings to the Polytope. It is also the case that
neither direct use of trees nor the parenthesis notation enables a
representation in a continuous space. This has been a main
problem in systematics for questions such as the following:

1. How near to being tree-like are the data?

2. Can the data be seen as indicating a mixture of several trees
in some sense?

3. How can one decompose the data into the best tree, the
second best, etc., in a unique way so that, for instance, if
there is a big difference between the first and second tree,
this difference can indicate a preference for the first tree.

4. How can one create nonparametric Bayesian priors on Tree
Space?

If we take the convex hull of all the matchings on N points
in the multidimensional space of dimension N(N — 1)/2, we
obtain a polytope.” Any convex combination of trees gives a
unique point in the polytope; thus the output from multiple
runs of a tree building program can be summarized by a point
in the polytope. Some points in the polytope can be repre-
sented in several ways as a convex combination of the vertices
(possible trees). This is a way of summarizing a run from an
optimizing procedure that ends in several optimal trees; in-
stead of writing each tree in parenthesis notation, we can
associate the point in the polytope, listing the closest trees and
thus the coefficients in the matching polytope.

Randomized Algorithms for Optimization. Several random
heuristic methods are used for finding the optimal tree in some
sense; these methods are based on random moves and an
annealing schedule.® A different method maintains a set of
potential trees, choosing two at random and creating two new
trees through a tree-reproduction scheme.' Algebraists have

'A polytope is a bounded polyhedron. Details about the matching
polytope may be found in (3). If one takes a convex combination of
two matchings then one is in the matching polytope.

sSimulated annealing for finding phylogenetic trees has been suggested
by refs. 14 and 15.

!Genetic algorithms for phylogenetic analysis was first suggested by the
authors of ref. 16 and implemented recently by the authors of ref. 17.
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introduced a method for making a product of two matchings
in what is known as the Brauer algebra (18, 19). This enables
a simple implementation of a genetic algorithm; it remains an
open problem to prove how fast, and under what conditions,
this will converge to an optimum.

A Space Where Bayesian Nonparametrics Are Possible?
Several recent efforts of incorporating prior information about
trees have been proposed (20-22). Unfortunately, all of these
efforts have relied heavily on parametric models. The coor-
dinate system suggested here enables other priors, for instance,
priors could be set on the polytope as a whole with high
probabilities for the vertices because biologists do believe in
the prior postulate of an evolutionary tree.

All three implementations rely on Monte Carlo Markov
Chains on Tree Space to compute the posterior probabilities;
using the transposition moves on matchings will certainly
simplify some of the computational technicalities."

vCoding of trees by matrices instead of pointers simplifies use of higher
level languages such as MATLAB (23) instead of C, thus enabling
students to use methods without considering the programs as black
boxes. This can be done simply by associating to the tree a two-
columned matrix containing the matching pairs.

We are grateful to Richard Stanley, Phil Hanlon, and Louis Billera
for useful feedback on these ideas. P.W.D. acknowledges support from
National Science Foundation Grant DMS-9504379, and S.P.H. ac-
knowledges support from a New York State Hatch Grant.
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