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Abstract

Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound
importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that
contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this
replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi)
technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After
validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting
Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for
molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when
depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support
bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase
that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1a2/2 murine embryonic fibroblasts (MEFs) to
demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the
Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1a, and other ER-
associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.
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Introduction

Infectious diseases caused by intracellular bacterial pathogens are

responsible for an enormous amount of worldwide pain, suffering,

and mortality. Brucella spp., for example, cause brucellosis, a global

zoonosis of profound importance [1,2]. Brucella melitensis, B. abortus,

and B. suis are highly infectious and can be readily transmitted in

aerosolized form [3,4]. In addition, they have eluded systematic

attempts at eradication for more than a century, even in most

developed countries, and a human vaccine against brucellosis is not

available [3]. Therefore, Brucella spp. have been classified as potential

bioterror threat agents [5], and have generated significant interest in

the biosecurity and world health communities.

Understanding the molecular mechanisms of Brucella pathogen-

esis and host response is critical for brucellosis control, and

intracellular trafficking and replication of Brucella spp. play

important roles in these processes [6–8]. First, bacteria, internal-

ized from the host cell plasma membrane, orchestrate the

biogenesis of early Brucella-containing vacuoles (BCVs) [9,10].

Next, BCVs acidify but nevertheless fail to accumulate mannose 6-

phosphate receptors (M6PRs) and cathepsin D, markers for late

endosomes and lysosomes, respectively [8,11]. Instead, maturing

BCVs fuse with membranes that contain endoplasmic reticulum

(ER) resident proteins, including calreticulin and calnexin [7,8,11].

In addition, this trafficking involves BCV interactions with a

compartment that contains the autophagosomal marker mono-

dansylcadaverin [7,12]. Finally, Brucella spp. replicate in an ER-

like compartment, and then presumably lyse the host cell to allow

the infectious cycle to begin anew [8,13,14].

Bacterial lipopolysaccharides (LPS) play an important role in

directing the bacterium along an intracellular trafficking pathway

that enables a productive infection to be established. Brucella LPS

also protects the bacterium from the harsh intracellular environ-

ment, suppresses pro-inflammatory and antibacterial host respons-

es, and interferes with antigen presentation in macrophages [15].

Unlike their smooth wild-type (WT) counterparts, B. melitensis or B.

abortus mutants harboring a deletion in the phosphomannomutase

gene (DmanBA) lack LPS O-antigens, form rough colonies on solid

medium, and are rapidly internalized by macrophages via a poorly

understood pathway [16,17]. However, these mutants fail to
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establish an intracellular replicative niche and reportedly induce a

necrotic cytopathic effect in these cells [18,19]. The bacterial type

IV secretion system (T4SS) is also important for bacterial

pathogenesis, and mutant strains lacking this system fail to traffic

to, or replicate in, the ER [7,20–22].

To date, relatively few host factors, including Rho1, Rac1, Cdc42

[23] and Sar1 [8], have been shown to be important for Brucella

infection. Phosphoinositide 3-kinase (PI3K) activities have also been

implicated in supporting Brucella infection [23]. Despite these

advances, factors that mediate Brucella infection of host cells remain

obscure. However, Brucella intracellular trafficking from the plasma

membrane to an ER-associated replicative niche involves interac-

tions with a membrane bounded compartment that contains

autophagosome markers [7,12]. In addition, the organism replicates

within a compartment that contains ER resident proteins [7,8,11].

These data thereby suggest that host cell autophagic pathway

proteins, and ER-associated factors, may regulate the intracellular

trafficking and replication of the pathogen.

Recent developments in the use of evolutionarily divergent

Drosophila S2 cell model systems to study host-pathogen interactions,

and RNA interference (RNAi) technology for knocking down host

gene expression, have provided unprecedented opportunities for

making significant progress in elucidating Brucella host factors.

Drosophila S2 cells are macrophage-like cells that recapitulate

conserved aspects of innate immunity [24] and that have been

exploited for studying mammalian host-pathogen interactions.

RNAi-based forward genetic screens in S2 cells have, for example,

identified novel host factors involved in the recognition and

replication of significant human bacterial pathogens, including E.

coli [25], Listeria [26,27], Mycobacterium [28], Legionella [29], and

Chlamydia [30,31]. Importantly, mammalian orthologs of hits

identified in these screens have been shown to be important for

bacterial infection of mammalian cells, thereby validating the utility

of this Drosophila cell model for host-pathogen studies [28–31]. In this

study, we show that the Drosophila S2 cell-Brucella interaction system

recapitulates critical aspects of Brucella infection of mammalian cells.

In addition, we demonstrate the power of this system by identifying

novel Brucella host factors, including IRE1a, a conserved transmem-

brane kinase that plays a key role in regulating the host cell unfolded

protein response (UPR) [32–34]. Finally, we demonstrate that

IRE1a is required for Brucella infection of mammalian cells, and

discuss a possible mechanism by which this intriguing protein may

regulate bacterial infection.

Results

Brucella infection of Drosophila S2 and mammalian cells
shares striking similarities

If Drosophila S2 cells are to provide a model system for studying

Brucella infection, then they must support bacterial entry and

replication. In addition, isogenic Brucella mutants with established

entry, intracellular trafficking and replication properties should

behave similarly in S2 cells and mammalian macrophages. Finally,

Brucella should display similar infection phenotypes in S2 and

mammalian cells that have been treated with compounds that

disrupt host cell functions. With these ideas in mind, we employed

gentamicin protection assays [18] to examine the entry and

replication of different B. melitensis and B. abortus WT and mutant

strains (listed in Table S1) in S2 cells. Because S2 cells require

temperatures below 30uC for growth, all infection experiments

were performed at 29uC, unless otherwise indicated. Importantly,

J774A.1 cells supported Brucella entry and intracellular replication

at this temperature (Fig. S2).

Brucella WT (S2308 and 16M) and mutant strains displayed

strikingly similar properties when infecting S2 and mammalian cells.

First, B. abortus and B. melitensis strains with smooth colony

morphologies (i.e., 102B2, 146D5, BA114, S2308DvirB2) (Fig. 1

A1 and A2) and attenuated rough mutants (i.e., CA180,

S2308DmanBA and 16MDmanBA) displayed corresponding entry

phenotypes in Drosophila S2 and mammalian cells (Fig. 1 A2 and data

not shown). Second, B. melitensis strains harboring mutations in mucR

(strain 102B2) and merR (strain 146D5) failed to replicate in both

J774A.1 [35] and S2 cells. B. abortus and B. melitensis strains lacking

the T4SS (e.g., BA114, S2308DvirB2, 16MDvirB2) behaved similarly

(Fig. 1 A3, A4 and data not shown). Third, vaccine strains RB51 and

S19 [36] displayed significantly decreased levels of replication in

both host cell systems (Fig. 1 A4 and data not shown). Fourth, similar

cytopathic effects were observed when rough strain CA180 infected

S2 and J774A.1 cells [18,19] (Fig. 1B and 1C). Finally, the number of

bacteria that entered S2 cells was directly proportional to the

multiplicity of infection (MOI) (Fig. S3). This feature was also

observed in mammalian cell systems (data not shown).

To easily visualize the intracellular trafficking and replication of

Brucella spp., we exploited a GFP-expressing 16M strain (henceforth

16M-GFP) (Fig. S4). A comparison of the intracellular trafficking of

Brucella spp. in S2 and mammalian cells indicated that the pathogen

follows similar pathways in both host cell systems. BCVs trafficked to

and replicated within an intracellular compartment that contained

ER markers (e.g., mSpitz in S2 cells) [37], and was closely associated

with COPII-coatomer (Sec 23) proteins (Fig. S5A and data not

shown) in both cell systems. Quantitative analysis also demonstrated

that the bacterium failed to accumulate late endosome, Golgi marker

(dGRASP) [38], or lysosomal markers in S2 or mammalian cells

([7,8,12] and Fig. S5B). In addition, heat killed, formaldehyde fixed,

and DvirB controls did not similarly colocalize with ER markers in

either system (Fig. S5A and data not shown). Therefore, the

intracellular trafficking of B. abortus and B. melitensis in S2 and

mammalian cells shared striking similarities.

