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Abstract
Background: When boosting algorithms are used for building survival models from high-
dimensional data, it is common to fit a Cox proportional hazards model or to use least squares
techniques for fitting semiparametric accelerated failure time models. There are cases, however,
where fitting a fully parametric accelerated failure time model is a good alternative to these
methods, especially when the proportional hazards assumption is not justified. Boosting algorithms
for the estimation of parametric accelerated failure time models have not been developed so far,
since these models require the estimation of a model-specific scale parameter which traditional
boosting algorithms are not able to deal with.

Results: We introduce a new boosting algorithm for censored time-to-event data which is suitable
for fitting parametric accelerated failure time models. Estimation of the predictor function is carried
out simultaneously with the estimation of the scale parameter, so that the negative log likelihood
of the survival distribution can be used as a loss function for the boosting algorithm. The estimation
of the scale parameter does not affect the favorable properties of boosting with respect to variable
selection.

Conclusion: The analysis of a high-dimensional set of microarray data demonstrates that the new
algorithm is able to outperform boosting with the Cox partial likelihood when the proportional
hazards assumption is questionable. In low-dimensional settings, i.e., when classical likelihood
estimation of a parametric accelerated failure time model is possible, simulations show that the new
boosting algorithm closely approximates the estimates obtained from the maximum likelihood
method.

Background
Predicting the expected time to event from a high-dimen-
sional set of predictor variables has become increasingly
important in the last years. A particularly interesting prob-
lem in this context is the analysis of studies relating
patients' genotypes, for example measured via gene
expression levels, to a clinical outcome such as "disease
free survival" or "time to progression". Survival models of

this type share the common problems that are typical for
the analysis of gene expression data: Sample sizes are
small while the number of potential predictors (i.e., gene
expression levels) is extremely large. As a consequence,
standard estimation techniques can not be applied any
more.
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For these reasons, a variety of new methods for obtaining
survival predictions from high-dimensional data have
been suggested in the literature. Most of these methods
are focused on the Cox proportional hazards model [1],
while some other methods have been developed for fit-
ting semiparametric accelerated failure time (AFT) models
[2] in high-dimensional settings. Tibshirani [3], Gui and
Li [4], Park and Hastie [5], and Zou [6] introduced Lasso-
like algorithms for minimizing L1 penalized versions of
the Cox partial likelihood. Due to the structure of the L1
penalty, these methods have the advantage that variable
selection is carried out simultaneously with parameter
estimation. Li and Luan [7] introduced a technique for
maximizing the L2 penalized Cox partial likelihood,
which (in contrast to methods using the L1 penalty) does
not carry out variable selection but includes all predictors.
On the other hand, several authors developed methods
for fitting semiparametric AFT models in high-dimen-
sional data settings: While Huang and Harrington [8] and
Wang et al. [9] considered modifications of the Buckley-
James method [10], Huang et al. [11] and Datta et al. [12]
developed algorithms based on a censoring-adjusted
penalized least squares loss function. In addition to
penalized estimation techniques, there are various strate-
gies for reducing the dimensionality of microarray data
before building an unpenalized survival model, see Schu-
macher et al. [13], Bovelstad et al. [14], and van Wierin-
gen et al. [15] for overviews of this topic.

In this paper the focus is on gradient boosting [16,17],
which is an alternative method for fitting survival models
in high-dimensional data settings. Similar to the Lasso,
boosting has a built-in variable selection mechanism
which is carried out simultaneously with the estimation of
the prediction function. Although being connected to the
Lasso (see Efron et al. [18]), boosting algorithms are not
primarily designed for the maximization of penalized
(partial) likelihood functions but can rather be inter-
preted as a method for minimizing convex loss functions
via gradient descent techniques. In each step of a boosting
algorithm, a so-called base-learner (e.g., a linear regression
model) is fitted to the negative gradient of a pre-specified
loss function. The current estimate of the prediction func-
tion is then updated with the newly obtained estimate of
the gradient. As the base-learner can be modified such that
only one covariate is used for estimating the gradient in
each step (leading to the so-called component-wise base-
learner), variable selection is carried out at each iteration.

Originally introduced for classification problems by Fre-
und and Schapire [19,20], boosting has developed into a
computationally efficient technique for fitting many types
of regression models in high-dimensional data settings. In
principle, the boosting loss function can be any negative
log likelihood function of some exponential family. Vari-

ous authors have shown that the method tends to be
promising with respect to both variable selection and pre-
diction accuracy [16,17,21,22].

