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OBJECTIVE—Increased intramuscular triacylglycerol (IMTG)
storage is a characteristic of the obese insulin-resistant state. We
aimed to investigate whether a blunted fasting or 3-adrenergi-
cally mediated lipolysis contributes to this increased IMTG
storage in obesity.

RESEARCH DESIGN AND METHODS—Forearm skeletal
muscle lipolysis was investigated in 13 lean and 10 obese men
using [?H;]glycerol combined with the measurement of arterio-
venous differences before and during 3-adrenergic stimulation
using the nonselective (-agonist isoprenaline (ISO). Muscle
biopsies were taken from the vastus lateralis muscle before and
during ISO to investigate hormone-sensitive lipase (HSL) protein
expression and serine phosphorylation.

RESULTS—Baseline total glycerol release across the forearm
was significantly blunted in obese compared with lean subjects
(P = 0.045). This was accompanied by lower HSL protein
expression (P = 0.004), HSL phosphorylation on PKA sites Ser®
(P = 0.041) and Ser®®” (P = 0.09), and HSL phosphorylation on
the AMPK site Ser®®® (P = 0.007), suggesting a blunted skeletal
muscle lipolysis in obesity. Total forearm glycerol uptake during
baseline did not differ significantly between groups, whereas
higher net fatty acid uptake across the forearm was observed in
the obese (P = 0.064). ISO induced an increase in total glycerol
release from skeletal muscle, which was not significantly differ-
ent between groups. Interestingly, this was accompanied by an
increase in HSL Ser®® phosphorylation in obese subjects during
ISO compared with baseline (P = 0.008).

CONCLUSIONS—Obesity is accompanied by impaired fasting
glycerol release, lower HSL protein expression, and serine phos-
phorylation. It remains to be determined whether this is a
primary factor or an adaptation to the obese insulin-resistant
state. Diabetes 57:1834-1841, 2008
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he obese insulin-resistant state is characterized

by increased triacylglycerol (TAG) storage in

adipose and nonadipose tissues (ectopic fat),

such as skeletal muscle (1). A strong link be-
tween increased intramuscular TAG (IMTG) stores and
skeletal muscle insulin resistance has been shown in lean
and obese subjects (2,3). Recent studies have, however,
indicated that intramuscular accumulation of lipid inter-
mediates rather than TAG per se may be the direct cause
of skeletal muscle insulin resistance, through interference
with insulin signaling (4). Impaired uptake and a reduced
oxidation of fatty acids has been reported in skeletal
muscle under postabsorptive conditions, during 3-adren-
ergic stimulation and moderate-intensity exercise in obese
subjects with type 2 diabetes (5-7). Besides impaired fatty
acid handling, disturbances in the regulation of skeletal
muscle lipolysis may contribute to the increased storage of
IMTG and lipid metabolites. So far, little is known on the
in vivo regulation of skeletal muscle lipolysis in obesity.
Data from our laboratory indicate that the catecholamine-
induced increase in interstitial glycerol concentration and
local blood flow are blunted in obese subjects (8), a factor
that may contribute to an increase in content of muscle
TAG and diacylglycerol.

Although the molecular mechanisms that underlie mus-
cle lipolysis are not known in detail, it has been shown that
hormone-sensitive lipase (HSL) is expressed in skeletal
muscle of rodents (9,10) and humans (11). HSL activity
appears to be regulated by site-specific phosphorylation
on several serine residues. It has been demonstrated that
skeletal muscle HSL Can be ghosphoxg/lated on at least ﬁve
serine residues (Ser®®, Ser’®, Ser®”, Ser®” and Ser®®’)
(11-13). Catecholammes 1ncrease 1ntracellular cyclic AMP
concentration, resultmg in the actlvatlon of proteln kinase
A (PKA). HSL Ser”®, Ser® and Ser®® are major PKA
phosphorylation 51tes although Ser”®® may not affect HSL
activity directly (14). It is still unclear which of the PKA
phosphorylation sites on HSL are important in mediating
the effect of catecholamines on in vivo muscle HSL
activity. Ser®® appears to be a likely candidate because
HSL Ser®® phosphorylation and HSL activity show a
similar response to exercise with concomitant increase in
circulating epinephrine (13). In vitro studies on purified
bovine adipocyte HSL have shown that AMP-activated
protein kinase (AMPK) phosphorylates HSL on Ser®®
thereby abolishing PKA-induced HSL activation (15). In
human skeletal muscle, changes in AMPK activity during
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TABLE 1
Subject characteristics

