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Abstract

Background: More than 10 members of seven-transmembrane G protein-coupled receptors
(GPCRs) have been shown to work as coreceptors for human immunodeficiency virus type | (HIV-
1), HIV type 2 (HIV-2), and simian immunodeficiency viruses (SIVs). As a common feature of HIV/
SIV coreceptors, tyrosine residues are present with asparagines, aspartic acids or glutamic acids in
the amino-terminal extracellular regions (NTRs).

We noticed that a receptor for N-formylpeptides, FPRLI, also contains two tyrosine residues
accompanied by glutamic acids in its NTR. It was reported that monocytes expressing CCR5 and
FPRLI in addition to CD#4 are activated by treatment with ligands or agonists of FPRLI. Activated
monocytes down-modulate CCR5 and become resistant to infection by HIV-1 strains. Thus, FPRLI
plays important roles in protection of monocyptes against HIV-1 infection. However, its own
coreceptor activity has not been elucidated yet. In this study, we examined coreceptor activities of
FPRLI for HIV/SIV strains including primary HIV-I isolates.

Results: A CD4-transduced human glioma cell line, NP-2/CD4, is strictly resistant to HIV/SIV
infection. We have reported that when NP-2/CD4 cells are transduced with a GPCR having
coreceptor activity, the cells become susceptible to HIV/SIV strains. When NP-2/CD4 cells were
transduced with FPRLI, the resultant NP-2/CD4/FPRLI cells became markedly susceptible to some
laboratory-adapted HIV/SIV strains. We found that FPRLI is also efficiently used as a coreceptor
by primary HIV-1 isolates as well as CCR5 or CXCR4.

Amino acid sequences linked to the FPRLI use could not be detected in the V3 loop of the HIV-I
Env protein. Coreceptor activities of FPRLI were partially blocked by the forymyl-Met-Leu-Phe
(fMLF) peptide.
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Conclusion: We conclude that FPRLI is a novel and efficient coreceptor for HIV/SIV strains.
FPRLI works as a bifunctional factor in HIV-1 infection. Namely, the role of FPRLI in HIV-I
infection is protective and/or promotive in different conditions. FPRLI has been reported to be
abundantly expressed in the lung, spleen, testis, and neutrophils. We detected mRNA expression
of FPRLI in 293T (embryonal kidney cell line), C8166 (T cell line), HOS (osteosarcoma cell line),
Molt4#8 (T cell line), U25IMG (astrocytoma cell line), U87/CD4 (CD4-transduced glioma cell line),
and peripheral blood lymphocytes. Roles of FPRLI in HIV-1 infection in vivo should be further

investigated.

Background

More than 10 members of seven-transmembrane G pro-
tein-coupled receptors (GPCRs) support the entry of
human immunodeficiency virus type 1 (HIV-1), HIV type
2 (HIV-2), and simian immunodeficiency viruses (SIVs)
into target cells as coreceptors in collaboration with the
primary receptor CD4 [1,2].

A chemokine receptor (CKR), CXCR4, was firstly shown
to work as a coreceptor for HIV-1 strains [3]. Next, a CKR,
CCR5, was also identified as a coreceptor for HIV-1 strains
[4,5]. Infection of T cells or macrophages with HIV-1
strains that can use CCR5 as a coreceptor (i. e., R5 strains)
is an initial event in the establishment of HIV-1 infection
in vivo, since peoples harboring mutant alleles in the
CCR5 gene have been found to be highly resistant to
infection by HIV-1, even if they have been estimated to
have repeatedly been exposed to the viruses [6,7]. During
progression of stages in HIV-1 infection, HIV-1 strains
that use CXCR4 as a coreceptor (X4 strains), especially
subtype B strains, have been detected [8]. HIV-1 strains
that can use both CCR5 and CXCR4 (R5-X4 strains) often
emerge, but their roles in pathogenesis of acquired
immune deficiency syndrome (AIDS) remain to be eluci-
dated [9]. Thus, these two coreceptors, CCR5 and CXCR4,
have been thought to play major roles in HIV-1 infection
and the development of related disorders.

Some GPCRs, especially CKRs, play a major role in migra-
tion of lymphocytes (chemotaxis) and consequently in
the development of inflammation together with their lig-
ands, chemotactic cytokines (chemokines) [10-12]. CKRs
are classified into five groups, CC-, CXC-, CX3C-, and XC-
CKRs, and other CKRs according to the well conserved
amino acid motifs of their ligands [13]. Some CKRs have
been shown to act as coreceptors for HIV-1, HIV-2 or SIV
(HIV/SIV) strains. In addition to CCR5 and CXCR4, three
CC-CKRs, CCR2b, CCR3, CCRS8, and D6 have been
shown to be alternative coreceptors mainly used by R5 or
X4 HIV-1 strains [14-16]. Two CXC-CKRs, CXCR5/BLR1
and CXCR6/BONZO, act as coreceptors for several HIV/
SIV strains [17-19]. A CX3C-CKR, CX3CR1/V28, functions
as a coreceptor for several HIV-1 strains [20]. In addition
to CKRs, several GPCRs, e. g., AP] [21], ChemR23 [22],

GPR1 [23], GPR15 [24], RDC1 [25], and the leukotrien B4
receptor LTB4 [26], have been reported to work as core-
ceptors for HIV/SIV strains. However, the roles of these
coreceptors in HIV-1 infection in vivo have not been eluci-
dated [27].

We noticed that as a common feature of most CKRs, as
well as HIV/SIV coreceptors, tyrosine residues with aspar-
agines, aspartic acids or glutamic acids are present in the
amino-terminal extracellular regions (NTRs) [28,29]. A
receptor for N-formylpeptides, FPRL1, also contains two
tyrosine residues accompanied by glutamic acids in its
NTR [30]. FPRL1 has been reported to be expressed in the
lung, spleen, and testis, and in neutrophils, and to play an
important role in the activation of neutrophils [31].
Monocytes expressing FPRL1 in addition to CD4 are acti-
vated by treatment with ligands or agonists of FPRL1. Acti-
vated monocytes down-modulate CCR5 and thus become
resistant to infection by R5 HIV-1 strains. [32]. In this
report, we demonstrate that FPRL1 itself has the capacity
to support the entry of various HIV/SIV strains, including
primary HIV-1 isolates, into target cells as a novel corecep-
tor.