Concerning the prediction of survival outcomes from
gene expression data, the development of boosting algo-
rithms has so far focused on the same model families as L1
and L2 penalized estimation techniques, namely the Cox
proportional hazards model and the semiparametric AFT
model. Ridgeway [23], Li and Luan [24], and Binder and
Schumacher [25] used boosting algorithms with the neg-
ative partial log likelihood loss function while Hothorn et
al. [26] introduced a boosting algorithm for fitting semi-
parametric AFT models. Similar to Huang et al. [11], Hot-
horn et al. [26] used censoring weights for adjusting the
least squares objective function.

While the proportional hazards model is the most fre-
quently used survival model in biostatistics and while fit-
ting semiparametric AFT models is a robust method for
survival prediction when there is unknown heterogeneity
in the data, application of both types of analyses is still
inadequate in a number of situations. Instead, it might be
advisable to fit a fully parametric AFT model with an
explicitly specified distribution of the survival outcome,
such as the Weibull or the log-logistic distribution [2].

As an example we consider a high-dimensional set of
microarray data originally analyzed in a classification con-
text by Barrier et al. [27]. The authors collected a sample
of 50 patients operated on for a stage II colon adenocarci-
noma. 25 patients developed a metachronuous metasta-
sis, whereas the other 25 patients remained disease free
for at least 60 months. For each patient the expressions of
22,283 genes were obtained. Barrier et al. [27] selected a
sample consisting of the 30 most differentially expressed
genes between the disease and the disease-free group. By
applying diagonal linear discriminant analysis based on
the expressions of the 30 genes, the authors achieved a
high prediction accuracy (76.3%) for the two patient
groups. In the following we will address the equally
important problem of modeling the time to development
of metachronuous metastasis.

Figs. 1 and 2 show the results of a preliminary survival
analysis of the Barrier stage II colon cancer data: Here only
the 14 most differentially expressed genes between the
disease and the disease-free group (i.e., the genes with p-
values less than or equal to 0.005) were used as predictor
variables. The Cox-Snell residuals shown in Fig. 1 suggest
that a parametric AFT model with either a log-logistic or a
lognormal distribution fits the data best. The Cox propor-
tional hazards model does not seem to be appropriate,
which is further confirmed by the results shown in Fig. 2:
Here the parameters of a stratified Cox model were esti-
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mated, where the strata were defined by splitting the val-
ues of the most overexpressed gene in the disease group at
their median. The two baseline hazard functions shown in
Fig. 2 cross, so the proportional hazards assumption
seems to be violated.

Although the preliminary analysis is by no means suffi-
cient for building a survival model from the Barrier data,
we have nevertheless gained valuable insight into the dis-
tribution of the survival times. How should we incorpo-
rate this "prior knowledge" into a boosting algorithm?
Fig. 2 suggests that using the Cox partial likelihood as a
loss function for boosting is at least questionable, since
the Cox model is known to be sensitive with respect to

violations of the proportional hazards assumption (see
Schemper [28]). On the other hand, Fig. 1 suggests that
the survival times of the Barrier data either follow a log-
logistic distribution or a lognormal distribution, so fitting
a semiparametric AFT model without any distributional
assumption might be inefficient (given that we only have
50 observations with 50% of them being censored). In
order to account for these issues, we focus on the develop-
ment of a boosting algorithm for parametric AFT models.
An algorithm of this type has not yet been developed in
the literature, since AFT models include a scale parameter
for modeling the variance of the error distribution in the
regression equation. With maximum likelihood estima-
tion of AFT models, this scale parameter is estimated

Cox-Snell residuals obtained from fitting various survival models to the Barrier dataFigure 1
Cox-Snell residuals obtained from fitting various survival models to the Barrier data. The upper left panel shows 
the Cox-Snell residuals of a semiparametric Cox model vs. the Nelson-Aalen estimate of their cumulative hazard function. Esti-
mates were obtained from fitting a Cox proportional hazards model to the Barrier data via maximization of the partial log like-
lihood. The 14 most differentially expressed genes between the disease and the disease-free group were used as predictor 
variables. The other panels show the Cox-Snell residuals (together with their cumulative hazard function) obtained from fitting 
various parametric AFT models to the same data via maximum likelihood estimation. Obviously, the lines corresponding to the 
Cox-Snell residuals of the log-logistic and lognormal models are closest to the line through the origin, indicating that these 
models fit the data best. By contrast, the Cox model and the Weibull model (which both assume proportional hazards) do not 
seem to fit the data well, indicating that the proportional hazards assumption is violated.
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simultaneously with the regression parameters. Boosting
algorithms, however, have so far not been able to deal
with scale parameters but only with the prediction func-
tion, i.e., with the regression parameters. This is the reason
why it has not been possible yet to use the negative log
likelihood function of an AFT model as a loss function for
boosting. In fact, boosting Cox models and semiparamet-
ric AFT models was only possible because these methods
do not include a scale parameter.