Lean Obese
n 13 10
Age (years) 49+9 54 = 8
Weight (kg) 75+ 6 102 = 10*
Height (m) 1.81 £0.07 1.79 = 0.07
BMI (kg/m?) 23.0 £ 1.8 319 = 1.9*
Body fat percentage (kg) 20.2 = 35 31.7 + 1.5*
FFM (kg) 60.1 + 54 69.7 = 6.7*
Waist-to-hip ratio 091 =0.04 1.01 = 0.03*
Systolic blood pressure (mmHg) 126 + 11 137 = 13*
Diastolic blood pressure (mmHg) = 85 = 9*
HOMA 1.8 0.7 3.4 = 0.9*

Data are means *+ SD. All subjects are men. *P < 0.05 obese vs. lean.

exercise were also associated with an increased HSL
Ser”®® phosphorylation, but this was not accompanied by
an increased HSL activity, suggesting that AMPK can
phosphorylate HSL on Ser®®® but that AMPK is of minor
importance as a regulator of HSL activity in human skel-
etal muscle during exercise (11).

So far, limited data are available on the differences in in
vivo regulation of skeletal muscle lipolysis between lean
and obese subjects. The aim of the present study was to
investigate whether in vivo baseline and/or catecholamine-
induced lipolysis is impaired in skeletal muscle of obese
compared with lean subjects. For this reason,
[ZHs]glycerol tracer methodology was used to investigate
in vivo whole-body and regional forearm skeletal muscle
lipolysis in lean and obese subjects after an overnight fast
and during B-adrenergic stimulation, using the nonselec-
tive P-adrenergic agonist isoprenaline (ISO). To obtain
more information on the underlying mechanism at the
molecular level, we measured skeletal muscle HSL protein
expression and serine phosphorylation on Ser®®, Ser®®,
and Ser®”.

RESEARCH DESIGN AND METHODS

Three healthy lean (two women and one man; age 20 = 1 years; BMI 22.3 =
1.1 kg/m?) subjects participated in a pilot experiment during which
[*H;]glycerol enrichment was investigated during 6-h infusion to determine
the time required to achieve an isotopic steady state. Thirteen lean and 10
obese nonsmoking men participated in the actual muscle lipolysis experiment
during which [*H;]glycerol was infused for 3 h. Clinical characteristics of the
subjects included in the experiment are summarized in Table 1. Body weight
and body density (by hydrostatic weighing), used for calculations of percent
body fat, fat mass, and fat-free mass (FFM), were determined after an
overnight fast, as previously described (16). All subjects were in good health
as assessed by medical history, were free of any medication, and spent =3
h/week in organized sports activities. The Medical Ethical Committee of
Maastricht University approved the study protocol, and all subjects gave their
written informed consent before participating in the study.

Experimental protocol. In a pilot study in three subjects, the time course of
[H;]glycerol enrichment was determined to investigate when steady-state
concentrations were achieved. Glycerol enrichment was measured in arteri-
alized blood and venous blood draining the forearm during primed (3 pmol -
kg™ ) constant infusion of [*Hj]glycerol (0.20 pmol - kg™* - min~*) for 6 h.
Blood samples were taken simultaneously from the two sites at baseline for
background enrichment (t0) and at 10 time points during [*Hg]glycerol
infusion (t60, t90, t120, t150, t180, t210, t240, t330, t345, and t360).

During the actual muscle lipolysis experiment, glycerol enrichment and
exchange across the forearm were investigated during primed (3 pmol - kg™ 1)
constant infusion of [*Hj]glycerol (0.20 pmol - kg™* - min~*) for 3 h. After a
120-min baseline period, ISO was infused at a rate of 20 ng - kg~ ! FFM - min "’
for 60 min. At this infusion rate, plasma ISO concentrations are comparable in
lean and obese subjects (17). At the beginning of the experiment, an
arterialized blood sample was taken for measurement of background enrich-
ment. Furthermore, arterialized and deep venous blood samples were taken

DIABETES, VOL. 57, JULY 2008

simultaneously at three baseline time points (t90, t105, and t120) and at three
time points during the last 30 min of ISO infusion (t150, t165, and t180). In both
the pilot and muscle lipolysis experiment, forearm blood flow (FBF) was
measured just before blood sampling to calculate substrate fluxes across the
forearm (see FBF). Skeletal muscle biopsies were taken from the vastus
lateralis muscle under local anesthesia of skin and fascia (Xylocaine; Astra-
Zeneca, Zoetermeer, the Netherlands) immediately before the baseline period
(t0) and just before the end of ISO infusion (t180). Muscle biopsies were
immediately frozen in liquid nitrogen and stored at —80°C until further
analysis. During the experiment, heart rate was recorded continuously by
means of a three-lead electrocardiogram (ECG). When heart rate increased
>30 beats/min or in case of ECG irregularities, ISO infusion was stopped (n =
2, 1 lean/1 obese).