Similar infection profiles were observed when B. abortus was

used to infect mammalian or S2 cells that were treated with several

Author Summary

Brucella spp. are facultative intracellular pathogens that
cause brucellosis in a broad range of hosts, including
humans. Brucella melitensis, B. abortus, and B. suis are
highly infectious and can be readily transmitted in
aerosolized form, and a human vaccine against brucellosis
is unavailable. Therefore, these pathogens are recognized
as potential bioterror agents. Because genetic systems for
studying host–Brucella interactions have been unavailable,
little is known about the host factors that mediate
infection. Here, we demonstrate that a Drosophila S2 cell
system and RNA interference can be exploited to study the
role that evolutionarily conserved Brucella host proteins
play in these processes. We also show that this system
provides for the identification and characterization of host
factors that mediate Brucella interactions with the host cell
endoplasmic reticulum. In fact, we identified 52 host
factors that, when depleted, inhibited or increased Brucella
infection. Among the identified Brucella host factors, 29
have not been previously shown to support bacterial
infection. Finally, we demonstrate that the novel host
factor inositol-requiring enzyme 1 (IRE1) and its mamma-
lian ortholog (IRE1a) are required for Brucella infection of
Drosophila S2 and mammalian cells, respectively. There-
fore, this work contributes to our understanding of host
factors mediating Brucella infection.

ER Factors That Mediate Brucella Replication
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compounds; these compounds disrupted host cell functions and

did not impair the bacterial growth in culture, or the viability of

infected S2 cells (Fig. S6). These included: cytochalasin D [23], a

compound that disrupts actin polymerization; bafilomycin A1, a

specific inhibitor of vacuolar H+-ATPase activity and endolysoso-

mal acidification [39]; brefeldin A (BFA), a fungal metabolite that

prevents the assembly of COPI coated vesicles and disrupts

vesicular transport [7,8] (Table S2 and Fig. S7A and S7B).

Treatment of S2 and J774.A1 cells with the PI3K inhibitor

wortmannin (WM) significantly reduced entry of B. abortus and B.

melitensis (Fig. S7A and data not shown). However, WM treatment

of S2 and J774.A1 cells had no effect on the replication efficiency

Figure 1. Brucella abortus and B. melitensis entry, replication and cytotoxicity in Drosophila S2 cells. A. Gentamicin protection assays were
employed to assess the entry (panels 1 and 2) and replication (Panels 3 and 4) of assorted B. melitensis (Panels 1 and 3) and B. abortus (panels 2 and 4)
strains. B. Rough mutant strains (CA180, S2308manBA::Tn5) induce a cytopathic effect in S2 cells. Trypan blue dye exclusion assays were used to
measure the viability of S2 cells after infection with various Brucella strains. The manBA mutant induced a cytopathic effect on S2 cells. Smooth wild-
type strains (16M and 2308) and strains lacking the T4SS VirB system (BA114, S2308virB10::Tn5) did not induce a similar effect. C. Viability of Brucella
infected S2 cells at 48 h.p.i. Drosophila S2 cells were infected with Brucella strains, (1) uninfected control, (2) 16M, (3) S2308, (4) BA114, and (5) CA180
at an MOI of 200. Infected cells were stained with trypan blue, fixed and analyzed by Olympus IX70 inverted microscopy (magnification, 6200). Dead
cells appear black. The images were taken from a representative experiment. All data represent the means 6 standard deviations from at least three
independent experiments.
doi:10.1371/journal.ppat.1000110.g001

ER Factors That Mediate Brucella Replication
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of the internalized bacteria (Fig. S7C, and data not shown). These

findings were similar to those previously reported in mammalian

cell systems [8,23,39,40]. In addition, we performed several

experiments to assess the role of sphingolipids in supporting

bacterial infection, and exploited myriocin (MR), a potent

inhibitor of serine palmitoyltransferase (SPT), the first step in

sphingosine biosynthesis [41], for these studies. B. abortus entry and

survival were significantly inhibited when cells were treated with

high MR concentrations ($1 mM). Low concentrations (#100 nM)

of the compound had no effect on bacterial entry (Table S2 and

Fig. S7A). However, the replication efficiency of the pathogen was

decreased under these conditions (Fig. S7A).

RNAi-mediated inactivation of host factors required for
Brucella infection

We employed RNAi technology to examine whether host

proteins that are known to support bacterial infection of

mammalian cells play similar roles in S2 cells. The evolutionarily

conserved host proteins Rho, Rac, Cdc42 and Sar1 have been

previously shown to be required for Brucella infection of

mammalian cells [8,23], therefore, we examined whether these

proteins were also required for Brucella entry and replication in S2

cells. Fluorescence microscopy image assays were employed for

these studies because they offered a rapid and convenient method

for assessing bacterial infection. Importantly, similar results were

obtained when either fluorescence microscopy or gentamicin

protection assays were performed (Table 1 and Fig. 2A). When S2

cells were depleted of Rac and Cdc42, the entry of B. abortus

(S2308) or B. melitensis (16M) was impaired (Table 1 and Fig. 2A).

Rho1-depleted S2 cells appeared larger than untreated controls,

contained numerous enlarged intracellular vacuoles, and also

displayed significantly decreased levels of Brucella entry (Table 1,

Fig. 2B). Sar1-depleted S2 cells also displayed dramatically

reduced levels of Brucella replication (Table 1, Table S3 and

Fig. 2A) were observed in these cells. These findings were similar

to results obtained when B. abortus was used to infect mammalian

cells in which the activities of the corresponding human

orthologous proteins had been depleted [8,23]. Therefore, the

activities of these evolutionarily conserved GTP-binding proteins

were required to support bacterial infection of both S2 and

mammalian cells (Table 1, Table S3, Fig. 2 and Fig. S8).

To assess whether PI3Ks played similar roles in supporting

bacterial infection of mammalian and S2 cells, we performed

several experiments. First, we treated S2 and J774A.1 cells with

WM and found that the levels of B. abortus and B. melitensis entry

decreased in a similar fashion in both host cell systems (Table S2,

Fig. S7A and data not shown). Second, we employed RNAi

technology to deplete S2 cells of individual PI3K proteins and then

measured bacterial entry and replication. These experiments

revealed that multiple classes of PI3Ks are required to support B.

abortus and B. melitensis WT strain infection (Table 1, Table S3,

Fig. 2A, Fig. 3A and 3B). However, rough and smooth strains

exploit separate host molecular pathways for entry [42]. when B.

abortus rough strain CA180 was used to infect PI3K-depleted S2

cells, bacterial entry was dramatically enhanced (Fig. 3C). These

data indicated that multiple PI3Ks play differential roles in

mediating the entry of smooth and rough Brucella strains into S2

cells.