In the following we will introduce a new boosting algo-
rithm that allows for simultaneous estimation of both the
prediction function and the scale parameter in parametric
AFT models. This algorithm uses the negative log likeli-
hood of the AFT model as a loss function and works in a
stepwise fashion. After starting with some offset values of
the regression and scale parameters, a component-wise
base-learning procedure is applied to the negative gradi-
ent in each iteration, and an update of the prediction
function is obtained. Afterwards, the scale parameter is re-
estimated in each iteration by plugging the current esti-
mate of the prediction function into the loss function and
by minimizing the loss function over the scale parameter.
As a base-learning procedure we use the classical linear

least squares approach, i.e., the final model can be inter-
preted as a survival fit depending on a linear predictor.

The characteristics of the new algorithm are first investi-
gated by means of a simulation study with artificial data.
It is shown that variable selection is carried out efficiently,
and that the algorithm has a high predictive power if com-
pared to the "null models" with no covariates at all. Also,
the regression estimates of boosting in low-dimensional
settings turn out to be almost identical to the correspond-
ing maximum likelihood estimates. To show the practical
applicability of the new algorithm, we carry out a detailed
study on the above introduced data set by Barrier et al.
[27]. Evaluating the performance measures of this study
suggests that boosting with the negative log likelihood of
a parametric AFT model is able to outperform boosting
with the Cox partial log likelihood, at least in case of the
Barrier data.

Methods
Estimation problem

Consider a set of realizations of i.i.d. random variables
(T1, C1, X1),..., (Tn, Cn, Xn), where T1,..., Tn are one-dimen-

sional survival times, C1,..., Cn are one-dimensional cen-

soring times, and X1,..., Xn are p-dimensional vectors of

covariates. It is assumed that some of the survival times
T1,..., Tn are right-censored, so that only the random vari-

ables  := min{Ti, Ci}, i = 1,..., n, are observable. This

implies that the available data consist of realizations of 

and of the set of censoring indicators δi ∈ {0, 1}, where δi

= 0 if observation i is censored and δi = 1 if the complete

survival time Ti has been observed. It is further assumed

that the Ci, i = 1,...,n, are independent of (Ti, Xi), i = 1,...,n.

This corresponds to the classical case of "random censor-
ing". The objective is to fit the accelerated failure time
model

log(T) = f(X) + σW, (1)

where (T, X) follows the same distribution as each of the
(Ti, Xi), i = 1,...,n, and where W is a random noise variable
independent of X. The function f is an unknown predic-
tion function of log(T), and σ is an unknown scale param-
eter that controls the amount of noise added to the
prediction function f. Typically, f is a linear or additive
function of the covariates X.

The distributional assumption on the noise variable W
determines the distributional form of the survival time T.
If this distribution is fully specified, we refer to Model (1)
as a parametric AFT model. For example, if W follows a

�Yi

�Yi

Estimated log cumulative hazard functions obtained from fit-ting a stratified Cox model to the Barrier dataFigure 2
Estimated log cumulative hazard functions obtained 
from fitting a stratified Cox model to the Barrier 
data. Estimates were obtained via maximization of the strat-
ified partial log likelihood. The strata were generated by split-
ting the expression values of the most overexpressed gene in 
the disease group (202500_at) at their median. The remain-
ing 13 of the 14 most differentially expressed genes were 
used as predictor variables in the stratified Cox model.
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standard extreme value distribution, T (given X) follows a
Weibull distribution with parameters λ:= exp(- f/σ) and
α:= 1/σ (cf. Klein and Moeschberger [29]). Other popular
examples of parametric AFT models are the log-logistic
distribution for T|X (with W following a standard logistic
distribution) and the lognormal distribution for T|X (with
W following a standard normal distribution). It is impor-
tant to note that the latter two models explicitly allow for
non-proportional hazards. The Weibull distribution is a
parametric example of the well-known Cox proportional
hazards model (which does not necessarily assume a
regression equation such as (1) but is instead based on a
semiparametric model for the hazard function of T|X).

Classically, the estimation of f and σ in a parametric AFT
model is performed by maximizing the log likelihood
function

where Yi := log(min{Ti, Ci}) is the logarithm of . The

functions fW and SW denote the probability density and

survival functions of the noise variable W, respectively (cf.
Klein and Moeschberger [29], Chapter 12).

Semiparametric AFT models leave the parameter σ and the
distribution of the noise variable W in Model (1) unspec-
ified. Instead of using maximum likelihood techniques, f
is estimated via minimization of a censoring-adjusted
least squares criterion [2,10,30].