Results

FPRLI as a novel candidate HIVISIV coreceptor

Major HIV/SIV coreceptors, CCR5 and CXCR4, contain
tyrosines and these tyrosines in NTRs of CCR5 and CXCR4
have been demonstrated to be necessary for their corecep-
tor activities [28,33]. All CKRs reported to have HIV/SIV
coreceptor activities harbor tyrosines in their NTRs. Most
non-CKR GPCRs that were reported to function as HIV/
SIV coreceptors also harbor tyrosines accompanied by
aspartic acids, glutamic acids or asparagines in their NTRs
(Additional file 1).

Therefore, to discover a novel candidate coreceptors of
HIV/SIV, we constructed a phylogenetic tree of peptide
receptors for 36 GPCRs containing reported HIV/SIV core-
ceptors (20 CKRs, and 16 non-CKR GPCRs) using the
ClustalW program [72] (Fig. 1). The peptide receptors
were clustered into several distinct branches correspond-
ing to the subfamilies of GPCRs. In this phylogenetic tree,
we found that CKRs were closely related to each other and
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Phylogenetic tree of peptide receptors belonging to
the GPCR family. The phylogenetic tree for 20 CKRs and
|6 GPCRs related to CKRs was constructed by the Clus-
talW program [72] according to the methods described in
the DDBJ website (National Institute of Genetics, Center for
Information Biology and DNA Databank of Japan, http://
www.ddbj.nig.ac.jp). FPRLI is indicated by the arrow. GPCRs

reported to function as HIV/SIV coreceptors are indicated by
"nn

that all of the formylpeptide receptors reported so far,
FPRL1, FPRL2 and FPR1, constituted a distinct subgroup,
closely located at positions near CKRs and anaphylatoxin
receptors, some of which have been demonstrated to act
as coreceptors for HIV/SIV [22]. FPRL1, unlike FPRL2 or
FPR1, has tyrosine residues accompanied by asparagines,
aspartic acids, and glutamic acids in its NTR (see Addi-
tional file 1). Therefore, we focused on a formylpeptide
receptor, FPRL1, as a novel candidate coreceptor for HIV/
SIV.

Susceptibility of NP-2/CD4/FPRLI cells to cell line-adapted
HIV-1 strains

FPRL1 ORF DNA was amplified using cDNA made from
C8166 cell mRNA and cloned into the expression vector
pCX-bsr. The expression level of the FPRL1 gene in NP-2/
CD4 cells transfected with it, NP-2/CD4/FPRL1, was
determined by RT-PCR. mRNA expressions of CCRS5,
CXCR4, and GPR1 were also detected in NP-2/CD4/
CCR5, NP-2/CD4/CXCR4, and NP-2/CD4/GPR1 cells by
RT-PCR, respectively. A comparison of the intensity of
each PCR band shown in Fig. 2A suggests that the amount

http://www.retrovirology.com/content/5/1/52

of FPRL1 mRNA in NP-2/CD4/FPRL1 cells was 10-100
fold more abundant than the mRNA of CCR5 in NP-2/
CD4/CCR5 cells, CXCR4 in NP-2/CD4/CXCR4 cells or
GPR1 in NP-2/CD4/GPR1 cells.

To clarify whether FPRL1 has the ability to serve as a core-
ceptor, the susceptibility of NP-2/CD4/FPRL1 cells to nine
cell line-adapted HIV-1 strains was investigated. NP-2/
CD4/FPRL1 cells were found to be susceptible to the
GUN-1WT, GUN-4V, and GUN-7WT cell-line-adapted
HIV-1 strains: approximately 0.5, 5 and 30% of the cells
became HIV-1 antigen-positive on day 6 after infection,
respectively (Fig. 3A). NP-2/CD4/FPRL1 cells were resist-
ant to infection by IIIB, Ba-L, GUN-1V, GUN-4WT, GUN-
7V, and SF162 strains: less than 0.1% cells were HIV-1
antigen-positive on day 6 after infection. NP-2/CD4 cells,
in which no expression of the FPRL1, CCR5, CXCR4, or
GPR1 gene was detected by RT-PCR (Fig. 2B), were com-
pletely resistant to infection by all HIV-1 strains tested
(Fig. 3E), as previously described [49]. Thus, FPRL1 ena-
bled infection of several cell line-adapted HIV-1 strains as
a coreceptor.

As controls, the susceptibilities of NP-2/CD4/CXCR4, NP-
2/CD4/CCRS5, and NP-2/CD4/GPR1 cells to HIV-1 strains
were also examined. NP-2/CD4/CXCR4 cells were highly
susceptible to all HIV-1 strains, except the Ba-L and SF162
strains, when tested on day 6 after infection (Fig. 3B),
while NP-2/CD4/CCR5 cells were highly susceptible to
five HIV-1 strains, Ba-L, GUN-1WT, GUN-4WT, GUN-
7WT, and SF162, but not to the IIIB strain (Fig. 3C). NP-
2/CD4/GPR1 cells were susceptible to three HIV-1 vari-
ants, GUN-1V, GUN-4V, and GUN-7V, but not to three
HIV-1 strains, I1IB, Ba-L, and SF162 (Fig. 3D). The core-
ceptor uses of the cell line-adapted HIV-1 strains are sum-
marized (see Additional file 2) and as follows: IIIB
(coreceptor use, X4), Ba-L (R5), GUN-1WT (FPRL1-R5-
X4), GUN-1V (GPR1-X4), GUN-4WT (R5-X4), GUN-4V
(FPRL1-GPR1-X4), GUN-7WT (FPRL1-R5-X4), GUN-7V
(GPR1-X4), and SF162 (R5). We have reported that there
are one or two amino acid mutations in the V3 region of
gp120 between GUN-1WT and GUN-1V, between GUN-
4WT and GUN-4V, and between GUN-7WT and GUN-7V
[59]. Our results suggest that amino acid sequences of the
V3 region markedly affected FPRL1 use as a coreceptor by
HIV-1 strains.