Table 1. Evolutionarily conserved host factors required for Brucella abortus (S2308) infection in both Drosophila S2 and
mammalian cell lines

Gene name CFU (% of control) a Reference

S2 cells Mammalian cells

CG # Method Internalization Replication Method Internalization

Rho1 8416 dsRNAi 25.1615.2** b 22.4611.2** Dom-neg ,2865 [23], this study

Rac1 2248 dsRNAi ND d 63.7613.0**e Dom-neg ,3763 [23], this study

Rac 2 8556 dsRNAi 45.9611.1** 46.0616.5** ND ND This study

Cdc 42 1253 dsRNAi 51.9624.6** 56.0619.5** Dom-neg ,45617 [23], this study

Sar 1 7073 dsRNAi ND 47.161.3** e Dom-neg NAf [8], this study

Pi3K21B 2699 dsRNAi 59.7610.8** 65.967.5** p85abD g 9.762.7** This study

p85b2/2 43.765.5** This study

Pi3K92E 4141 dsRNAi 62.2614.9** 65.765.2** ND ND This study

PI3Ks (2) h dsRNAi 59.5614.7** 60.4615.8** ND ND This study

Pi3K68D 1162 dsRNAi ND 47.764.8** ND ND This study

Pi3K59F 5373 dsRNAi 49.6610.5** 44.4616.9** ND ND This study

PI3Ks (4) i dsRNAi 64.469.0** 52.865.3** ND ND This study

aColony forming units (CFUs) of the untreated control was normalized as 100%.
bData represent the means6standard deviations from at least three independent experiments.
**represents significant at P,0.001 compared with no-RNAi control.
cDominant-negative mutant.
dNot detected.
eData resulted from image analysis using NIH Image J software describe in Materials and Methods.
fNo accurate data, ,30% of infected cells with replicating bacteria.
gMEFs are deficient in class IA PI3Ks p85a and p85b (p85a2/2p85b2/2).
hDouble strand RNA targeting to the two PI3Ks Pi3K21B (CG2699) and Pi3K92E (CG4141) in class IA and IB, respectively.
iDouble strand RNA targeting to all the four members of PI3Ks [Pi3K21B, Pi3K92E, Pi3K68D (CG11621, class II PI3K) and Pi3K59F (CG5373, class III PI3K)] in the fly genome.
doi:10.1371/journal.ppat.1000110.t001

ER Factors That Mediate Brucella Replication

PLoS Pathogens | www.plospathogens.org 4 July 2008 | Volume 4 | Issue 7 | e1000110



Experiments in mammalian cells confirm results obtained
in Drosophila S2 cells

If Drosophila S2 cells are to serve as a useful model host cell

system, then results obtained using this system should mirror

corresponding mammalian cell findings. To test this possibility, we

examined whether a murine ortholog (p85) of a model Drosophila

gene (Pi3K21B) that supports Brucella infection of insect cells

(Table 1, Table S3, Fig. 2A, Fig. 3A and 3B) mediates bacterial

infection of murine cells. We used immortalized mouse embryonic

fibroblasts (MEFs) derived from knockout mice harboring

deletions in class IA PI3Ks (p85a and p85b) [43] for these studies.

As expected, the levels of B. abortus and B. melitensis WT strains

entry into MEF cells harboring PI3K gene deletions were

dramatically reduced (Table 1 and data not shown). p85a2/2

p85b2/2 and p85b2/2 MEFs supported lower levels of B. abortus

and B. melitensis WT strains entry than p85+/+ controls (Table 1

and data not shown). However, when these MEFs were infected

with Brucella rough mutants (CA180 and S2308DmanBA), bacterial

internalization significantly increased, especially in p85b2/2

MEFs (Fig. 3C and data not shown). These findings were similar

to results obtained in experiments in which the entry of a Brucella

rough mutant into class IA PI3K-depleted S2 cells was examined

(Fig. 3C). Therefore, host cell PI3K isoforms differentially

mediated the infection of smooth and rough organisms in both

cell systems, and supported the use of the Drosophila cell system for

elucidating novel Brucella host cell factors.

RNAi screen for ER-associated host factors
We were encouraged by our findings that previously described

mammalian host proteins (i.e., Rho1, Rac, Cdc42 and Sar1) played

similar roles in S2 cells. In addition, we noted that the Drosophila S2

cell system enabled the first molecular dissection of host cell PI3K

isoform activity during Brucella infection. We therefore examined

whether the Drosophila S2 cell system and RNAi technology could

be combined to identify novel Brucella host factors. To focus our

experiments, we constructed and screened 240 dsRNAs, including

110 dsRNAs that targeted the knockdown all of the genes

annotated to be associated with the ER in the Drosophila RNAi

Library Release 1.0 (Open Biosystems, Huntsville, AL, USA). The

ER was ripe for examination because Brucella is known to replicate

within a poorly characterized ER-like compartment, thereby

suggesting that ER-associated host factors may be involved in

regulating the intracellular replication of the pathogen.

Our ER-directed RNAi screen gave several interesting results.

First, our screening approach successfully identified 52 hits. A hit

was defined as a sample in which the relative infection differed by

more than two standard deviations from the untreated control

(Table S3). Importantly, control genes (i.e., Rho1, Rac, Cdc42,

Sar1 and PI3Ks) were identified as hits in the screen (Table S3).

Therefore, our screening strategy was sufficiently robust to

uncover known or suspected host factors. We were curious

whether the hit frequency obtained in our ER-targeted screen

would be the same if a set of dsRNAs that were not associated with

the ER were screened. We therefore screened 130 dsRNAs that

were randomly picked from 2 of the 76 96-well plates in the

Drosophila RNAi library. Because the manufacturer randomly

arrayed dsRNAs into the source plates, this strategy for picking

dsRNAs to be screen introduced no bias in the functions of the

targeted genes in the screen. Notably, this experiment uncovered

only 2 hits (,1.5% of the total) (Table S3), and therefore gave a hit

frequency that was comparable to that observed in the

Mycobacterium fortuitum and Listeria monocytogenes whole genome

RNAi screens [26–28]. Interestingly, 14 out of 52 hits in our

screen had been previously shown to mediate infection of S2 cells

by Mycobacteria, Listeria, Legionella and Chlamydia infection [26–31]

(Table S3 and Fig. 4). On the other hand, 29 genes were identified

that had not been previously reported to be involved in supporting

intracellular bacterial infection (Table S3). These novel genes were

classified according to the gene ontology system of biological and

molecular function, cellular component, or protein domains as

reported in FlyBase (www.flybase.org). This classification revealed

that the novel hits represented a variety of functional classes,

including kinases, chaperones, and biosynthetic/metabolic en-

zymes. In addition, these 29 genes were localized to either the ER

lumen (CG9429, CG30498) or ER membrane (CG6437, CG1063)

(Table S3). We re-tested some of our most interesting hits in both

fluorescence microscopy and gentamicin protection assays (Table

S3, repeat$3 times), and also employed quantitative reverse

transcriptase polymerase chain reaction (Q-PCR) to verify that the

expression of these genes in S2 cells was knocked down by dsRNA

treatment. We typically obtained 60–90% knockdown of target

gene expression in our screening plates (Fig. 2C and data not

shown).

Figure 2. Evolutionarily conserved host factors mediate
Brucella infection of Drosophila S2 cells. A. S2 cells that had been
subjected to dsRNA-mediated gene depletion were infected with
Brucella 16M-GFP at an MOI of 50. At 72 h.p.i., the cells were then
replated onto ConA-coated 96 well glass bottom plates, washed three
times with 16PBS, fixed, stained and viewed with an Olympus IX70
inverted microscope. For each experiment, two images containing a
total of at least 1,000 cells were analyzed using NIH Image J software
and the infection index was determined. Data represent the means 6
standard deviations from three independent experiments. *** indicates
significance at P,0.001. B. dsRNA-mediated Rho1 knockdown in S2
cells results in large sized cells with reduced ability to support WT
Brucella (S2308) infection (48 h.p.i., Scale bar: 10 mm). C. Reduction of
Rho1 mRNA levels in dsRNA-treated S2 cells (upper panel) was assessed
by RT-PCR and quantified by scanning densitometry (lower panel).
doi:10.1371/journal.ppat.1000110.g002