FGD boosting with component-wise linear least squares 
and scale parameter estimation
In the following we will use boosting techniques for
obtaining precise estimates of Model (1) when the
number of covariates is large. We start by considering a
boosting algorithm known as "component-wise linear
functional gradient descent (FGD)" [16,17,21,31]. The
objective of FGD is to obtain the real-valued prediction
function

f* := argminf(·)E [ρ(Y, f(X))], (3)

where the one-dimensional function ρ is a convex loss
function that is assumed to be differentiable with respect
to f. Estimation of f* is performed by minimizing the

empirical risk  with respect to f. Compo-

nent-wise FGD works as follows:

1. Initialize the n-dimensional vector  with an offset

value, e.g., . Set m = 0.

2. Increase m by 1. Compute the negative gradient

 and evaluate at , i = 1,...,n. This

yields the negative gradient vector

3. Fit the negative gradient U[m-1] to each of the p compo-
nents of X (i.e., to each covariate) separately by p times
using a simple linear regression estimator. This yields p
estimates of the negative gradient vector U[m-1].

4. Select the component of X which fits U[m-1] best accord-

ing to a pre-specified goodness-of-fit criterion. Set 
equal to the fitted values from the corresponding best
model fitted in Step 3.

5. Update , where 0 <ν ≤ 1 is a real-

valued step length factor.

6. Iterate Steps 2–5 until m = mstop for some stopping iter-
ation mstop.

The above algorithm can be interpreted as a negative gra-
dient descent algorithm in function space. In each step, an
estimate of the true negative gradient of the loss function
is added to the current estimate of f*. Thus, a structural
(regression) relationship between Y and the covariate vec-
tor X is established (for details on the characteristics of
FGD we refer to Bühlmann and Hothorn [22]). Moreover,
FGD carries out variable selection in each iteration, as
only one component of X is selected in Step 4. This prop-
erty makes the algorithm applicable even if p > n. Due to
the additive structure in Step 5, the final boosting estimate
at iteration mstop can be interpreted as a linear model fit
but will typically depend on only a subset of the p compo-
nents of X.

As we want to use FGD for the estimation of parametric
AFT models, we set ρ equal to the negative log likelihood
function specified in (2). However, in this case, the stand-
ard FGD algorithm presented above can not be applied, as
(2) includes an additional scale parameter σ that has to be
estimated simultaneously with f. We therefore extend the
classical FGD algorithm in the following way:
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1. Initialize the n-dimensional vector  with an offset

value, e.g., . In addition, initialize the one-dimen-

sional scale parameter with an offset value, e.g., .
Set m = 0.

2. Increase m by 1. Compute the negative gradient

 and evaluate at , i = 1,...,n, and

at . This yields the negative gradient vector

3. Fit the negative gradient U[m-1] to each of the p compo-
nents of X (i.e., to each covariate) separately by p times
using a simple linear regression estimator. This yields p
estimates of the negative gradient vector U[m-1].

4. Select the component of X which fits U[m-1] best accord-

ing to a pre-specified goodness-of-fit criterion. Set 
equal to the fitted values from the corresponding best
model fitted in Step 3.

5. Update , where 0 <ν ≤ 1 is a real-

valued step length factor. Plug into the empirical risk

function and minimize the empirical

risk over σ. This yields the scale parameter estimate .

6. Iterate Steps 2–5 until m = mstop for some stopping iter-
ation mstop.

It is easily seen that the modified FGD algorithm estimates
f* and σ in a stepwise fashion: In Steps 3 and 4, f* is esti-
mated for a given value of σ, while in Step 5, σ is esti-
mated given the current estimate of f*. It is also clear from
Step 4 that the built-in variable selection mechanism of
FGD is not affected by the additional estimation of the
scale parameter σ. The value of the stopping iteration mstop
is the main tuning parameter of FGD. In the following we
will throughout use five-fold cross-validation for deter-
mining the value of mstop, i.e., mstop is the iteration with
lowest predictive risk. The choice of the step-length factor
ν has been shown to be of minor importance for the pre-
dictive performance of a boosting algorithm. The only
requirement is that the value of ν is "small", such that a
stagewise adaption of the true prediction function f* is
possible (see Bühlmann and Hothorn [22]). We therefore
set ν = 0.1. As a goodness-of-fit criterion in Step 4 we use
the R2 measure of explained variation which is known
from linear regression.