Clinical methods. All subjects were asked to refrain from drinking alcohol
and to perform no strenuous exercise for a period of 24 h before the
experiment. Subjects came to the laboratory by car or bus at 8:00 A.m. after an
overnight fast. Before initiating the experiment, a catheter was inserted
retrogradely into a superficial dorsal hand vein to obtain arterialized venous
blood. The hand was warmed in a hotbox, which was maintained at 60°C to
achieve adequate arterialization (18). In the same arm, a second catheter was
inserted in a forearm antecubital vein for the infusion of [*H;]glycerol tracer
and ISO. In the contralateral arm, a third catheter was introduced retrogradely
in an antecubital vein of the forearm for sampling of deep venous blood
draining forearm skeletal muscle. The subjects rested in a supine position for
the entire duration of the study.

FBF. FBF was measured by venous occlusion plethysmography (EC5R
plethysmograph; Hokanson, Bellevue, WA) using mercury-in-silastic strain
gauges applied to the widest part of the forearm (19). During measurement
periods, the hand circulation was occluded by rapid inflation of a sphygmo-
manometer cuff (E20 rapid cuff inflator; Hokanson) placed around the wrist to
a pressure of 200 mmHg. In this way, FBF can be assessed without interfer-
ence of the hand circulation. A second cuff, placed just above the anticubital
fossa, was inflated to 45 mmHg (which was lower than the diastolic blood
pressure, which was >70 mmHg in all subjects) to achieve venous occlusion
and obtain plethysmographic recordings. During venous occlusion, the ple-
thysmographic recordings reflect the rate of arterial inflow, indicating FBF.
Muscle lysates. Muscle tissue was freeze-dried; dissected free of all visible
adipose tissue, connective tissue, and blood under a microscope; and subse-
quently homogenized (1:80 [wt/vol]) in a buffer containing 50 mmol/l HEPES
(pH 7.5), 150 mmol/1 NaCl, 20 mmol/l sodium pyrophosphate, 20 mmol/l
L-glycerophosphate, 10 mmol/l NaF, 2 mmol/l sodium orthovanadate, 2 mmol/l
EDTA, 1% Nonidet P-40, 10% glycerol, 2 mmol/l phenylmethylsulfonyl fluoride,
1 mmol/1 MgCl,, 1 mmol/l CaCl,, 10 pg/ml leupeptin, 10 wg/ml aprotinin, and
3 mmol/l benzamidine. Homogenates were rotated end over end for 1 h at 4°C
and then cleared by centrifugation for 1 h at 17,500g, 4°C. Protein content in
the supernatant was measured by the bicinchoninic acid protein assay
(Pierce, Rockford, IL).

Western blotting. Expression of HSL protein and phosphorylation of HSL
Ser”® Ser®® and Ser®” was detected by Western blotting on the muscle
lysates. The lysates were boiled in Laemmli buffer before being subjected to
SDS-PAGE and immunoblotting. Primary antibodies were rabbit anti-HSL
(donated by Prof. Cecilia Holm [Department of Cell and Molecular Biology,
Lund University, Sweden]) and sheep anti-phospho-HSL Ser”®®, sheep anti—
phospho-HSL Ser®®® (11), and sheep anti—-phospho-HSL Ser®® (13). Secondary
antibodies were horseradish peroxidase—conjugated anti-rabbit (catalog no.
P0448; DAKO, Glostrup, Denmark) and anti-sheep (catalog no. 81-8620;
Zymed, San Francisco, CA). Antigen/antibody complexes were visualized
using enhanced chemiluminescence (ECL+; Amersham Biosciences, Buck-
inghamshire, U.K.) and quantified by a Kodak Image Station E440CF (Kodak,
Glostrup, Denmark).