ER Factors That Mediate Brucella Replication
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Figure 3. Depletion of individual host phosphoinositide 3-kinases (PI3Ks) affects Brucella abortus infection of Drosophila and
mammalian host cells. A. Replication efficiency of WT Brucella (S2308) in depletion of PI3Ks of S2 cells (72 h.p.i.) and MEFs (48 h.p.i). B. Relative
bacterial number (CFU) in Brucella infection of PI3K-depleted cells at 72 h.p.i. (S2 cells) or 48 h.p.i. (MEFs). C. Depletion of PI3Ks affects Brucella rough
mutant CA180 entry into Drosophila and mammalian host cells. For these experiments, either Drosophila S2 cells, treated with dsRNAs to deplete
individual PI3Ks, or mouse embryonic fibroblasts (MEFs) harboring deletions of the two regulatory isoforms of class IA PI3Ks (P85a and P85b), were
infected with Brucella rough mutant CA180. The infected cells were lysed and subjected to gentamicin protection assays after an additional 1 hr of
incubation with media supplemented with 40 mg/ml gentamicin at the indicated temperatures. The CFUs of all the treatments at the indicated time
points were compared with that of the WT (S2308) control. CFUs were counted after 3 days of incubation at 37uC. Data represent the means 6
standard deviations from three independent experiments. *** indicates significance at P,0.001.
doi:10.1371/journal.ppat.1000110.g003

ER Factors That Mediate Brucella Replication
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Although each screen hit constituted a potential entry point for

investigating the mechanism by which Brucella secures a replicative

niche, we were particularly intrigued with IRE1 (CG4583), a key

signal transducer that plays an important role in regulating the

host cell UPR [32–34]. RNAi mediated knockdown of IRE1 gene

expression resulted in significant reductions in Brucella replication

(Fig. 5A, 5B and Table S3). In addition, IRE1 had not been

previously implicated as a bacterial host factor. These data raised

the intriguing possibility that IRE1 may play a novel role in

regulating Brucella infection. We therefore examined whether

IRE1a (the mammalian ortholog of Drosophila IRE1) was

important for Brucella infection of mammalian cells.

IRE1a is required for efficient Brucella replication in
mammalian cells

We performed several experiments to examine whether IRE1a
played a critical role in supporting Brucella infection of mammalian

cells. First, we infected IRE1a-null (IRE1a2/2) and WT (IRE1a+/+)

control MEF cells with 16M-GFP (Fig. 5C), and also performed

gentamicin protection assays to assess bacterial entry and

replication (Fig. 5D). The level of bacterial entry in IRE1a2/2

was not statistically different from IRE1a+/+ controls (Fig. 5D).

However, bacterial replication was significantly inhibited in

IRE1a-depleted S2 cells and in IRE1a-null MEF cells (Fig. 5).

Trypan blue dye exclusion analysis of 16M-infected MEF cells

failed to reveal differences in host cell survival (data not shown).

Therefore, the differences in bacterial replication efficiencies in

these cell lines were not caused by the induction of host cell

pro-apoptotic programs or by differences in the survival of

Brucella-infected IRE1a2/2 MEFs. Instead, they appeared to

reflect a specific and important bacterial requirement for host

cell IRE1a activity. Finally, the levels of entry and replication of

Salmonella enterica serovar typhi, and the amounts of latex bead

internalization, were similar in control and IRE1a2/2 cells

(Fig. 6 and data not shown). These data supported the idea that

IRE1a2/2 cells do not possess general defects in phagocytosis,

and that IRE1a activity is not required to support infection by

all intracellular bacterial pathogens (Table S3 and Fig. 6).

PERK, ATF6 and BBF-2 are not required for Brucella
replication

Besides IRE1a, several other ER-associated transmembrane

signaling molecules play important roles in initiating and regulating

UPR in host cells, including PERK, ATF6, and BBF2H7

(mammalian BBF-2 ortholog) [32–34,44–46]. We performed

fluorescence microscopy and gentamicin protection assays to

examine their role in Brucella entry and replication. B. melitensis

(16M) entry and replication in PERK-, ATF6-, and BBF-2-depleted

S2 cells were not significantly different from untreated controls

(Fig. 5A, Fig. 7A and Table S3). Although B. melitensis replication

efficiency decreased in ATF- and BBF-2-depleted S2 cells, the

number of bacterial colony forming units (CFUs) in these cells at

72 hours post-infection (h.p.i.) was not significantly smaller than

controls (Fig. 7A and Table S3). Importantly, bacterial replication

efficiencies in PERK2/2 and PERK+/+ MEF cell lines were similar

(Fig. 7B and 7C). Taken together, these results demonstrated that not

all UPR signaling molecules are required to support the replication

of this pathogen, and that IRE1a plays a specific role in this process.

Figure 4. Host factors mediating intracellular bacterial infection. Shared and unique host factors were determined by analyzing published
data from screens performed in S2 cells infected with Mycobacterium fortuitum [28], Listeria monocytogenes [26,27], Legionella pneumophila [29] and
Chlamydia caviae [30]. Numbers in parenthesis represent the number of screened or targeted genes.
doi:10.1371/journal.ppat.1000110.g004
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Discussion

The study of host-Brucella interactions has suffered from the

absence of a tractable genetic system to elucidate host factors.

However, data obtained in this study indicate that Drosophila S2

cells provide a compelling model system for identifying and

characterizing these important proteins. Brucella infection of

Drosophila S2 cells recapitulates important aspects of mammalian

cell infection. First, isogenic mutants of Brucella spp. behaved

similarly in S2 and mammalian cells. In addition, these divergent

host cell systems displayed similar trends in infection by smooth

and rough strains with varied pathogenicity. Brucella rough

mutants, such as CA180, were cytopathic to both mammalian

and S2 host cells [18, 19, this study]. Therefore, these cells share

Figure 5. IRE1a is required for Brucella melitensis infection. A. Brucella (16M-GFP) infection of S2 cells in which the expression of the indicated
host genes has been knocked down by dsRNA treatment at 72 h.p.i.. No RNAi-treated cells, and cells in which Rho1 expression was knocked down by
dsRNA treatment were used as positive and negative controls, respectively. B. Depletion of IRE1 expression in S2 cells inhibits 16M-GFP replication.
IRE1 has a limited role in B. melitensis entry S2 cell. C. B. melitensis 16M-GFP infection (MOI = 100) of mouse embryonic fibroblast (MEF) IRE1a-null and
their wild-type counterparts at 48 h.p.i. D. IRE1a2/2 MEF cells support B. melitensis entry but not replication. *** Significant at P,0.001. Data in B and
D represent the means 6 standard deviations from three independent experiments. The images in A and C were taken from a representative
experiment.
doi:10.1371/journal.ppat.1000110.g005
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conserved molecular mechanisms for recognizing and responding

to Brucella LPS mutants. Second, Brucella entry and replication in

S2 and mammalian cells were similarly sensitive to pharmacolog-

ical perturbation by structurally diverse compounds. Of particular

interest was the observation that MR, an inhibitor of STP, the

rate-limiting enzyme in sphingolipid biosynthesis, dramatically

reduced the amount of Brucella infection of S2 cells (this study).

Previous studies have demonstrated an important role for

sphingolipid enriched lipid rafts in pathogen infection [47–50],

and our MR experiments support these observations. Third,

Brucella infection of S2 cells required the activities of conserved

GTP-binding proteins (Rho1, Rac, Cdc42, and Sar1), suggesting

that Brucella infection of mammalian and Drosophila cells shared

similar host molecular requirements. Finally, the activities of

PI3Ks differentially regulate smooth and rough Brucella infection in

both mammalian and Drosophila S2 cells (this study). Interestingly,

the effects of PI3K knockdown in MEF cells were more dramatic

than in S2 cells. In MEFs, PI3K genes are deleted, and thus the

corresponding enzyme activities are absent. However, in Drosophila

S2 cells, PI3K gene expression is knocked down (60–90%), and

some residual activity may remain. These differences likely

account for the differential infection of these cell types. Taken

together, our data support the conclusion that S2 cells provide a

useful model for investigating host-Brucella interactions.

Our demonstration that Drosophila S2 cells can be used to

illuminate Brucella host factors is surprising because Brucella spp. do

not occupy a described environmental niche outside of the

mammalian host. In addition, the bacteria do not grow well in

culture at temperatures below 35–37uC. However, previous

reports have demonstrated B. suis multiplication within U937 cells

at 30uC [51]. Therefore, Brucella growth below 37uC is not

restricted to B. melitensis and B. abortus strains. Second, Brucella

replication in J774A.1 and Drosophila S2 cells at 29uC share similar

kinetics (Fig. S2B and S2C). Although a difference in the

replication efficiency of S2308DvirB2 in J774 and S2 cells at 24

and 48 h.p.i was observed, no difference was detected at 72 h.p.i.