Measures for the predictive power of boosting techniques
After having built a survival model from a set of microar-
ray data, it is essential to evaluate the predictive perform-
ance of the model. To this purpose, various measures of
predictive accuracy have been proposed in the literature
[32-37]. Since none of these measures has been adopted
as a standard so far, we use the following strategy for
measuring the performance of a survival prediction rule:

a) Log-Likelihood
If the objective is to compare prediction rules obtained
from the same model family (such as the family of Weibull
distributions), we use the predictive log likelihood or par-
tial log likelihood as a measure of predictive accuracy. The
predictive log likelihood or partial log likelihood is
defined as follows: Suppose that the parameter vector θ of
a survival model has been estimated from a training sam-
ple, and that a test sample (Tk, Ck, Xk), k = 1,...,ntest, is used
for evaluating the predictive accuracy of the model.
Denote the log likelihood or partial log likelihood func-
tion of the survival model by lθ(T, C, X). The predictive log
likelihood is then given by

where the parameter estimate  has been plugged into
the log likelihood or partial log likelihood of the test sam-

ple. In case of a parametric AFT model we have θ = (f, σ),

whereas in case of a Cox model, θ is the prediction func-
tion f used for modeling the hazard rate of T|X. In a boost-
ing context it is particularly advisable to use (4) as a
measure of predictive accuracy, since the negative log like-
lihood or partial log likelihood is used as a loss function
for the corresponding boosting algorithms. As a conse-
quence, the loss function is measured on the same scale as
the predictive accuracy (4).

b) Brier-Score
If the objective is to compare prediction rules obtained
from different model families or estimation techniques, it
is no longer possible to use the predictive log likelihood
as a measure of predictive accuracy. This is because the
likelihood and partial likelihood functions of different
model families are usually measured on different scales,
so they can not be compared directly. Moreover, many
nonparametric and semiparametric estimation tech-
niques do not involve likelihood functions at all, imply-
ing that a predictive likelihood value can not be
computed.
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In case of the Barrier data we will compare the perform-
ance of various parametric and semiparametric estimation
techniques by using the Brier score [34,37] as a measure
of predictive accuracy. The Brier score is defined as the
time-dependent squared distance between the predicted
survival probability and the true state of an observation.
Since the Brier score is not based on any specific model
assumptions, the predictive accuracy of various model
families and estimation techniques can be measured on
the same scale. Also, possible misspecifications of a sur-
vival model are taken into account [37]. In this paper we
use the methodology of Gerds and Schumacher [38] who
combined the evaluation of the Brier score with the
0.632+ estimator developed by [39]. This methodology
has been used previously for predicting survival outcomes
from microarray data sets [25].

We first draw B bootstrap samples of size n from the data,
where the bootstrapped observations constitute the train-
ing data sets and the out-of-bootstrap observations consti-

tute the test data sets. Define Γi(t) := I(Ti > t), i = 1,...,n, for

each time point t > 0. Further denote by , i = 1,...,n,

the survival function of observation i at time point t esti-
mated from the complete data set. We compute the appar-
ent error rate

where

are weights that are introduced to account for censoring

[37]. The expression  denotes the Kaplan-Meier esti-
mate of the distribution of the censoring times Ci, i =

1,...,n. For each bootstrap sample and for each time point
t we further compute the out-of-bag error rates

where nb is the cardinality of the set  of out-of-boot-

strap observations corresponding to bootstrap sample b, b

= 1,..., B. The expression  is the estimated survival

function of the out-of-bootstrap observation i at time
point t obtained from the bootstrap training sample b.

Denote the cross-validated error rate, i.e., the mean or
median of the out-of-bag error rates Errb(t), b = 1,...,B, by

.

Both (5) and (7) are estimators of the true prediction error

E[Γ(t) - S(t, X)]2, where S(t, X) is the true survival function
of T|X at time point t. Since (7) is an upward-biased esti-
mator and (5) is a downward-biased estimator of the true
prediction error (see Gerds and Schumacher [38]), we use

a linear combination of err(t) and  as the overall

measure of accuracy at time point t:

Defining ω(t) := 0.632/(1 - 0.368R(t)) with

 and

yields the 0.632+ estimator of the Brier score at time point
t. For a detailed derivation of (9) we refer to Gerds and
Schumacher [38] and Efron and Tibshirani [39]. In case of
the Barrier data, we evaluate (9) at each time point t > 0
up to a survival time of five years (i.e., tmax = 60 months).
This yields a prediction error curve depending on t, where
0 <t ≤ tmax.

Results and Discussion
In this section we investigate the properties of the new
boosting algorithm for parametric AFT models. We first
conduct a simulation study with artificial data. After-
wards, we investigate the ability of boosting to predict sur-
vival outcomes from gene expression data. This is done by
conducting a benchmark study on the Barrier stage II
colon cancer data. All computations were carried out with
the R system for statistical computing (version 2.6.2, [40])
using a modification of the glmboost() function in pack-
age mboost (version 1.0–1, [41]).