Analytical methods. A small portion of blood was used for the measurement
of oxygen saturation to ensure adequate arterialization (ABL510; Radiometer,
Copenhagen). Blood was collected in tubes containing EDTA and centrifuged
for 10 min at 1,000g, 4°C. The supernatant (plasma) was used for the
enzymatic colorimetric quantification of fatty acids (NEFA C kit; Wako
Chemicals, Neuss, Germany), free glycerol (Boehringer, Mannheim, Ger-
many), and TAG (Sigma, St. Louis, MO) on a COBAS FARA centrifugal
spectrophotometer (Roche Diagnostica, Basel, Switzerland). Plasma glucose
concentration (ABX Diagnostics, Montpellier, France) and lactate (ABX
Diagnostics) were measured enzymatically on a COBAS MIRA automated
spectrophotometer (Roche Diagnostica). Plasma insulin was measured with a
double antibody radioimmunoassay (Linco Research, St. Charles, MO). Insulin
sensitivity was assessed by the homeostasis model assessment index for
insulin resistance (HOMA,;), calculated from baseline glucose and insulin
(20). Hematocrit was measured using a microcapillary system (Hirschmann
Laborgerite, Eberstadt, Germany).
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Isotope enrichment. To determine isotopic enrichment of glycerol, samples
were first derivatized. One milliliter acetone was added to 150 pl plasma, and
each tube was vortexed for 2 min and centrifuged for 20 min at 17,500¢, 4°C.
The supernatant was transferred to a clean tube, dried under nitrogen at 37°C,
and derivatized using 80 pl ethyl acetate (catalog no. 45765; Sigma-Aldrich,
Seelze, Germany) and 80 pl heptafluorobutyric acid anhydride (catalog no.
63164; Pierce). The tubes were vortexed for 2 min and incubated for 1 h at
70°C. Samples were then rotated end over end for 5 min at 25°C and
evaporated under nitrogen at room temperature. Seventy microliters ethyl
acetate was added before injection into the gas chromatograph-mass spec-
trometer (MAT 252; Finnigan, Bremen, Germany) for measurement of glycerol
enrichment by selectively monitoring the mass-to-charge ratio of molecular
ions 253 and 257 for glycerol (21).

Calculations. The exchange of metabolites across the forearm was calcu-
lated by multiplying the arteriovenous plasma concentration difference of
metabolites by forearm plasma flow. Plasma flow was calculated as FBF X
(1 — hematocrit), with hematocrit expressed as a fraction. A positive net
exchange indicates net uptake, whereas a negative net exchange indicates net
release.

The expected deep venous glycerol enrichment, in case of no glycerol
uptake, was calculated as arterialized enrichment multiplied by arterialized
glycerol concentration and subsequently divided by deep venous glycerol
concentration.

The rate of appearance (R,) of glycerol was calculated according to the
following steady-state equation:

R, (pmol - kg ! -min™!) = TTR™* X F
where TTR is tracer-to-tracee ratio and F is the isotope infusion rate (umol -
kg ' - min ).
The fractional extraction (fract) of glycerol across the forearm was
calculated by dividing the arteriovenous concentration difference of

[?H;]glycerol by the arterialized [*Hj]glycerol concentration. Total glycerol
uptake across the forearm was then calculated as follows:

Total glycerol uptake = fract X [glycerol,,) X FBF

where the unit is nmol - 100 ml ™" tissue + min~'; [glycerol,,,] is arterialized
glycerol concentration (umol/l); and FBF is forearm skeletal muscle blood
flow (ml - 100 ml™! tissue : min~!). Forearm total glycerol release was
calculated from the formula:

Total glycerol release = net glycerol balance — total glycerol uptake

Net glycerol balance (exchange) was calculated as explained above.
Statistical analysis. Differences within groups (i.e., between baseline and
ISO) were tested using the paired Student’s ¢ test (two-sided). Comparisons
between groups (at baseline and during ISO infusion and changes from
baseline to ISO, respectively) were made using Student’s two-sample ¢ test
(equal variance assumed). Statistical calculations were performed using SPSS
for Macintosh (version 11.0; SPSS, Chicago). Data are presented as mean * SE
if not otherwise stated. P < 0.05 was considered statistically significant.

RESULTS

Pilot experiment. In Fig. 1, we show that arterialized and
deep venous TTR, obtained with a 6-h [*Hj]glycerol infu-
sion, reached a steady state after 1 h of infusion. The
measured deep venous enrichment was consistently lower
than the expected enrichment, implying uptake of glycerol
across the forearm (Fig. 1). In the actual muscle lipolysis
experiment (3-h [?H;]glycerol infusion), TTR also reached
a steady state after 1 h and remained stable during ISO
infusion (data not shown). Thus, our data support the use
of a relatively short infusion time (=1 h) to accurately
study glycerol metabolism.