Therefore, the differential growth of B. abortus and B. melitensis in

these host cell systems likely results from differences in the growth

temperature, and not from differential subversion of conserved

host cell functions. Third, the most important criterion for judging

the utility of a model non-mammalian host-pathogen interaction

system is whether it can be exploited to shed new insights into the

interaction in mammalian cells. In this regard, it should be noted

that bacterial pathogens, such as Listeria monocytogenes [52], grow

more slowly in Drosophila S2 cells than in mammalian cells;

however, many host factors required for entry and survival of these

intracellular pathogens have been identified using Drosophila S2

cells as a platform [25–31]. We expect to garner similar insights

through the use of our Drosophila S2 cell-Brucella interaction system,

and our demonstration that PI3Ks and IRE1a mediate Brucella

infection of Drosophila S2 cells and murine embryonic fibroblasts

support this view.

Our RNAi screen in S2 cells for ER-associated Brucella host

factors provides new insights into how Brucella secures an

intracellular replicative niche. Our screen identified 52 genes that

participate in this process, 29 of which had not been previously

suggested to support bacterial pathogen infection. In addition, we

dissected the role of 4 PI3K isoforms. The number of identified

hits (50 out of 110 pre-selected ER- associated genes) was striking,

and likely reflects that sustained and multi-faceted Brucella-ER

interactions are required for Brucella replication in host cells.

Interestingly, 14 of the genes identified in our screen were also

required for infection of S2 cells by other intracellular bacterial

pathogens, including Listeria, Mycobacteria, Legionella or Chlamydia

[26–31]. The fact that Brucella and Legionella share several ER-

associated host factors is perhaps not surprising, especially given

that both organisms engage in sustained interactions with the host

ER as part of their virulence and replication programs [53,54].

Finally, Brucella-specific ER-associated factors, such as IRE1

(CG4583), were uncovered in our screen. IRE1 may constitute a

species-specific host factor that plays a role in mediating the

unfolded protein response, thereby suggesting that the modulation

of this stress-response system may be critical to bacterial

intracellular survival and replication.

In eukaryotic cells, IRE1a mediated UPR induction is associated

with enhanced expression of genes encoding ER chaperones and

protein-folding catalysts, and proteins that participate in ER-

associated degradation (ERAD) [55,56]. IRE1a activation also

induces the biosynthesis of membrane phospholipids that increase

the surface area and volume of rough ER [57,58]. In Brucella infected

cells, IRE1a mediated activity may result in the biosynthesis of ER

membrane that can be exploited by the pathogen to expand the size

and enhance the quality of its replicative niche However, our data

indicate that other UPR signal transducers, including PERK, are not

required for Brucella infection in both Drosophila S2 and murine

embryonic fibroblast cell systems. Therefore, not all UPR regulatory

proteins are important for bacterial replication (Fig. 7 and Table S3),

raising questions about the privileged status of IRE1a among these

classes of molecules.

Recent reports have indicated an intriguing link between IRE1a
activity and autophagic vacuole biogenesis [59,60]. For example,

IRE1a is required for the autophagy observed after cells are

treated with the ER stress-inducing agents DTT, tunicamycin or

thapsigargin [59,60]. However, parallel experiments using PERK-

deficient cells, and cells in which the expression of ATF6 had been

knocked down, demonstrated that these UPR-associated signal

transducers are not directly involved in the response to these drug

treatments [60]. Therefore, IRE1a can regulate some autophagic

events independently from input by these other ER associated

signaling molecules.

Figure 6. IRE1a is not required for Salmonella entry and
replication. MEF IRE1a+/+ and IRE1a2/2 cells were infected with
Salmonella enterica serovar typhi wild type strain SL1344 at an MOI of
50. Gentamicin protection assays were employed to assess Salmonella
entry [At 1.5 h.p.i, the number of CFUs for IRE1a+/+ and IRE1a2/2 was
(2.4960.36)6106 and (2.2360.22)6106, respectively] and replication (3,
6 and 9 h.p.i). All data represent the means 6 standard deviations from
three independent experiments.
doi:10.1371/journal.ppat.1000110.g006
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The differential participation of IRE1a, ATF6 and PERK in

regulating the autophagy observed after cells are treated with

stress-inducing agents is strikingly similar to their differential roles

in mediating Brucella replication. IRE1a is required for Brucella to

replicate efficiently; however, Brucella replication in PERK-,

ATF6-, and BBF-2-depleted S2 cells was not significantly different

from untreated controls. This differential participation therefore

suggests a model in which IRE1a regulates Brucella infection by

modulating the host cell autophagy pathway (Fig. 8).

Based on findings from our dsRNA screen, we propose a multi-

step model by which IRE1a regulates Brucella replication. First,

BCVs traffic to a compartment that contains ER resident proteins.

Concomitantly, BCVs trigger IRE1a activation, which in turn,

stimulates the biogenesis of ER-associated autophagosomes

(ERAs) [59,60]. ERAs then fuse with BCVs to form ERA-BCVs.

This process is also regulated by the activities of PI3Ks. Finally,

ERA-BCVs fail to fuse with lysosomes and hence avoid

degradation; instead, they fuse with the ER to form ER-derived

BCVs that are permissive for Brucella replication (Fig. 8).

Several pieces of evidence support this view. First, IRE1a, but

neither PERK nor ATF6, is required for the induction of autophagy

in response to treatment by ER stress-inducing agents [60]. Similar

requirements for host proteins are observed during Brucella

replication (Fig. 5, Fig. 7 and Table S3). Second, the assembly of

ERAs is dependent upon early secretory pathway molecules [61–63].

In yeast, the COPII mutants sec16, sec23, and sec24, are defective in

autophagy. However, mutations in two other COPII genes, sec13

and sec31, do not affect ERA biogenesis and autophagy [61,62]. In

addition, PI3K activity is important for this process [64–66]. Our

data demonstrate similar host factor requirements during Brucella

infection of Drosophila cells. Specifically, depletion of Sec23, Sec24

and PI3Ks in host cells dramatically reduces Brucella replication

(Table 1, Table S3, Fig. 2 and Fig. 3). However, depletion of Sec31

has no affect on this process (Table S3). Finally, Brucella trafficking to

its intracellular replicative niche involves interactions with a

compartment that contains the autophagosomal marker monodan-

sylcadaverin [7,12]. These localization data thereby establish a

physical interaction between internalized Brucella and the host cell

autophagy pathway. It should be noted, however, that although we

cannot rule out the possibility that Brucella trafficking in MEFs differs

from professional phagocytes, Brucella trafficking in HeLa cells and

phagocytes share striking similarities [12]. Therefore, our observa-

tions in MEFs likely shed light on Brucella infection of phagocytes.

Taken together, the data are consistent with the idea that IRE1a
activity plays an important role in supporting Brucella interactions

with the host cell ERA biogenesis machinery in mammalian cells

Figure 7. Endoplasmic reticulum UPR regulators PERK, ATF6 and BBF-2 display limited roles in Brucella melitensis infection. A.
Depletion of PERK, ATF6 and BBF-2 in S2 cells displays no significant difference in the number of bacteria (16M) (CFU, % of control) in entry (1.5 h.p.i)
and replication (72 h.p.i), although the replication efficiency of depletion of ATF6 and BBF-2 displayed significantly reduced. B. Infection of mouse
embryonic fibroblast (MEF) PERK2/2 and their WT counterparts by B. melitensis 16M-GFP (MOI = 100) displays no significant difference at 48 h.p.i. C.
PERK2/2 MEF cells have no effect on B. melitensis replication although the entry of the bacterium displays significant difference. *** Significant at
P,0.001. Data in A and C represent the means 6 standard deviations from three independent experiments. The images in B were taken from a
representative experiment.
doi:10.1371/journal.ppat.1000110.g007
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(Fig. 8). Future studies will exploit the genetic power of the Drosophila

S2 cell system to elucidate this intriguing possibility, and to define the

precise molecular mechanisms by which Brucella secures an

intracellular replicative niche.