FPRLI as a coreceptor for primary isolates of HIV-1

Next, we investigated whether FPRL1 also acts as a core-
ceptor for primary HIV-1 isolates. HIV-1 strains, AG204,
AG206, AG208, HCM303, HCM305, HCM308,
HCM309, HCM342, mIDU101, and mSTD104, were iso-
lated from PBLs derived from HIV-1-infected Vietnamese
or Myanmanese subjects and had been propagated only in
PBLs before this experiment.
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Expression of GPCR mRNA in various types of human cells detected by RT-PCR. (A) Relative amount of mRNA
expression for CCR5, CXCR4, FPRLI and GPRI in NP-2/CD4 cells expressing the coreceptors. RT-PCR was done using seri-
ally diluted (I:1, 1:10, 1:100, 1:1000, and 1:10000) cDNA reverse-transcribed from the total RNA. As a control, the expression
level of GAPDH mRNA in each cDNA preparation was determined by RT-PCR. (B) mRNA expression for four GPCRs in | |
kinds of human cells as detected by RT-PCR using the specific primers. As a control, the expression level of GAPDH mRNA in
each cDNA preparation was determined by RT-PCR. The PCR primers amplify 1,377 (CD4), 1,059 (CCR5 and CXCR4), 1,056
(FPRLI), 1,068 (GPR1), and 1,008 (GAPDH) base-pair DNA fragments when these genes are expressed in the cells. Expression
level, (-~++) were determined by intensities of amplified DNA bands compared to those of the corresponding controls

(GAPDH).

When NP-2/CD4/FPRL1 cells were exposed to these iso-
lates, the cells were found to be clearly susceptible to
AG204, AG206, HCM308, HCM342, and mSTD104 iso-
lates: 20, 30, 15, 40, and 60% cells, respectively, became
HIV-1 antigen-positive by IFA on day 6 after infection and
syncytia were formed (Figs. 4A and 5). A large number of
syncytia were formed in the infection of NP-2/CD4/
FPRLI1 cells with the AG206, HCM342, and mSTD104 iso-
lates, suggesting that replication of HIV-1 efficiently
occurred in these cells (data not shown). NP-2/CD4/
FPRL1 cells also demonstrated lower, but clear suscepti-
bilities to other isolates, AG208, HCM305, and HCM309.
NP-2/CD4/FPRL1 cells were not susceptible to HCM303
and mIDU101 isolates. Thus, eight out of the ten primary
HIV-1 isolates could infect NP-2/CD4/FPRL1 cells.

NP-2/CD4/CCRS5 cells were highly susceptible to AG204,
AG206, HCM308, HCM342, mIDU101, and mSTD104
isolates (Fig. 4B), and slightly susceptible to AG208,
HCM303, HCM305, and HCM309 isolates.

NP-2/CD4/CXCR4 cells showed a high susceptibility to
AG204, AG206, AG208, HCM303, HC305, HCM308, and
HCM309 isolate (Fig. 4C), while less than 1% of HIV-1
antigen-positive cells were detected after infection with
HCM342, mIDU101, or mSTD104 isolates. NP-2/CD4/
GPR1 and NP-2/CD4 cells were resistant to infection by
all of these primary isolates (Figs. 4D, 4E, and 5).

The phenotypes of the coreceptor uses of the primary HIV-
1 isolates were as follows (see Additional file 2): FPRL1-
R5-X4 use, AG204, AG206, AG208, HCM305, and
HCM308; FPRL1-R5 use, HCM342 and mSTD104;
FPRL1-X4 use, HCM309; R5 use, mIDU101, and X4 use,
HCM303. Thus, FPRL1 can work as a coreceptor not only
for cell line-adapted HIV-1 strains but also for primary
HIV-1 isolates.

Amino acid sequences of the V3 domain of the HIVISIV Env
protein

Cell line-adapted HIV-1 strains, GUN-4V (GPR1-X4) and
GUN-7WT (R5-X4), could not use FPRL1 as a coreceptor,
whereas their related strains, GUN-4WT and GUN-7V,
with one or two amino acid substitutions in the V3 region,
could use FPRL1 (Fig. 3 and see Additional file 2). This
finding raised the possibility that a determinant of the
FPRL1 use of HIV-1 as a coreceptor lies in the V3 region.
Therefore, we determined the amino acid sequences of the
V3 regions of primary HIV-1 strains propagated in NP-2/
CD4 cells expressing one of the coreceptors. DNA regions
coding for the V3 domain of gp120 were amplified by
PCR using cellular DNA of NP-2/CD4/FPRL1 cells
infected with AG204, AG206, HCM305, HCM309,
HCM342, or mSTD104 strains and NP-2/CD4/CXCR4
cells infected with the HCM303 strain as templates. These
amplified DNAs were cloned into the TA-cloning vector
pTarget and their nucleotide sequences were determined.
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Figure 3

Use of FPRLI, CCR5, CXCR4 or GPRI as a corecep-
tor by various cell line-adapted HIV-I strains. Cells
were inoculated with nine HIV-I strains. The susceptibilities
of the cells were determined by IFA six days after viral inocu-
lation. The coreceptor uses of these HIV-1 strains are sum-
marized (see Additional file 2). NP-2/CD4 cells were also
tested up to eight days after inoculation and were completely
resistant to all the HIV-1| strains examined.

http://www.retrovirology.com/content/5/1/52

When their nucleotide sequences were compared with
those of HIV-1 isolates submitted to the Genbank and
reported previously [34], several nucleotide substitutions
were observed in the V3 sequences of the primary isolates
infecting NP-2/CD4/CCR5, NP-2/CD4/CXCR4, or NP-2/
CD4/FPRL1 cells (data not shown).

No amino acid substitution, however, was detected in the
V3 domains, because all the nucleotide substitutions
detected in the V3 domains were synonymous (see Addi-
tional file 3). Single-amino acid substitutions were
detected in the C3 domain of AG206, HCM303, and
HCM342 strains propagated in FPRLI1-expressing cells.
These findings indicate that subtype C or AE HIV-1 strains
propagated in PBLs and those propagated in NP-2/CD4
cells expressing CCR5, CXCR4 or FPRL1 have the identical
amino acid sequences in the V3 domains. Nevertheless,
five HIV-1 strains using FPRL1, GUN-1WT, GUN-7WT,
HCM305, HCM309, and HCM342, had threonine at the
13th amino acid position of the V3 region, while two HIV-
1 strains which did not use FPRL1 as a coreceptor, GUN-
4WT and HCM303, had serine at this position. The amino
acids at this position may be responsible for determining
FPRL1 use by these HIV-1 strains.