Circulating metabolites. Baseline plasma-arterialized
TAG concentration was twice as high for the obese than
the lean subjects (P < 0.001; Table 2). B-Adrenergic
stimulation increased plasma-arterialized TAG concentra-
tions in obese (P = 0.047; Table 2) subjects, whereas in
lean subjects, TAG concentrations decreased during ISO
(P = 0.08; Table 2). Thus, the change in plasma-arterialized
TAG concentrations from baseline to ISO was different
between lean and obese subjects (P = 0.004; Table 2).
Because of an irregular ECG or failure of the cannulation,
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FIG. 1. Plasma glycerol TTR during 6-h primed constant infusion of
[*H;]glycerol (n = 3) in arterialized blood (M), forearm venous blood
(@), and expected forearm venous enrichment (O). The expected deep
venous glycerol enrichment was calculated as arterialized enrichment
multiplied by arterialized glycerol concentration divided by deep ve-
nous glycerol concentration. The measured venous enrichment was
consistently lower than the expected deep venous enrichment (P <
0.05), implying uptake of glycerol across the forearm. Values are
means *= SE.

there are three individuals less in each group in the ISO
experiment. Therefore, A values for the remaining 10 lean
and 7 obese subjects are included in Table 2. Baseline
values for this subgroup did not differ from those of the
whole group.

Baseline plasma-arterialized FFA and glycerol concen-
trations did not differ significantly between lean and obese
subjects. B-Adrenergic stimulation increased FFA and
glycerol in lean (P < 0.001 and P = 0.015, respectively) and
obese (P = 0.001 and P < 0.001, respectively) subjects
(Table 2). Moreover, the B-adrenergic-mediated increase
in arterialized FFA and glycerol was more pronounced in
obese subjects (P = 0.037 and 0.008; Table 2), suggesting
a higher whole-body lipolytic response in the obese.
Likewise, B-adrenergic stimulation increased whole-body
glycerol R, in lean and obese subjects (P < 0.001; Table 2),
and this increase tended to be higher in the obese (P =
0.067; Table 2). Expressed per unit FFM, baseline glycerol
R, was not significantly different between groups. 3-Ad-
renergic stimulation increased the glycerol R, per unit
FFM in lean and obese subjects (P < 0.001; Table 2), but
this increase in glycerol R, per unit FFM was not signifi-
cantly different between groups.

Plasma-arterialized insulin and lactate concentrations
were higher in obese than in lean subjects during baseline
and ISO (P = 0.002; Table 2), whereas glucose did not
differ significantly between lean and obese subjects in both
conditions. B-Adrenergic stimulation increased circulating
insulin concentrations in lean and obese (P < 0.001; Table
2). This increase in circulating insulin concentrations was
significantly higher in obese than in lean subjects (P <
0.001; Table 2). Circulating glucose and lactate concentra-
tions were unchanged during (-adrenergic stimulation.
Regional forearm metabolism. Baseline FBF was not
different between lean and obese subjects (P = 0.15; Table
3). FBF was significantly elevated during B-adrenergic
stimulation in both lean and obese subjects (P < 0.001),
but the increase in FBF during -adrenergic stimulation
was not significantly different between groups.

Fractional extraction of [?Hj]glycerol from the circula-
tion (lean vs. obese, 40.2 = 3.4 vs. 40.5 * 6.1%) was not
significantly different between groups. Significant glycerol
uptake across the forearm was observed in both obese and
lean subjects (P < 0.001 compared with 0; Fig. 24). The
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TABLE 2
Circulating arterialized metabolite concentrations during baseline and isoprenaline infusion in lean and obese subjects
Lean Obese
Baseline ISO A Baseline ISO A

n 13 10 10 10 7 7
TAG (pmol/l) 701 = 66 648 = 64* —46 *= 23 1,464 = 1907 1,667 = 217*} 112 + 44%
FFA (pmol/l) 661 = 41 942 + 53* 271 + 46 638 + 42 1,124 + 82%* 469 + 82%
Glycerol (pmol/l) 102 =5 118 = 7* 15+5 106 = 4 147 = 10%} 44 + 9%
Glycerol R, (pmol/min) 199 = 12 311 + 28* 109 = 13 220 = 15 391 = 30* 172 £ 19
Glycerol R, /FFM (pmol -

kg ! FFM : min~ %) 3.4 =*0.2 5.5 * 0.5*% 2.0x05 3.3*=0.3 5.8 + 0.6* 25*+05
Glucose (mmol/l) 53 *0.1 54 = 0.1 0.14 = 0.06 55+ 0.2 54 0.1 —0.12 = 0.10
Insulin (mU/) 7.2+ 0.6 10.7 + 0.9* 3.4+ 0.6 13.6 = 1.0 24.0 = 2.3%F 10.6 + 1.5%
Lactate (mmol/1) 0.61 £ 0.04 0.72 = 0.03 0.09 = 0.04 0.98 £ 0.117F 0.99 = 0.06F 0.05 = 0.07

Data are means = SE. *P < 0.05 ISO vs. baseline. P < 0.05 obese vs. lean. P < 0.05 change (A) from baseline obese vs. lean.