Simulation study with artificial data
We carried out a simulation study on linear AFT models
with five covariates, i.e., we considered the model

log(T) = β1X1 + ... + β1X5 + σW, (10)

where X1,...,X5 are jointly normally distributed covariates
with parameters E(Xk) = 0, var(Xk) = 1, and cov(Xk, Xl) =
0.5, k, l = 1,... 5, k ≠ l. The data values of the noise variable
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W were either drawn from a standard extreme value distri-
bution (corresponding to the Weibull model), from a
standard logistic distribution (corresponding to the log-
logistic model), or from a standard normal distribution
(corresponding to the lognormal model). For each of the
three distributions the scale parameter σ was chosen such
that

i.e., the linear predictor f(X) accounted for 80% of the var-
iance of log(T). The parameter vector β:= (β1,...,β5)® was
set equal to β = (0.5, 0.25, —0.25, —0.5, 0.5)®.

In a first step, we compared the estimates of β obtained
from the new boosting algorithm with the corresponding
estimates obtained from standard maximum likelihood
estimation. For each of the three distributions of W, we
generated 50 i.i.d. data sets (of size n = 100 each) from
Model (10). Censoring was introduced to the data by sim-
ulating 50 additional i.i.d. data sets (of size 100 each)
from Model (10). The values of the dependent variables in
these additional data sets constituted the censoring times
of the corresponding first 50 data sets. This implied that
(a) the censoring times followed the same distribution as
the survival times but were independent from the latter,
and that (b) about 50% of the observations in each data
set were censored on average. The new boosting algorithm
with the corresponding negative log likelihood loss func-
tion was applied to each data set. Note that the final
boosting estimate can be interpreted as a linear model fit
(depending on a parameter estimate of β), since we used
component-wise linear base-learners. We additionally
used standard maximum likelihood techniques for esti-
mating the parameters of Model (10) from the 50 data
sets.

The boxplots of the parameter estimates of the Weibull
model are shown in Fig. 3. Obviously, the parameter esti-
mates obtained from boosting are very similar to the
parameter estimates obtained from maximum likelihood
estimation. Similar results were obtained for the log-logis-
tic and lognormal models. This can also be seen from the
Spearman correlations between the parameter estimates
shown in Table 1. We next compared the ability of boost-
ing and of standard maximum likelihood techniques to
select a subset of informative covariates out of a larger set
of covariates. To this purpose, we extended the set of var-
iables used for the previous simulation study by an addi-
tional set of 15 independent standard normally
distributed covariates with parameters β6 = ... = β20 = 0.
Fig. 4 shows the resulting parameter estimates obtained
from boosting and from maximum likelihood estimation.
Obviously, all estimates of the "non-informative" param-

eters β6,...,β20 are close to the true value of 0. In 33.7% of
all 15 · 50 cases, the boosting parameter estimates of
β6,...,β20 are exactly 0, which means that non-informative
covariates have not been selected. The corresponding per-
centage rates were 32.1% and 21.5% for the log-logistic
and the lognormal model, respectively. In addition, the
boosting parameter estimates corresponding to β6,...,β20
have a smaller variance than the corresponding maximum
likelihood estimates. For these reasons, boosting seems to
be preferable to likelihood estimation when it comes to
variable selection. It can also be seen from Fig. 4 that the
boosting estimates of the non-zero parameters β1,...,β5 are
(slightly) downward-biased. This shrinking effect reflects
the well-known bias-variance trade-off which is common
to boosting techniques.

We finally investigated the predictive performance of the
new boosting algorithm and of maximum likelihood esti-
mation techniques. To this purpose, we used the model
estimates obtained from the 50 data sets for predicting the
likelihood of 50 additionally generated i.i.d. test samples
of sample size ntest = 100 each (which also followed
Model (10)). The corresponding predictive log likelihood
values, which are shown in Fig. 5, suggest that the predic-

var( )
var( ) var( )

. ,
β β

β β σ
1 1 1 5

1 1 1 5
0 8

X X
X X W

+ +
+ + +

=…
…

(11)

Boxplots of the Weibull parameter estimates when 5 inform-ative covariates are presentFigure 3
Boxplots of the Weibull parameter estimates when 5 
informative covariates are present. Boxplots of the esti-
mates of β = (0.5, 0.25, -0.25, -0.5, 0.5)®, as obtained from 
the 50 Weibull-distributed samples following Model (10). 
Grey boxplots correspond to boosting estimates, white box-
plots correspond to maximum likelihood estimates. Similar 
results were obtained for the log-logistic and lognormal 
models.
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tive performance of boosting is better than the predictive
performance of maximum likelihood estimation. A Wil-
coxon paired-sample test for the predictive log likelihood
values of boosting and maximum likelihood estimation
resulted in a p-value of less than 0.001. For the log-logistic
and lognormal models, the respective p-values were also
smaller than 0.001.