HIV-1 samples produced by NP-2/CD4/FPRL1 cells that
had been infected with the AG204, AG206, HCM308, and
HCM342 strains could use CCRS5 as a coreceptor (data not
shown). These results suggest that the primary HIV-1 sam-
ples are not a mixture of FPRL1-tropic virus and R5-tropic
virus, and that HIV-1 isolates using FPRL1 can also use
CCRS5 as a coreceptor.

FPRLI as a coreceptor for HIV-2 and SIV strains

Next, we tested a coreceptor activity of FPRL1 for four
HIV-2 and SIV strains. NP-2/CD4/FPRL1 cells were highly
susceptible to two HIV-2 strains CBL23 and ROD/B:
about 60% of cells became HIV-2 antigen-positive on day
6 after infection (Fig. 6A). As for the GH-1 and SBL6669
HIV-2 strains, and mndGB-1 SIV strain, 30, 15, and 30%
of the cells, respectively, were infected. NP-2/CD4/FPRL1
cells were, however, resistant to the R5 SIV strain mac251.

As reported previously [49], NP-2/CD4/CCR5 cells were
susceptible to four HIV-2 strains (CBL23, GH-1, ROD/B,
and SBL6669) and two SIV strains (mac251 and mndGB-
1) (Fig. 6B). NP-2/CD4/CXCR4 and NP-2/CD4/GPR1
cells were susceptible to these four HIV-2 strains and the
mndGB-1 strain (Figs. 6C and 6D), but not to the mac251
strain. Thus, the coreceptor uses of HIV-2 and SIV strains
are summarized (see Additional file 2). FPRL1 may work
as a coreceptor for HIV-2 and SIV strains with an R5-X4-
GPR1 phenotype, but not those with an R5 phenotype.
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Figure 4

Use of FPRLI, CCR5, CXCR4 or GPRI as a corecep-
tor by various primary HIV-I isolates. The susceptibili-
ties of cells to HIV-1 isolates were determined by IFA six
days after viral inoculation. NP-2/CD4 cells were completely
resistant to all these HIV-1 isolates (E). The origins and sub-
types of these primary isolates are summarized (see Addi-
tional file 2).
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CD4 dependency of the coreceptor activity of FPRLI
Some HIV-2 strains have been shown to enter CD4-nega-
tive cells, and this entry is mediated through coreceptors
[35,36]. To clarify whether infection of HIV/SIV mediated
through FPRL1 is dependent on CD4 or not, NP-2/CD4/
FPRL1 and NP-2/CD4/CCRS5 cells were pretreated with
serially-diluted anti-CD4 MoAb, NuTH/I, before inocula-
tion. Relative percentages of infected cells are shown in
Fig. 7A. NuTH/I MoAb (10 pg/ml) almost completely
inhibited infection of NP-2/CD4/FPRL1 cells, as well as
NP-2/CD4/CCR5 cells, with all HIV/SIV strains tested, i.
e., GUN-7WT, HCM342, CBL23, and mndGB-1, suggest-
ing that FPRL1 mediates infection of HIV/SIV as a corecep-
tor, i. e., in a CD4-dependent manner.

Partial inhibition of the coreceptor activity of FPRLI by
the fMLF peptide

It has been reported that the coreceptor functions of CCR5
and CXCR4 for HIV-1 infection can be inhibited by their
ligands, RANTES and SDF-1, respectively [37,38]. Some
ligands have been used as starting materials to find and
develop anti-HIV reagents. We examined the inhibitory
effects of an FPRL1 ligand, fMLF peptide, on infection
with HIV/SIV.

NP-2/CD4/FPRL1 cells were pretreated with the fMLF
peptide (100 pg/ml). As a control, NP-2/CD4/CCR5 cell
were also pretreated with a chemokine, RANTES, a ligand
for CCR5. As shown in Fig. 7B, the fMLF peptide (100 pg/
) showed a partial inhibitory effect on infection of NP-2/
CD4/FPRL1 cells with GUN-7WT, HCM342, CBL23, or
the mndGB-1 strain. Infection of NP-2/CD4/CCR5 cells
with CBL23 and mndGB-1, but not with the GUN-7WT or
HCM342 strains, was also partially blocked by the pep-
tide, suggesting that the fMLF peptide may have inhibitory
effects on infection of CCR5-positive cells by several
strains of HIV/SIV. The difference in inhibitory effects of
the fMLF peptide may reflect the HIV/SIV strain-depend-
ent interaction with CCR5. On the contrary, as shown in
Fig. 7C, a chemokine, RATES, had hardly any effect on
infection of NP-2/CD4/FPRL1 cells with the HIV/SIV
strain. RANTES blocked infection of NP-2/CD4/CCR5
cells with HIV/SIV strains by 50-80%, as reported [37].

Expression of FPRLI mRNA in a wide variety of cells

We investigated the expression of FPRL1, CCR5, CXCR4,
and GPR1 mRNA in cells originating from various types of
human tissues by RT-PCR. CD4 and GAPDH mRNA were
detected as controls. Fig. 2B shows that FPRL1 mRNA was
detected abundantly in C8166 (T cell line), Molt4#8 (T
cell line), U251MG (astrocytoma), and 293T (embryonal
kidney) cells. Faint signals of FPRL1 mRNA were detected
in HOS (osteosarcoma), U87/CD4 (CD4-transduced gli-
oma cell line) cells, and PBLs. The expression levels of
FPRL1 mRNA in Molt4#8, U251MG, and 293T cells were
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The susceptibilities of NP-2/CD4/GPCR cells to HIV-
| strains. Cells were infected with two primary HIV-I iso-
lates, AG204 and mSTD 104, and a cell line-adapted strain,
Ba-L. Six days after infection, cells positive for HIV-1 antigens
were detected by IFA using a fluorescence microscope. Per-
centage of cells judged to be positive for IFA are shown.

estimated to be comparable to those of CXCR4 in these
cells. FPRL1 mRNA was, however, not detected in HepG2
(hepatoblastoma), Huh7 (hepatoma), or NP-2/CD4
(CD4-transduced glioma) cells. CCR5 mRNA was
detected in Molt4#8, U251MG, and 293T cells, even
though the levels were much lower than those of FPRL1
mRNA. CXCR4 mRNA was detected clearly in C8166 and
Molt4#8 cells, and weakly in 293T, HepG2, HOS, Huh7,
U251MG cells, and PBLs. CD4 mRNA was detected in BT-
20N, C8166, Molt#3, NP-2/CD4, U87/CD4 cells, and
PBLs. Similar amounts of GAPDH mRNA were detected in
all cells tested here. No signal was seen in RNA samples
without reverse transcriptase treatment, indicating that
the chromosomal DNA did not contaminate the cDNA
preparations. FPRL1 are expressed abundantly in various
types of cells derived from not only lymphoid tissues, but
also the brain.