Materials and Methods

Bacterial Strains
Brucella melitensis strain 16M (WT) and B. abortus strain 2308 (WT),

and their derived mutants are listed in Table S1. Bacteria were grown

in tryptic soy broth (TSB) or on tryptic soy agar (TSA, DifcoTM)

plates, supplemented with either kanamycin (Km, 50 mg/ml), or

chloramphenicol (Cm, 25 mg/ml) when required. For infection, 4 ml

of TSB was inoculated with a loop of bacteria taken from a single

colony grown on a freshly streaked TSA plate. Cultures were then

grown with shaking at 37uC overnight, or until OD600<3.0.

Cell Culture
Murine macrophage J774.A1 cells, MEFs and HeLa cells were

routinely cultured at 37uC in a 5% CO2 atmosphere in Dulbecco’s

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal

bovine serum (FBS). S2 cells were maintained at 25uC in

Drosophila-SFM medium or in Schneider’s Drosophila medium

(Invitrogen) supplemented with 10% FBS. Cells were seeded in 24-

well plates and cultured overnight before infection. For antibiotic

protection assays, 2.56105 cells were seeded in each well; for

fluorescence microscopy assays (see below), 56104 cells were

seeded on 12-mm glass coverslips (Fisherbrand) placed on the

bottom of 24-well microtiter plates before infection.

Brucella Infection
Host cells were infected with Brucella at an MOI of 100, unless

otherwise indicated. Infected cells were then incubated at 29uC (S2

Figure 8. Model describing how Brucella may exploit IRE1a to secure a replicative niche in an ER-like compartment. After PI3K-
dependent Brucella internalization (1), intracellular Brucella-containing vacuoles (BCVs) traffic to the ER in a T4SS-dependent fashion (2).
Accumulation of BCVs in the ER may modulate IRE1a activities (3), which then may trigger the biogenesis of ER-containing autophagosomes (ERAs)
[59–60] (4). ERA biogenesis is known to require the activities of early secretory pathway components, including members of the COPII complex (Sar1-
Sec23-Sec24) [61–63] (indicated in red). This process is also regulated by the activities of PI3Ks [64–66] (5). ERAs may then fuse with BCVs (6) to form
ERA-BCVs (7). In addition, ER expansion may occur in response to these events. Finally, ERA-BCVs may fuse with an expanded ER membrane (8) and
intercept ER proteins such as calreticulin (indicated in black) to form ER-derived BCVs that are permissive for Brucella replication. Depletion of
members of COPII complex, PI3Ks and ER proteins such as calreticulin disrupted these processes and dramatically reduced Brucella replication.
doi:10.1371/journal.ppat.1000110.g008
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cells) or 37uC (mammalian cells) after centrifugation for 5 min at

2006g. Thirty minutes post-infection, culture media was removed,

and the cells were rinsed with 16phosphate buffered saline (PBS).

Fresh media, supplemented with 40 mg/ml gentamicin, was then

added for 1 hr to kill extracellular bacteria. Infected cells were

continuously incubated in this antibiotic for various lengths of time

at the indicated temperature. As indicated, viable bacteria in

infected cells were analyzed using the antibiotic protection assay or

the immunofluorence microscopy assay described below. In

addition, Brucella replication efficiency ([# of CFUs at different

time points post infection]/[# of CFUs of Brucella entry]) in the

infected cells was also determined

Antibiotic Protection Assays
At various times post-infection, viable bacteria present in

infected cells were analyzed using gentamicin protection assays

[18]. Briefly, infected cells were washed twice with 16PBS buffer,

lysed with 0.5% Tween 20 in sterile water, and the released

bacteria were subjected to serial dilution in peptone saline [1%

(wt/vol) Bacto peptone and 0.85% (wt/vol) NaCl]. Next, 10 ml of

serial diluted cell lysate was plated on TSA plates. Finally, CFU

were counted after three days of incubation at 37uC.

Viability Assay of Infected Host Cells
S2 cells were coincubated with or without various drugs before

1 hr of and during Brucella infection (See below). Next, the infected

cells were centrifuged at 2006g for 5 min and then incubated

(30 min) with assorted Brucella strains. Fresh Drosophila-SFM

media, supplemented with drugs (as indicated) and 80 mg/ml

gentamicin, was added to kill extracellular bacteria. The infected

and gentamicin treated cells were then incubated at 29uC for

various lengths of time. To quantify the viability of S2 cells, at

various time points, a portion of the infected cells was removed

and processed for 0.2% trypan blue vital stain analysis. At least

500 cells were counted per sample. For image analysis, infected

cells were replated onto ConA (Sigma)-coated 12-mm coverslips in

24-well plates and allowed to adhere for 1 hr. Cells were stained

with 0.2% trypan blue for 5 min and then fixed with 16PBS

containing 3.7% formaldehyde for 1 hr. Viability of infected cells

was assessed by analyzing images obtained with an Olympus IX70

fluorescence microscope. At least 500 infected cells per sample

were used for the analysis.

S2 Cell Transfection
To visualize Brucella spp. trafficking, S2 cells were transfected

with ER marker mSpitz-GFP [37], and Golgi marker dGRASP-

GFP [38] before infection. Specifically, S2 cells were grown to

,80% confluence and then transfected using Effectene Transfec-

tion Reagent (Qiagen) as per the manufacturer’s instructions. 0.25

mg of each pUAS-mSpitz GFP and pAcpA-Gal4 were employed in

these transfection experiments. For the Golgi visualization

experiments, 0.25 mg of dGRASP-GFP was used in the

transfection. Typically, 1.56106 cells were transfected and then

grown in 2.2 ml of Schneider’s Drosophila medium supplemented

with 10% FBS. Three days post-transfection, cells were replated

onto ConA-treated 12-mm glass coverslips placed on the bottom

of 24-well microtiter plates (for early time points of less than 8 hr)

and immunofluorescence microscopy analysis was performed as

previously described [18]. For later times points ($8 hr), the

transfected cells were reseeded directly in 24-well plates and

allowed to adhere for 2 additional hours before infection with

Brucella. At different post-infection time points, the infected cells

were replated onto ConA-coated 12-mm coverslips and allowed to

adhere for 1 hr. The cells were then washed three times with

16PBS, fixed with 3.7% formaldehyde (pH 7.4) at room

temperature for 1 hr and processed for immunofluorescence

microscopy.

Immunofluorescence Microscopy Assay
To elucidate Brucella spp. intracellular trafficking, S2 cells were

infected with the following strains: B. melitensis (strains 16M or

16M-GFP); B. abortus (strain S2308); S2308 virB2 deletion mutants;

heat killed or 3.7% formaldehyde fixed WT strains. At various

post-infection time points, S2 cells were replated onto ConA-

coated 12-mm coverslips and allowed to adhere for 45 min to 1 hr.

Cells were then washed, fixed as described above, and processed

for immunofluorescence microscopy [18]. The primary antibodies

used were as follows: goat polyclonal anti-Brucella; rabbit anti-

human M6PR; rabbit anti-human cathepsin D; goat-anti rabbit

Sec23 (COPII marker, Affinity BioReagents, Inc., CO, USA).