increase in total glycerol uptake during B-adrenergic stim-
ulation was not significantly different between groups.
Baseline net glycerol efflux across the forearm was
significantly lower in the obese than in the lean subjects
(P = 0.025; Table 3). Accordingly, obese subjects showed
significantly less total glycerol release across the forearm
at baseline compared with lean subjects (P = 0.045; Fig.
2B). These data indicate a blunted glycerol release during
baseline in obese subjects. Total glycerol uptake ex-
pressed relative to total glycerol release at baseline was
not significantly different between lean and obese subjects
(lean vs. obese, 92.7 £ 13.5 vs. 91.7 £ 23.9% of total
release). Furthermore, obese subjects had higher net fatty
acid uptake across the forearm at baseline (P = 0.064;
Table 3). B-Adrenergic stimulation increased total glycerol
release in lean and obese subjects (P = 0.037 and 0.042;
Fig. 2B), but this increase was not significantly different
between groups. Finally, the increase in net lactate efflux
during B-adrenergic stimulation tended to be higher in
obese than in lean subjects (P = 0.06; Table 3).
Total HSL protein expression and serine phosphory-
lation in the vastus lateralis muscle. Muscle HSL
protein expression was significantly lower in obese com-
pared with lean subjects (P = 0.004) and did not change
during B-adrenergic stimulation (Fig. 3A). Baseline HSL
phosphorylation on Ser”® (P = 0.041), Ser®® (P = 0.007),
and Ser®” (P = 0.09) was reduced in obese compared with
lean subjects (Fi§. 3B-D). When corrected for total HSL
protein, HSL Ser®®, Ser®®, and Ser® phosphorylation was
comparable between lean and obese subjects (data not
shown). No effect of B-adrenergic stimulation was ob-
served on HSL Ser®® or HSL Ser”®® phosphorylation in

both lean and obese subjects (Fig. 3B and C). Obese
subjects showed an increased HSL Ser® phosphorylation
(P = 0.008; Fig. 3D), whereas in lean subjects, HSL Ser®
phosphorylation was unchanged after ISO infusion.

DISCUSSION

The present study revealed a blunted fasting muscle
glycerol release in obese compared with lean men (Fig.
2B). This blunted skeletal muscle glycerol release was
accompanied by a lower total HSL grotein expression and
phosphorylation of HSL Ser®®?, Ser"®, and Ser®” (Fig. 3),
suggesting a blunted fasting muscle lipolysis in obesity.
The B-adrenergic—-mediated muscle lipolytic response was
not significantly different between lean and obese sub-
jects. In contrast to lean subjects, an increased HSL Ser®
phosphorylation was observed in skeletal muscle of obese
subjects during B-adrenergic stimulation compared with
baseline.

Whole-body lipolysis. There seemed to be a directionally
opposite effect of B-adrenergic stimulation on circulating
TAG. Circulating TAG concentrations during -adrenergic
stimulation increased in obese subjects, whereas lean
subjects showed slightly decreased circulating TAG con-
centration during B-adrenergic stimulation. This could
indicate a greater TAG clearance in lean than in obese
subjects after B-adrenergic stimulation. In the present
study, skeletal muscle TAG clearance was not significantly
different between groups. Adipose tissue lipoprotein lipase
(LPL)-mediated TAG hydrolysis might be the cause of an
increased net TAG extraction during B-adrenergic stimu-
lation. An increased rate of action of LPL has been shown
during epinephrine infusion in lean subjects (22). Further-

TABLE 3
Regional forearm blood flow and net metabolite flux during baseline and isoprenaline infusion in lean and obese subjects
Lean Obese
Baseline ISO Baseline ISO
n 13 10 10 7
FBF (ml - 100 ml~! tissue - min~ 1) 2.9+ 0.2 4.6 + 0.4* 2.5+ 0.3 3.5 + 0.3*
Forearm net flux (nmol - 100 ml~* tissue * min—")
TAG 17+5 24 + 197 -2+ 97 46 * 317
FFA 6 = 59t —b53 + 143+ 156 *+ 42 230 * 88
Glycerol —21 = 11t —39 *+ 33t 11 = 5+% 6 + 21t
Glucose 142 = 51 213 = 117% 226 * 81 289 =+ 2237t
Lactate —90 = 27 —171 £ 73 8 £ 45 —327 = 78

Data are means * SE. Positive flux = net uptake; negative flux = net release. *P < 0.05 ISO vs. baseline. TExchange not different from zero.

P < 0.05 obese vs. lean.
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FIG. 2. Total glycerol uptake (A) and release (B) across the forearm
during baseline (W) and ISO infusion ([J) using a [*H;]glycerol tracer
in lean and obese subjects. *P < 0.05 obese vs. lean; #P < 0.05 ISO vs.
baseline. Values are means * SE.

more, it has been shown that obese subjects have a
diminished adipose tissue LPL activity during postprandial
conditions (23). However, it remains to be elucidated
whether an impaired adipose tissue LPL activity during
B-adrenergic stimulation in obese compared with lean
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subjects can explain the difference in circulating TAG
concentration.