Discussion

The genomic diversity of HIV-1 is thought to be generated
by the low fidelity of its reverse transcription and frequent
recombination of the genome [39]. Mutation of amino
acid sequences in the V3 domain of the Env can give HIV-
1 the ability to use various GPCRs as coreceptors. Core-
ceptors other than CCR5 and CXCR4, that are related to
the clinical involvement of the HIV-1 infection have not
yet been clarified. We planned to identify novel corecep-
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tors that can be frequently used not only by cell line-
adapted HIV-1 strains, but also by primary HIV-1 isolates.
In this study, we focused on a formylpeptide receptor,
FPRL1, which is located genetically close to CKRs in the
phylogenetic tree we made, containing three tyrosines in
its NTR (Fig. 1 and see Additional file 1) as a candidate for
a novel coreceptor.

First, we examined the coreceptor activity of FPRL1 for cell
line-adapted HIV/SIV strains. We found that FPRL1
worked as a coreceptor for several HIV-1 strains, GUN-4V
(coreceptor use: FPRL1-X4-GPR1) and GUN-7WT
(FPRL1-R5-X4), but not GUN-IWT (R5-X4), GUN-1V
(X4-GPR1), GUN-4WT (R5-X4), GUN-7V (X4-GPR1), I1IB
(X4), Ba-L (R5), or SF162 (R5) (Fig. 3). Thus, FPRL1 use
by cell line-adapted HIV-1 strains does not correlate with
their use of CCR5, CXCR4 or GPR1. We showed that the
R5-X4 phenotype of the GUN-4WT and GUN-7WT strains
can be changed to the X4-GPR1 phenotype of GUN-4V
and GUN-7V variants by one or two amino acid substitu-
tions at the V3 loop [59]. Therefore, the V3 loop is
thought to be a determinant of FPRL1 use, as well as GPR1
use, by HIV-1. Like other coreceptors for HIV-2 and SIV
strains, FPRL1 was also efficiently used by R5-X4-dual-
tropic HIV-2 and SIV strains (Fig. 6).

Next, to examine the possibility that FPRL1 is involved in
HIV-1 infection in vivo, we examined the susceptibility of
NP-2/CD4/FPRL1 cells to primary HIV-1 isolates. It is gen-
erally thought that coreceptors other than CCR5 or
CXCR4 are little used by primary HIV-1 isolates in vivo
[40]. We found, however, that FPRL1 could work as a
coreceptor for many primary HIV-1 isolates of subtype AE
or C (Figs. 4 and 5). NP-2/CD4/FPRL1 cells were suscep-
tible not only R5-X4 HIV-1 isolates (AG204, AG206,
AG208, HCM305, and HCM308), but also R5 HIV-1 iso-
lates (HCM342, and mSTD104) or an X4 HIV-1 isolate
(HCM3009) (see Additional file 2). NP-2/CD4/FPRL1 cells
were not susceptible to R5-tropic HCM303 and X4-tropic
mIDU101 isolates. Thus, we concluded that the FPRL1
use by HIV-1 strains does not coincide with the use of
CCR5, CXCR4 or GPR1.

The ratio of FPRL1 use was as high as 80% for the primary
HIV-1 isolates belonging to subtypes AE and C. This ratio
for subtype B primary HIV-1 isolates was, however, much
lower according to our preliminary examination (data not
shown), suggesting that FPRL1 use may be linked to infec-
tion with subtypes AE and C HIV-1.

It is intriguing that only a few cell line-adapted HIV-1
strains could use FPRL1 as a coreceptor, whereas many
primary HIV-1 isolates propagated in PBLs could do so. It
is probable that a population of HIV-1 that uses FPRL1 as
a coreceptor in addition to CCR5 or CXCR4 may have
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Figure 6

Use of FPRLI, CCR5, CXCR4 or GPRI as a corecep-
tor by HIV-2 and SIV strains. The susceptibilities of cells
to four HIV-2 strains and two SIV strains were determined
by IFA six days after viral inoculation. NP-2/CD4 cells were
completely resistant to these HIV-2 strains (E). These results
are summarized (see Additional file 2).
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been lost in the course of propagation of HIV-1 strains in
vitro using cell lines because it was markedly smaller than
the HIV-1 population which did not use FPRL1, but did
use CCR5 or CXCR4.

It has been shown that determinants for CCR5, CXCR4,
and GPR1 uses by HIV-1 strains lie in the V3 domain of
the Env protein [53,41]. Amino acid substitutions that are
apparently linked to FPRL1 use could be identified in the
V3 domain of GUN-1WT, GUN-4V, and GUN-7WT
strains. That is, the amino acid substitutions at the tip of
the V3 domain from proline to serine or from proline to
threonine can affect FPRL1 use by HIV-1. Therefore, we
examined the possibility that any specific amino acid sub-
stitution of the Env protein may give HIV-1 the ability to
use FPRL1 as a coreceptor in addition to CCR5 or CXCR4
use. Primary isolates, AG204, AG206, AG208, HCM305,
HCM308, HCM342, and mSTD104, were inoculated to,
and propagated in, NP-2/CD4/FPRL1 cells in addition to
NP-2/CD4/CCR5 or NP-2/CD4/CXCR4 cells. Then, HIV-
1 DNA in these cells was subjected to DNA sequencing.