Samples were stained with Alexa Fluor 488-conjugated and/or

Alexa Fluor 594-conjugated donkey anti-goat/rabbit (Molecular

Probes, 1:1000). Cover slips were then mounted in Vectashield

mounting media (Vector Laboratories, Inc., CA, USA) and

visualized with an Olympus BX51 confocal microscope. For

quantitative analysis, single confocal section of random fields was

acquired, and colocalization of markers was scored as positive

when nonsaturated signals partially overlapped. Images for all

immunofluorescence assays for Brucella spp. trafficking were

acquired with a Hamamatsu ORCA-ER camera mounted on

the Olympus BX51 microscope and driven by Simple PCI

software (Compix Imaging Systems Inc., Cranberry Township,

PA.). Images were processed with Adobe Photoshop CS Software

(Adobe Systems Incorporated, San Jose, CA).

Drug Treatments
Drosophila S2 cells or J774.A1 murine macrophages were

coincubated in 24 well plates with assorted drugs including

bafilomycin A1 (BAF), brefeldin A (BFA), cytochalasin D (CD),

myriocin (MR) and wortmannin (WM) at the indicated concen-

trations. Cells were treated with drugs 1 hr before, and during,

infection with the indicated Brucella strains. After infection, the

treated cells were incubated at 29uC (S2 cells) or at 37uC with 5%

CO2 (J774.A1 macrophages). To evaluate Brucella internalization,

after 30 min of infection, fresh media, supplemented with the

same concentration of the drugs and 80 mg/ml gentamicin was

added to kill extracellular bacteria. After 45 min of incubation, the

cells were lysed and the CFU per well determined by plating

dilutions on TSA plates as described above. To assess Brucella

intracellular replication, CFU analysis was performed at 72 h.p.i.

The effect that BAF-mediated inhibition of host cell endosomal

acidification exerted on Brucella replication was also examined.

Briefly, BAF was added to the culture media 2 h.p.i. and

continuously coincubated with infected cells for 72 hr. Cells were

lysed and analyzed using the gentamicin protection assay. To

investigate whether the drugs inhibit Brucella growth, the drugs

were individually added to Brucella TSB cultures at 29uC or 37uC
and incubated for 1 and 72 hr. CFU plating was used to assess

bacterial growth in the presence of drugs, and thereby to evaluate

the potential inhibitory effects.

Generation of dsRNAs
Primers for generating RNAi that target the knockdown of

Drosophila Rac1, Rac2, Rho1, Cdc42, Sar1 and PI3Ks were

designed using sequence information present in flybase (http://

flybase.org/). The primers were used in RT-PCR reactions to

generate cDNAs. dsRNAs targeting genes to be knocked down

were generated using previously described methods [26]. Briefly,
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gene-specific RNAi primers were used to amplify target sequences

from Drosophila cDNA mixtures. The PCR products were re-

amplified using the RNAi primers with T7 RNA polymerase

promoter sequences in the 59 end. The reamplified PCR products

were then used as templates for the generation of dsRNAs. For

generation of dsRNAs targeting ER-associated and other genes,

cDNAs from commercially available Drosophila RNAi Library

Release 1.0-DNA templates (Open Biosystems, Huntsville, AL,

USA) were directly used as templates. One or two microliters (total

,150 ng) of the PCR products were used to perform in vitro

transcription reactions with the T7 MEGAscript kit (Ambion,

Austin, TX) as per the manufacturer’s instructions. Aliquots of in

vitro transcription products were subjected to quality control by 1%

agarose gel electrophoresis analysis and dsRNA concentrations

were quantified using a NanoDropH ND-1000 UV-Vis spectro-

photometer (NanoDrop Technologies, Inc. Wilmington, DE).

RNAi-mediated Gene Knock Down and Assays
1.06106 S2 cells were seeded in 12-well plates. dsRNAs (i.e.,

Rho1, Rac, Cdc42, Sar1 and PI3Ks) were added to each well at a

final concentration of 15 mg/ml. After 4 days of incubation with

dsRNA, an aliquot of the S2 cells was removed to check the

efficiency of dsRNA mediated gene knock down by quantitative

RT-PCR (Q-PCR). dsRNA-treated S2 cells in the same well were

also re-plated in 24-well plates and allowed to adhere for at least 2

hr before infection. At the selected time points, the dsRNA-treated

and Brucella infected cells were lysed and antibiotic protection

assays or fluorescence microscopy image assays were performed as

described.

To evaluate the utility of the combination of S2 cells and

dsRNA technology, and the consistency of the results from

antibiotic protection assays, we analyzed Brucella infection using

fluorescence microscopy image assays. dsRNAs that target ER-

associated genes or other known or unknown genes were added to

96-well microplates at a final concentration of 15 mg/ml (dsRNAs

were added in duplicate in two different plates). S2 cells were then

seeded in the plates with 5.06104 cells/well in 200 ml Drosophila-

SFM medium. dsRNA-treated cells were incubated at 25uC for 4

days to allow for knockdown of target gene expression. The

dsRNA-treated cells (100 ml) were replated into 96 well plates,

infected with B. melitensis 16M-GFP at an MOI of 50. After 30 min

of infection, the same amount of fresh media supplemented with

80 mg/ml gentamicin was added to each well and the infected cells

were incubated at 29uC. At 72 h.p.i., infected cells were replated

onto 96 well glass bottom plates (Greiner), that had been coated

with ConA, and allowed to adhere for 1 hr. The infected S2 cells

were washed 3 times with 16PBS, fixed with 3.7% formaldehyde

in 16PBS at 4uC overnight, and stained with phalloidin-Texas red

(1:1000) for 1 hr to visualize the host cell actin cytoskeleton.

Brucella infected S2 cells were viewed with an Olympus IX70

inverted microscope and two 4006 images from each well were

acquired for image analysis. Images were analyzed using NIH

Image J software (http://rsb.info.nih.gov/ij/), and the relative

infection (RIF) [1006(% of infected dsRNA-treated cells)/(% of

infected cells in the untreated control)] was determined. More than

1,000 S2 cells were counted to obtain the percentage of infection

or infection index [(number of infected cells (at least 10 brucellae

within the cell))/(number of total cells)] in a sample. The detailed

process by which image analysis was performed is shown in Fig.

S1. dsRNA screen was repeated once, and some of hits identified

in both two round of screens were picked out to re-test in triplicate

in fluorescence microcopy and gentamicin protection assay as

described above.

Mammalian Cell Infection
MEFs deficient of the two regulatory isoforms of class IA PI3Ks

(p85a2/2 p85b2/2 and p85b2/2) [43], IRE1a (IRE1a2/2) [67]

and PERK (PERK2/2) [68] and their corresponding WT control

p85+/+, IRE1a+/+ and PERK+/+ MEFs, were seeded in 24-well

plates. After overnight culture, cells were infected with 16M-GFP

and/or S2308, and their derived mutant strains. Infected cells were

centrifuged for 5 min at 2006g and then incubated at 37uC for

60 min. Cells were washed with 16PBS buffer, and fresh media

supplemented with 40 mg/ml gentamicin was added. Cells were

incubated for an additional 1 hr (entry) and 48 hr (replication) at

37uC. The amount of viable bacteria present in infected cells was

assessed using gentamicin protection assays. For fluorescence

microscopy and viability assays, 56104 cells were seeded onto 12-

mm coverslips in 24-well plates. At 48 h.p.i., infected cells were

subjected to the appropriate assays as described above.

Statistical Analysis
All quantitative data were derived from results obtained in

triplicate wells for at least three independent experiments. The

significance of the data was assessed using Student’s t-test, and all the

analyzed data were normalized with internal controls before analysis.

Supporting Information

Table S1 Brucella strains used in this study

Found at: doi:10.1371/journal.ppat.1000110.s001 (0.14 MB DOC)

Table S2 Comparison of Drosophila S2 and mammalian cells

treated with drugs that inhibit Brucella abortus (S2308) entry and

replication

Found at: doi:10.1371/journal.ppat.1000110.s002 (0.07 MB DOC)

Table S3 Effect of ER-associated cellular factors on Brucella

melitensis replication

Found at: doi:10.1371/journal.ppat.1000110.s003 (0.10 MB XLS)

Figure S1 Schematic representation of image analysis using

Image J to calculate the relative infection (RIF). 1. Threshold of

bacterial replication in infected cells in an image using the same

setting. 2. Analysis of particles in a thresholed image (i.e., the

number of infected cells with bacterial replication). 3. Histogram

of the image (cell numbers were adjusted via color density). 4.