Benchmark experiment on stage II colon cancer data
In order to show the practical applicability of the new
boosting algorithm for parametric AFT models, we con-
ducted a benchmark study on the Barrier stage II colon

cancer data [27]. Again we used (1) the negative Weibull
log likelihood, (2) the negative log-logistic log likelihood,
and (3) the negative lognormal log likelihood as loss
functions for boosting. To compare boosting for paramet-
ric AFT models with other estimation techniques, we addi-
tionally fitted survival models by using (4) L2Boosting for
semiparametric AFT models [26], (5) L1 penalized estima-
tion for semiparametric AFT models [11] (using the lars()
function in R package lars [42]), (6) gradient boosting
with the negative Cox partial log likelihood loss [23], (7)
L1 penalized Cox partial likelihood estimation (using the
coxpath() function in R package glmpath [43]), and (8)
nonparametric estimation of the survival function via the
Kaplan-Meier estimator. The latter estimator corresponds
to the non-informative "null model" with no covariates at
all.

We applied the eight estimation techniques to 50 boot-
strap training samples generated from the Barrier data.
Prediction errors were obtained by using the 0.632+
methodology, as described in the Methods section. For
computational reasons we reduced the predictor space for
the L1 penalized methods (5) and (7), i.e., we used the

Boxplots of the predictive Weibull log likelihood estimatesFigure 5
Boxplots of the predictive Weibull log likelihood esti-
mates. Boxplots of the predictive Weibull log likelihood 
estimates, as obtained from the 50 Weibull-distributed test 
samples following Model (10). The predictive log likelihood 
values of the null model were obtained via maximum likeli-
hood estimation with no covariates and an intercept only. 
Similar results were obtained for the log-logistic and lognor-
mal models.
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Table 1: Spearman correlations between the parameter 
estimates of Model (10). Spearman correlations between the 
boosting estimates and the maximum likelihood estimates, as 
obtained from the 50 samples following Model (10).

Weibull 0.9745 0.9710 0.9607 0.9568 0.9741
Log-logistic 0.9615 0.9700 0.9309 0.9506 0.9698
Lognormal 0.9980 0.9991 0.9986 0.9979 0.9983

β̂1 β̂2 β̂3 β̂4 β̂5

Boxplots of the Weibull parameter estimates when 5 inform-ative and 15 additional non-informative covariates are presentFigure 4
Boxplots of the Weibull parameter estimates when 5 
informative and 15 additional non-informative cov-
ariates are present. Boxplots of the estimates of β1,...,β20, 
as obtained from the 50 Weibull-distributed samples follow-
ing Model (10). Grey boxplots correspond to boosting esti-
mates, white boxplots correspond to maximum likelihood 
estimates. Similar results were obtained for the log-logistic 
and lognormal models.
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10,218 most differentially expressed genes between the
disease and the disease-free group instead of all 22,283
genes. The subset of 10,218 genes corresponds to those
genes whose differences between the disease and the dis-
ease-free group are significant at a level of α = 0.2. This
reduction of the predictor space did not have any negative
effect on the predictive performance of the two L1 penal-
ized techniques (see later). The tuning parameters of all
eight methods were determined by using five-fold cross
validation.

The survival functions of the eight methods, which are
needed for computing the Brier score, were estimated as
follows: For the "parametric" boosting methods (1), (2),
and (3), we estimated the survival functions by plugging

the estimated prediction function  into the Weibull, log-

logistic, and lognormal survival functions, respectively. In
case of L2Boosting and L1 penalized estimation for semi-

parametric AFT models (methods (4) and (5)) we made
use of the following relationship:

S(t, X) = P(T > t|X) = P(f(X) + ε > log(t)|X) = P(ε > log(t) - 
f(X)|X), (12)

where ε := σW. We then estimated the probability on the
right-hand side of (12) by applying the Kaplan-Meier esti-

mator to the residuals  obtained from the bootstrap

training samples and by evaluating the Kaplan-Meier sur-

vival functions at "time points" . In case of

boosting with the Cox partial log likelihood loss and L1

penalized Cox regression (methods (6) and (7)) we used
the estimated survival function

where  is the Breslow estimator of the cumulative

baseline hazard of the survival times.