A few nucleotide substitutions were detected in the the V3
domain of the env gene between HIV-1 propagated in NP-
2/CD4/FPRL1 cells and NP-2/CD4/CCR5 or NP-2/CD4/
CXCR4 cells (see Additional file 3). The deduced amino
acid sequences of the V3 domain of HIV-1 isolates propa-
gating in NP-2/CD4/FPRL1 cells were identical to those
propagated in NP-2/CD4/CCR5 or NP-2/CD4/CXCR4
cells. Furthermore, HIV-1 produced by NP-2/CD4/FPRL1
cells that had been infected with the HIV-1 isolates could
infect NP-2/CD4/CCR5 or NP-2/CD4/CXCR4 cells (data
not shown). Therefore, these primary isolates could use
FPRL1 as a coreceptor in addition to CCR5 and/or CXCRA4.
It is possible that the determinants of FPRL1 use can not
be separated from CCR5, CXCR4 or GPR1 use in HIV-1
strains. There is still another possibility that amino acid
mutations in regions other than the V3 domain give HIV-
1 strains the ability to use FPRL1 as a coreceptor.

fMLF peptides are bacterial products that have potent
chemotactic activities for phagocytes. It was reported that
FPRL1 activated by the fMLF peptide or peptides derived
from the Env glycoprotein gp120 of HIV-1 interferes with
the coreceptor function of CCR5 and CXCR4 by down-
regulating them, and as a result, these peptides prevent
HIV-1 infection [32,42,43]. Desensitization or down-reg-
ulation of CCR5 by the fMLF peptide has also been
observed in human immature dendritic cells, on which
both FPRL1 and CCRS5 are expressed [42].

In this study, a partially inhibitory effect of the fMLF pep-
tide on the FPRL1-mediated infection with HIV/SIV
strains was observed, while anti-CD4 MoAb NuTH/I
could almost completely block it (Figs. 7A and 7B). The
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Figure 7

Effects of anti-CD4 MoAb, the fMLF peptide, and RANTES on the susceptibility of cells to HIV/SIV strains. NP-
2/CD4/CCR5 (open symbols) and NP-2/CD4/FPRLI (closed symbols) cells were pretreated with anti-CD4 MoAb Nu-TH/I
(A), the fMLF peptide (B) or RANTES for two hours at 37°C (C), and then inoculated with two HIV-I strains, GUN-7WT (O
and @) and HCM342 ((J and M), HIV-2 CBL23 strain (A and A), and SIV mndGB-1 strain (¢ and #). Six days after infection,
cells positive for HIV-I antigens were detected by IFA using a fluorescence microscope.

regions of the coreceptors interacting with HIV or SIV are
reported to be distributed in extracellular domains such as
NTR and ECLs of GPCRs [44]. In contrast, the highly
hydrophobic fMLF peptide has been reported to bind to
the membrane-spanning region of FPRL1 [45]. Therefore,
we assume that the difference in the binding site between
the fMLF peptide and HIV-1 is one of the reasons why the
fMLF peptide could not efficiently interfere with the inter-
action of FPRL1 with HIV-1.

The fMLF peptide also partially inhibited infection of NP-
2/CD4/CCR5 cells with several HIV-2 or SIV strains (Fig.
7B). The amino acid sequences of the membrane-span-
ning regions are more conserved among GPCRs than
those of NTRs and ECLs. Between FPRL1 and CCR5, the
amino acid sequence homology of their membrane-span-
ning regions is about 30%, although that for their NTRs
and ECLs is about 8.5% (data not shown). Therefore, the
fMLF peptide might have a partially inhibitory effect on
infection of NP-2/CD4/CCR5 cells with the CBL23 and
mndGB-1 strains. The low, but apparent inhibitory effect
of the fMLF peptide on HIV-2 infection mediated by
CCRS5 suggests that it can be a starting material to develop
a novel anti-HIV drug.

Expression of the major coreceptor CCR5 or CXCR4 has
been detected in various cells (Fig. 2A) [46]. Expression of
FPRL1 mRNA was also detected in human cells derived
from a wide variety of origins, such as PBLs, C8166 (T
cells), Molt4#8 (T cells), 293T (embryonic kidney cells),
HOS (osteosarcoma cells), U251MG (astrocytoma cell),

and U87/CD4 (glioma cell) (Fig. 2A). In addition to these
cells, expression of the FPRL1 gene has been reported to
be detected in various types of cells such as neutrophils or
phagocytes, and in many organs [31,46], even though
their roles in human cells other than neutrophils remain
to be elucidated. Roles of coreceptors other than CCR5
and CXCR4 in HIV-1 infection and the pathogenesis of
AIDS should be investigated further.

Conclusion

FPRL1 is a novel and efficient HIV/SIV coreceptor. In par-
ticular, it should be noted that FPRLI is efficiently used by
primary HIV-1 isolates. FPRL1 works as a bifunctional fac-
tor in HIV-1 infection. Namely, FPRL1 works not only as
an inhibitory factor but also as an enhancing factor for
HIV-1 to enter target cells. Expression of FPRL1 gene was
detected in various types of tissues and cells. HIV1-infec-
tion mediated through FPRL1 may, therefore, play any
important roles in progression of complicated symptoms
of AIDS. The clinical significance of FPRL1 in HIV-1 infec-
tion in vivo should be further studied.

Methods

Cells

The human T cell line C8166 [48] and CCR5-transduced
C8166 cells, C8166/CCR5 [49], were used to propagate
viral stocks of HIV/SIV strains. NP-2/CD4 cells were estab-
lished by transducing the CD4 gene into a human glioma
cell line, NP-2, using a retrovirus vector as described else-
where [16,49]. The human T cell lines C8166, C8166/
CCR5, and Molt4#8 [50] were cultured in RPMI 1640
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medium (NISSUI Co. Ltd., Tokyo, Japan) containing 10%
fetal calf serum (FCS). The human osteosarcoma cell line
HOS [51] and CD4-transduced human glioma cell line
U87/CD4 [52,53], as well as NP-2/CD4 [49], NP-2/CD4/
CCR5 [49], NP-2/CD4/CXCR4 [49], and NP-2/CD4/
FPRL1 (see below) cells were cultured in Eagle's mini-
mum essential medium (NISSUI Co., Inc., Tokyo, Japan)
supplemented with 10% FCS. The human embryonal kid-
ney cell line 293T [54], human hepatoblastoma cell line
HepG2 [55], human hepatoma cell line Huh7, and
human astrocytoma cell line U251MG [56] were main-
tained in Dulbecco's modified Eagle minimum essential
medium (NISSUI Co., Inc., Tokyo, Japan) supplemented
with 10% FCS. Brain-derived fibroblast-like BT-20/N cells
[53,57], derived from the surgically dissected human
brain tissue of a patient with glioma and thought to orig-
inate from brain blood vessels, were cultured in RPMI
1640 medium containing 10% FCS, endothelial cell
growth supplements (BD Bioscience, Medford, MA) (10
pg/ml), and epidermal growth factor (10 ng/ml). Periph-
eral blood lymphocytes (PBLs) were isolated from healthy
blood donors as previously described [58]. PBLs were
stimulated with phytohemmagglutinin (PHA) and cul-
tured in RPMI 1640 medium containing 10% FCS and
recombinant IL-2 (100 U/ml).