Calculation of the infection index and RIF (% of control) of the

samples. For example, infection index of sample B31C07 = 39/

68.69; RIF of B31C07 = 1006[39/68.69]/[106/68.41] = 36.12.

Found at: doi:10.1371/journal.ppat.1000110.s004 (8.15 MB TIF)

Figure S2 Brucella abortus and B. melitensis growth, and infection

of host cells, at 29uC and 37uC. A. B. abortus growth in liquid

culture (TSB) at 29uC and 37uC. B. Replication of Brucella wild-

type strains S2308 and 16M in Drosophila S2 and J774.A1 murine

macrophages at 29uC. The number of CFUs of 16M and S2308

for S2 [(4.1860.54) 6105/well and (3.5160.95) 6105/well,

respectively] and for J774.A1 [(5.1760.25) 6105/well and

(7.7760.47) 6105/well, respectively] cells at 1 h.p.i was normal-

ized as 100%. Brucella replication efficiency was defined as the

number of CFUs at different time points post infection/the

number of CFUs of bacterial entry (1 h.p.i). C. Entry and

replication of S2308 derived mutants in S2 and J774.A1 murine

macrophages at 29uC. Data represent the means 6 standard

deviations from three independent experiments.

Found at: doi:10.1371/journal.ppat.1000110.s005 (0.50 MB PDF)

Figure S3 Infection of Drosophila S2 cells increases with rising

multiplicity of infection (MOI). A. With increasing MOI, the

number of S2 cells containing replicating Brucella melitensis (16M-
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GFP) increases at 72 h.p.i. The images were taken from a

representative experiment. B. Infection index (i.e., Number of

infected S2 cells with replicating Brucella/total cell number based

on image analysis) and MOI display a linear relationship in the

range of tested MOI. Data represent the means 6 standard

deviations from three independent experiments.

Found at: doi:10.1371/journal.ppat.1000110.s006 (10.28 MB TIF)

Figure S4 GFP expression has no effect on bacterial entry and

replication. The entry (1.5 h.p.i) and replication (72 h.p.i.) of

Brucella melitensis strains 16M and 16M-GFP in Drosophila S2 and

J774.A1 murine macrophages at 29uC and 37uC, respectively,

were compared using gentamicin protection assays. The number

of 16M CFUs of entry and replication in Drosophila S2 cells

[(4.8560.46) 6105/well and (8.8961.23) 6106/well, respectively]

and in J774.A1 cells [(3.6860.29) 6105/well and (1.7760.21)

6107/well, respectively] were normalized as 100%. No significant

differences in entry or replication in S2 or J774.A1 cells were

observed in the two strains. Data represent the means 6 standard

deviations from three independent experiments.

Found at: doi:10.1371/journal.ppat.1000110.s007 (0.30 MB TIF)

Figure S5 Brucella melitensis intracellular trafficking in Drosophila

S2 cells. A. 1. S2 cells expressing a GFP-tagged variant of the

Drosophila ER maker mSpitz (mSpitz-GFP). 2. B. melitensis (16M)

infection of S2 cells (24 h.p.i). 3. A tight association between B.

melitensis cells and host cell ER membranes (arrow) in the main and

inset panels is observed in the merged image. 4. Immunofluores-

cence localization of COPII in S2 cells using Sec23 polyclonal

antibodies. 5. 16M-GFP localization in S2 cells at 12 h.p.i. (Green,

Panel A). 6. A merged image showing COPII proteins and B.

melitensis (16M-GFP) localization. 7. mSpitz-GFP localization in S2

cells. 8. Fixed and killed B. melitensis (16M) in S2 cells at 24 h.p.i. 9.

Merged panels 7 and 8. Markers used in the panels indicated in

parenthesis are shown on the left. B. Brucella trafficking in S2 cells.

Double label immunofluorescence microscopy of: 1. Brucella (16M,

red) (at 6 h.p.i.) and the late endosome marker mannose 6-

phosphate receptor (M6PR, green); 2. Brucella-GFP (at 24 h.p.i)

and the lysosomal marker cathepsin D (red); 3. Brucella (red, at

24 h.p.i) and the GFP-tagged Golgi marker D-GRASP (green).

Scale bar: 5 mm.

Found at: doi:10.1371/journal.ppat.1000110.s008 (8.23 MB TIF)

Figure S6 Effects of selected drugs on Brucella or Drosophila S2

host cell growth. No: No drug control, 1% ddH2O (V/V);

DMSO: dimethyl sulfoxide, 1% (V/V); MT: Methanol, 1% (V/

V); BAF: balifomycin A1, 200 nM; BFA: brefeldin A, 2.5 mg/ml;

CD: cytochalasin D, 2.5 mg/ml; WM: wortmannin, 100 nM; MR:

myriocin, 10 mM. A. The indicated drugs were added into fresh

TSB and Brucella (S2308) was incubated in this medium for the

indicated periods of time. The effects of the drugs on Brucella

growth were determined using gentamicin protection assays. 1 hr

(white bars) and 72 hr (gray bars) represents the relative amount of

Brucella in the drug-treated media (CFU/ml) compared with the

untreated control at 1 and 72 hrs post coincubation, respectively.

Replication efficiency (black bars) indicates relative Brucella

replication efficiency in drug-treated medium and no drug treated

control. B. Viability of Brucella (S2308) infected and drug-treated

S2 cells. S2 cells were pretreated with drugs for 1 hr, and then

infected with bacteria. At 72 h.p.i., cells were stained with trypan

blue, fixed, and the percentage of viable cells was determined

(Panel C). Two images, containing a total of at least 500 cells in

each sample, were analyzed in each experiment. C. Images of

infected S2 cells coincubated with the indicated drugs at 72 h.p.i.,

(1) BAF (100 nM), (2) BFA, (3) CD, (4) WM, (5) MR, and (6) No

drug control. Data represent the means 6 standard deviations

from three independent experiments. The images were taken from

a representative experiment.

Found at: doi:10.1371/journal.ppat.1000110.s009 (0.49 MB PDF)

Figure S7 Effect of selected drugs on Brucella entry and

replication. A. Drosophila S2 cells were conincubated with assorted

drugs at the indicated concentrations 1 hr before and during

infection with B. abortus S2308 at an MOI of 100. The infected

cells were lysed after 1.5 hr (entry) or 72 hr (replication) of

incubation at 29uC in Drosophila-SFM supplemented with 40 mg/

ml gentamicin and the indicated concentrations of drugs. ** and

*** indicates significance at P,0.01 and at P,0.001, respectively.

BAF, BFA, MR, and WM indicate treatment of S2 cells with

baliformycin A1, brefeldin A, myriocin and wortmannin at the

indicated concentrations, respectively. B. Relative CFUs (% of

control) for Brucella (S2308) infection of BAF treated S2 cells at

72 h.p.i. Brucella infected cells were treated with BAF at 2 h.p.i.. C.

Pretreatment of S2 cells with the indicated concentration of WM

has no effect on internalized Brucella replication efficiency. Data

represent the means 6 standard deviations from at least three

independent experiments.

Found at: doi:10.1371/journal.ppat.1000110.s010 (0.75 MB PDF)

Figure S8 RNAi-mediated knockdown of Drosophila S2 cell gene

expression alters Brucella abortus entry and replication. Depletion of

known Brucella host factors disrupts BA114 (S2308virB10::Tn5, A)

and CA180 (S2308manBA::Tn5, C) entry but not replication (B

and D). Data represent the means 6 standard deviations from

three independent experiments. *** represents significant at

P,0.001 compared with no RNAi control.

Found at: doi:10.1371/journal.ppat.1000110.s011 (1.35 MB TIF)
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