Baseline muscle glycerol uptake. The present observa-
tion of significant uptake of glycerol across the forearm
(Fig. 2A) is in agreement with previous reports (24). The
first indications for significant metabolism of glycerol in
muscle came from Elia et al. (25) showing 50% loss of
enriched glycerol across the forearm. More recently, stud-
ies confirmed the finding of significant uptake of glycerol
by forearm muscle (26) and vastus lateralis muscle (27).
The enzymatic machinery for utilization of glycerol seems
to be present in skeletal muscle. Glycerol dehydrogenase,
the enzyme that could initiate glycerol oxidation by skel-
etal muscle, has been demonstrated in humans (28), and
oxidation of glycerol by skeletal muscle has been shown to
occur in humans (28). Furthermore, glycerol kinase ex-
pression has been demonstrated in human muscle cells
(29). Thus, in humans, glycerol taken up from the circula-
tion might be oxidized or incorporated into IMTG, as
shown in rats (30).

Baseline muscle glycerol release. Our data show a
blunted baseline total glycerol release per unit muscle
mass in obese subjects (Fig. 2B). This blunted baseline
total glycerol release was accompanied by a lower total
HSL protein expression in skeletal muscle of obese sub-
jects (Fig. 3A), suggesting a blunted baseline muscle
lipolysis. However, it can be argued that glycerol tracer
release does not only reflect lipolysis. Thus, a blunted
glycerol release might reflect an increased intramuscular
glycerol use (i.e., oxidation or TAG synthesis). To our
knowledge, our data provide the first indication of a
reduced muscle HSL protein expression in obese com-
pared with lean subjects. It is well known that expression
of HSL is markedly decreased in subcutaneous adipocytes
and differentiated adipocytes from obese subjects. This
suggests that, at least in adipose tissue, a decreased HSL
expression is a primary defect in obesity (31,32). However,
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FIG. 3. HSL protein expression (4) and Ser®%® (B), Ser®®® (C), and Ser®*® (D) phosphorylation during baseline (l) and ISO infusion ([]) in lean
and obese subjects. Data are expressed as arbitrary units (AU). *P < 0.05 obese vs. lean; TP < 0.01 obese vs. lean in change between baseline and

ISO. Values are means * SE.
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we cannot exclude that the blunted muscle lipolysis in
obese subjects was a secondary phenomenon caused by a
higher degree of hyperinsulinemia. Still, it has been sug-
gested that muscle lipolysis is primarily regulated by
substrate supply and to a lesser degree is under hormonal
control (33). This seems to be supported by studies
showing no apparent suppression of in vivo skeletal
muscle lipolysis by insulin (34,35). Furthermore, our data
suggest that phosphorylation of HSL on the PKA tar§et
sites Ser®® and Ser®”, and on the AMPK target site Ser”"”,
was lower in obese than in lean subjects. It should be
recognized, however, that when corrected for total HSL
protein, HSL Ser®®, Ser”®, and Ser®* phosphorylation was
comparable between lean and obese subjects, suggesting
that a similar percentage of HSL molecules was phosphor-
ylated on these three serine sites in lean and obese
subjects. Nevertheless, the reduced absolute number of
HSL molecules phosphorylated on Ser®®® may at least
partly explain the blunted baseline glycerol release in
obese compared with lean subjects. On the other hand,
HSL Ser®® and Ser’®® phosphorylation have been sug-
gested not to be major regulators of HSL activity in human
skeletal muscle (11,13). Thus, the reduced phosphoryla-
tion of HSL on these two sites may not have been
important in determining the blunted baseline lipolysis in
obese subjects. For practical reasons, the arteriovenous
differences were measured across the forearm muscle, and
biopsies were taken from the vastus lateralis muscle.
Because there may be heterogeneity in lipolysis between
different muscle groups (36), the combination of forearm
substrate fluxes with lipolytic enzymes in muscle biopsies
from the thigh has to be interpreted with caution. Finally,
it should be mentioned that other lipases might also
contribute to the blunted baseline muscle glycerol release
observed in obese subjects. Recently, we identified adi-
pose triglyceride lipase (ATGL) expression in human
skeletal muscle (37). More research is needed to elucidate
the potential role of ATGL in human skeletal muscle
lipolysis.