Virus strains

Cell line-adapted R5-X4 HIV-1 strains (GUN-1WT [57],
GUN-4WT [59], and GUN-7WT [59]), GPR1-X4 HIV-1
variants (GUN-1V [57], GUN-4V [59], and GUN-7V [59]),
an X4 HIV-1 strain (IIIB [60]), R5 HIV-1 strains (SF162
[61] and Ba-L [62]), HIV-2 strains (CBL23 [63], GH-1
[64], ROD/B [65], and SBL6669 [66]), and SIV strains
(mac251 [67] and mndGB-1 [68]) were used. All of these
HIV-1 strains are classified as subtype B based on their
amino acid sequences of the Env protein [57-62]. The cul-
ture supernatants of C8166 cells infected with HIV/SIV
strains except SF162, Ba-L, and mac251 strains, were har-
vested as viral stocks when cytopathicity was microscopi-
cally observed. SF162, Ba-L, and mac251 strains were
propagated in C8166/CCRS5 cells as previously described
[49]. Primary HIV-1 isolates were propagated in PBLs and
used in this study. Their origins, subtypes, and Genbank
accession numbers of the env genes are described below.
AG204 (Vietnum, subtype AE, Genbank accession
number AB044003), AG206 (Vietnum, subtype AE,
AB044005), AG208 (Vietnum, subtype AE, AB044007),
HCM303 (Vietnum, subtype AE, AB044020), HCM305
(Vietnum, subtype AE, AB044022), HCM308 (Vietnum,
subtype AE, AB044024), HCM309 (Vietnum, subtype AE,
AB044025), and HCM342 (Vietnum, subtype AE,
AB044034), mIDU101 (Myanmar, subtype C,
AB097871), mSTD104 (Myanmar, subtype C, unpub-
lished).

http://www.retrovirology.com/content/5/1/52

PCR primers

Oligonucleotide primers were synthesized (Proligo K. K.,
Tokyo, Japan) to detect the expression of mRNA for CD4,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
CCR5, CXCR4, GPR1, or FPRL1 by reverse transcription
(RT)-PCR. Each gene name, followed by each sense and
antisense primer name, their nucleotide sequences and
positions in the open reading frame [DDBJ/EMBL/Gen-
bank accession number] are described below. CD4:
CDA4CN, 5'-ATGAACCGGGGAGTCCCITTTAG-
GCACTTG-3' (sense: from the 1st to the 30th position, i.
e. 1st-30th); and CDA4CR, 5'-TCAAATGGGGCTACAT-
GTCITCTGAAACCG-3' (anti-sense: 1,039th-1,068th)
[DDBJ/EMBL/Genbank accession number, NM000616].
GAPDH: G3PDHN, 5-TGAAGGGTCGGAGTCAACG-
GATITGGT-3' (sense, 11th-36th); and GAPDHR, 5'-
TAGACGGCAGGTCAGGTCCACCAC-3' (antisense,
724th-747th) [BT006893]. PCR primers used to detect
GPCR cDNA are as follows: CCR5: CCR5CN, 5'-ATGGAT-
TATCAAGTGTCAAGTCCAATCTAT-3' (sense,1st-30th);
and CCR5CR, 5'-TCACAAGCCCACAGATATTTCCT-
GCTCCCC-3' (antisense, 1,001st-1,030th) [NM000579].
CXCR4: CXCR4CN, 5-ATGGAGGGGATCAGTATATA-
CACITCAGAT-3' (sense: 1st-30th); and CXCR4CR, 5'-
'TTAGCTGGAGTGAAAACTTGAAGACTCAGA-3'  (anti-
sense, 979-1,008th) [NM003467]. FPRL1: FPRL1CN, 5'-
ATGGAAACCAACTTCTCCACTCCTCTGAAT-3'  (sense,
1st-30th); and FPRL1CR, 5'-TCACATTGCCTGTAACT-
CAGTCTCTGCAGG-3' (antisense, 1,027rd-1,056nd)
[M76672]. GPR1: GPRICN, 5'-ATGGAAGATTTGGAG-
GAAACATTATTTGAA-3' (sense, 1st-30th); and GPR1CR,
5'-TTATTGAGCTGITTCCAGGAGACACAGATT-3' (anti-
sense, 1,039th-1,068th) [U13666].

Detection of GPCR mRNA

Total RNA was isolated from human cells using an RNA
extraction kit, SepaGene (Sanko-Junyaku Inc., Tokyo,
Japan), in accordance with the manufacturer's protocol.
cDNA for the total cellular RNA was constructed as
described elsewhere [49]. mRNA expression for CCRS5,
CD4, CXCR4, GPR1, FPRL1, and GAPDH was detected by
PCR of cDNA preparations using the sense and antisense
primer pairs described above [49]. Amplified cDNA was
detected by 1% (w/v) agarose gel electrophoresis.

Cloning of the FPRLI gene

A DNA fragment encoding the entire open reading frame
(ORF) of the FPRL1 gene was amplified by RT-PCR using
the FPRL1-specific primers, FPRL1CN and FPRL1CR, and
cDNA constructed from the total RNA isolated from
C8166 cells. The ORF DNA of the FPRL1 gene was cloned
into the TA-cloning plasmid pDrive (QIAGEN K. K.,
Tokyo, Japan) and the plasmid obtained was designated
pDrive/FPRL1. The DNA fragment containing FPRL1 ORF
was isolated from the pDrive/FPRL1 plasmid by EcoRI
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digestion and subcloned into the expression plasmid
pCX-bsr [69]. The FPRL1 plasmid obtained was desig-
nated pCX-puro/FPRL1. The cloned FPRL1 gene was
sequenced and found to be 100% homologous in terms of
amino acid sequences to the reported gene [M76672]
[30].