Fig. 6 shows the median prediction error curves corre-
sponding to the parametric AFT boosting techniques (1),
(2), and (3). Obviously, the prediction error curves cross,
so the predictive performance of the models depends on
the time point t under consideration. However, for most
values of t, boosting with the negative log-logistic or neg-
ative lognormal log likelihood loss yields the smallest pre-
diction error. In Fig. 7 the median prediction error curve
corresponding to the log-logistic model is compared to
the median prediction error curves obtained from the two
techniques for semiparametric AFT models (4) and (5).
Here the parametric AFT model seems to have the best
predictive performance, indicating that the efficiency loss

due to the semiparametric estimation of the AFT model is
relatively large. In Fig. 8 the median prediction error curve
of the log-logistic model is compared to the median pre-
diction error curves obtained from the two partial log like-
lihood techniques (6) and (7), as well as to the median
prediction error curve obtained from the "null model"
(8). Again we see that boosting with the negative log-
logistic log likelihood has the best predictive perform-
ance.

We finally computed the Cox-Snell residuals from the
boosting estimates based on the complete data set. The
residuals, which are shown in Fig. 9, confirm the results
obtained from the preliminary analysis of the Barrier data
presented in the Background section: Similar to Fig. 1, we
see that the log-logistic model fits the data well, while the
Cox proportional hazards model seems to be inadequate
here.

Conclusion
By introducing a boosting algorithm for parametric AFT
models we have extended the methodology for modeling
survival times in high-dimensional data settings. Boosting
algorithms for survival data have previously been devel-
oped for the Cox proportional hazards model [23,24] and
for semiparametric AFT models [26]. An extension of
these algorithms to parametric AFT models has not been

f̂

ε̂ i

log( ) ( )t f Xi−

ˆ( , ) exp ˆ ( )exp( ˆ) ,S t X t f= −⎡
⎣

⎤
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Analysis of the Barrier stage II colon cancer data – prediction error curves for various parametric AFT modelsFigure 6
Analysis of the Barrier stage II colon cancer data – 
prediction error curves for various parametric AFT 
models. Prediction error curves obtained from boosting 
with the negative log-logistic log likelihood, boosting with the 
negative Weibull log likelihood, and boosting with the nega-
tive lognormal log likelihood.
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possible so far, since parametric AFT models depend on a
scale parameter which has to be estimated simultaneously
with the prediction function. To overcome this problem
we have developed a flexible boosting algorithm which is
able to deal with loss functions depending on both the pre-
diction function and a scale parameter. As a consequence,
the negative log likelihood function of an AFT model can
be used as a loss function for the component-wise func-
tional gradient descent boosting algorithm.

The simulation study on various parametric AFT models
has shown that the favorable properties of boosting with
respect to variable selection are left untouched by the
additional estimation of the scale parameter. Moreover,
when sample sizes are small (such that a semiparametric
estimation of AFT models becomes inefficient) or when
the proportional hazards assumption of the survival times
is violated, boosting techniques for parametric AFT mod-
els seem to lead to an increase in prediction accuracy. This
is suggested by the results obtained from the benchmark
study on Barrier's stage II colon cancer data. We finally
point out that we have so far focused exclusively on boost-
ing with the component-wise linear base-learning proce-
dure. This procedure fits a set of simple linear regression
models to the negative gradient in each boosting iteration.

We have used component-wise linear least squares mainly
because of their computational efficiency. In fact, compo-
nent-wise linear least squares base-learners are highly effi-
cient even when the number of predictors is extremely
large (such as in case of Barrier's stage II colon cancer data,
where p > 22,000). In principle, however, the new boost-
ing algorithm can also be extended to additive models
with smooth components. This can, for example, be done
by using component-wise smoothing splines (see Bühlm-
ann and Yu [17]) or P-splines as base-learners. Moreover,
the boosting algorithm developed in this paper is not
exclusively designed for fitting parametric AFT models but
could also be used in combination with other likelihood-
based loss functions depending on a scale parameter. The
properties of these extensions still have to be investigated
and constitute an issue for future research.
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experiments, and wrote the initial version of the manu-
script. TH is the primary author of the mboost package,
contributed to the design of the benchmark study and
revised the manuscript.

Analysis of the Barrier stage II colon cancer data – prediction error curves for various survival modelsFigure 8
Analysis of the Barrier stage II colon cancer data – 
prediction error curves for various survival models. 
Prediction error curves obtained from boosting with the 
negative log-logistic log likelihood, boosting with the negative 
Cox partial log likelihood, L1 penalized estimation of a Cox 
proportional hazards model (CoxPath), and nonparametric 
estimation via the Kaplan-Meier estimator.
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Analysis of the Barrier stage II colon cancer data – prediction error curves for parametric and semiparametric AFT modelsFigure 7
Analysis of the Barrier stage II colon cancer data – 
prediction error curves for parametric and semipara-
metric AFT models. Prediction error curves obtained 
from boosting with the negative log-logistic log likelihood, 
L2Boosting for semiparametric AFT models, and L1 penalized 
estimation for semiparametric AFT models (Lasso).
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