Establishment of FPRL I-expressing cells

An FPRL1-expressing cell line was established as follows.
The plasmid harboring the receptor gene for ecotropic
murine leukemia virus (MulLV) and hygromycin-resist-
ance gene was transfected into NP-2/CD4 cells and hygro-
mycin-resistant cells were selected as reported previously
[16]. BOSC23 cells [70] were transfected with the pCX-
bsr/FPRL1 plasmid and ecotropic MuLV pseudotype was
produced from the cells. NP-2/CD4 cells were infected
with the ecotropic MuLV pseudotype produced by
BOSC23 cells. The blasticidin-resistant NP-2/CD4 cells
were selected through cultivation in medium containing
blasticidin (10 pg/ml) (CALBIOCHEM, San Diego, CA)
for two weeks. Surviving cells were designated NP-2/CD4/
FPRL1. NP-2/CD4/CCR5, NP-2/CD4/CXCR4, and NP-2/
CD4/GPR1 cells were established previously [16,23]. The
expressions of mRNAs for CCR5, CXCR4, GPR1, and
FPRL1 genes in these cells were detected by RT-PCR using
c¢DNA and the PCR primers prepared as described above.

Infection assay

NP-2/CD4, NP-2/CD4/CCR5, NP-2/CD4/CXCR4, NP-2/
CD4/FPRL1 and NP-2/CD4/GPR1 cells (5 x 10%) were
seeded into 24-well culture plates 24 h prior to viral inoc-
ulation. These cells were exposed to HIV/SIV in an
amount of virus corresponding to 1 x 104 cpm of the
reverse transcriptase activity as previously described [71].
After incubation for two hours, the cells were washed
three times with E-MEM containing 10% FCS and then
cultured in 500 pl of fresh medium at 37°C. The cells were
passaged every two days.

Determination of the effects of an anti-CD4 monoclonal
antibody, GPCR ligands, and tyrosine sulfation on HIV-I
infection

To determine CD4 dependency of HIV infection, NP-2/
CD4/CCR5 and NP-2/CD4/FPRL1 cells were cultured in
E-MEM containing a serially diluted anti-CD4 mono-
clonal antibody (MoAb), Nu-TH/I (Nichirei Inc., Tokyo,
Japan), at 37 °C for two hours. The cells were incubated in
E-MEM with or without Nu-TH/I MoAb at 37°C for two
hours and then exposed to HIV-1 in an amount corre-
sponding to 1 x 104 cpm of RT activity. After removing the
inocula, the cells were incubated at 37°C in E-MEM con-
taining 10% (v/v) FCS for four days.

To investigate the effects of ligands on infection of cells
with HIV/SIV strains, NP-2/CD4/CCR5 or NP-2/CD4/
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FPRL1 cells were incubated in E-MEM containing RANTES
(100 pg/ml) (BIOCARTA US, San Diego, CA) or forymyl-
Met-Leu-Phe (fMLF) peptide (100 pg/ml) (WAKO Jun-
yaku, Inc., Tokyo, Japan) at 37°C for three hours. Then,
the cells were exposed to HIV-1 as described above.

CCR5 and FPRL1 contain several tyrosine residues in their
NTRs and ECLs, but only NTRs harbor the signal sequence
for tyrosine sulfation [73]. To clarify the effect of tyrosine
sulfation in NTR of CCR5 and FPRL1, NP-2/CD4/CCR5
and NP-2/CD4/FPRL1 cells were incubated in E-MEM
containing an inhibitor of tyrosine sulfation, NaCIO3 (10
mM), for 48 hours and then inoculated with viruses.

Detection of HIV-/SIV-infected cells

The susceptibilities of the cells described above to HIV/
SIV were determined by indirect immunofluorescence
assay (IFA), which detects HIV-1-, HIV-2-, or SIV-antigens
expressed in infected cells, as previously reported [71]. A
pool of sera derived from HIV-1-infected humans or SIV-
mac-infected macaques was used as the first antibody
[16,49]. Infection was checked on days 2, 4, and 6 after
inoculation.

Phylogenetic analysis

The multiple alignment of the amino acid sequences of 20
CKRs and 16 GPCRs closely related to CKRs and their phy-
logenetic tree was constructed using the ClustalW pro-
gram [72]. GPCR names and their abbreviations in the
protein database SWISS PROT were as follows: type-1
angiotensin II receptor AG2R [DDBJ/EMBL/Genbank
accession number, M91464], type-2 angitensin II receptor
AG22 [U20860], type-1B angiotensin II receotor AG2S
[D13814], apelin receptor APJ [U03642], B1 bradykinin
B1 receptor BRB1 [U12512], B2 bradykinin receptor BRB2
[M88714], C3a anaphylatoxin receptor C3AR [U28488],
C5a anaphylatoxin receptor C5AR [X58674], C5a ana-
phylatoxin receptor C5L2 [B038237], CC-CKR CCR1
[NM001295], CC-CKR CCR2b [NM000648], CC-CKR
CCR3 [NM001837], CC-CKR CCR4 [NM005508], CC-
CKR CCR5 [NMO000579], CC-CKR CCR6 [NM004367],
CC-CKR  CCR7 [NMO001838], CC-CKR CCRS8
[NM005201], CC-CKR CCRY9 [NM006641], CC-CKR
CCR10 [NMO016602], CC-CKR CCR11 [AF110640],
CX3C-CKR CX3CR1 [NMO001337], CXC-CKR CXCR1
[NM000634], CXC-CKR CXCR2 [NM001557], CXC-CKR
CXCR3 [NM001504], CXC-CKR CXCR4 [NM003467],
CXC-CKR CXCR5 [NM001716], CXC-CKR CXCR6
[NM006564], CC-CKR D6 [NM001296], formylpeptide
receptor 1 FPRL1 [M76672], formylpeptide receptor 2
[M37128], FPRL1-related receptor FPR1 [M76673], pro-
teinase-activated receptor 1 PAR1 [M62424], protease-
activated receptor 2 PAR2 [Z49993], protease-activated
receptor 3 PAR3 [U92971], and protease-activated recep-
tor 4 PAR4 [AF080214].
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