Baseline net muscle fatty acid uptake. An increased
basal net fatty acid uptake was observed across the
forearm of obese subjects. An impaired fatty acid uptake
and oxidation by both the leg (5) and the arm (21,38) have
been observed previously in obese type 2 diabetic subjects
compared with healthy individuals. Disturbances in fatty
acid handling and an impaired muscle lipolysis may con-
tribute to the increased IMTG storage in obese subjects.
However, because this also depends on lipid turnover,
both TAG synthesis and breakdown have to be known to
draw final conclusions with respect to the mechanisms
underlying increased IMTG content in obesity. For practi-
cal reasons and because our primary objective was to
study glycerol metabolism, in the present study, no carbon-
labeled long-chain fatty acid tracer was used to measure
fluxes and oxidation rates across the forearm.

Muscle glycerol release during pB-adrenergic stimula-
tion. The present results showed equal forearm glycerol
release during systemic infusion of the nonselective 3-ad-
renergic agonist ISO in lean and obese subjects, suggesting
a comparable lipolytic response. Previously, in situ micro-
dialysis using a 3-2 agonist, salbutamol, showed a blunted
lipolysis in the gastrocnemius muscle of obese insulin-
resistant subjects compared with lean subjects (8). Differ-
ences in systemic versus local infusion of (-adrenergic
agonists might partly explain this discrepancy. Also, in
microdialysis studies, interstitial glycerol is used as a
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measure of lipolysis. As mentioned previously, glycerol is
taken up by skeletal muscle, suggesting that interstitial
glycerol may not reflect the overall rate of lipolysis but
may instead be the net result of TAG and glycerol metab-
olism in muscle, thus reflecting net glycerol turnover (39).
Finally, there may be marked heterogeneity in lipolysis
between different muscle groups, possibly correlated to
composition of fiber types (36). Accordingly, in rats, it was
shown that muscles with a majority of type 1 fibers had
greater HSL activity compared with muscles with a major-
ity of type 2 fiber (10). The higher content of type 1 fibers
in the gastrocnemius muscle compared with forearm
muscle may not only cause a generally higher lipolytic
sensitivity to B-adrenergic stimulation but may also influ-
ence the difference in B-adrenergically stimulated lipolysis
between lean and obese subjects.

It is known from studies with purified bovine adipocyte
HSL (15) and in different cell lines transfected with
wild-type and mutant forms of HSL (14) that B-adrenergic
stimulation increases HSL activity through phosphoryla-
tion on several serine residues. In the present study, HSL
Ser® phosphorylation significantly increased during p-ad-
renergic stimulation in skeletal muscle of obese subjects,
whereas no effect was seen in lean subjects. A previous
study in men and women during exercise has shown that
muscle Ser®® phosphorylation and muscle HSL activity
show a very similar pattern with respect to exercise
response and dependency on sex, indicating that Ser®*
serves an important role in the regulation of HSL activity
in human skeletal muscle (13), as has been demonstrated
in adipocytes (14). It can be speculated that obese subjects
increase HSL Ser®” phosphorylation during B-adrenergic
stimulation to deal with a reduced total HSL protein
expression, increasing muscle HSL activity to a level
comparable with lean subjects. In addition, HSL Ser®®
appears to be a major PKA target site and HSL activity—
controlling site (14). In the present study, HSL Ser®® phos-
phorylation was not measured. Finally, phosphorylation of
the PKA target site Ser®®® on HSL did not increase signif-
icantly during -adrenergic stimulation. This is in accor-
dance with previous studies, in which HSL Ser”®
phosphorylation was not increased during exercise de-
spite an increase in circulating epinephrine (11,13). Maybe
HSL Ser”® is already maximally phosphorylated in the
basal, resting state. Moreover, it has been argued that HSL
Ser‘r’Gé may not be an important regulator of HSL activity in
human skeletal muscle (11).

Muscle lactate release during 3-adrenergic stimula-
tion. Net lactate release across the forearm increased
during B-adrenergic stimulation. This increase was higher
in obese compared with lean subjects, suggesting that the
glycolytic flux was stimulated to a greater extent by ISO in
obese than in lean subjects. This seems in line with
previous findings showing an increased lactate release
during B-adrenergic stimulation in obese subjects (17) that
persisted after weight reduction (40), indicating that this
disturbance might be an early factor in the etiology of
obesity.

Limitations of the study. Considering the increased
discomfort and risk associated with arterial catheters, we
used arterialized hand vein blood as substitute for arterial
blood. Arterialized blood has been shown to be an accept-
able alternative to arterial sampling (41,42). Arterialization
was achieved by heating the hand in a warm air box at
60°C for at least 30 min, which has been previously
validated as the appropriate procedure for obtaining arte-
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rialized blood (43). In the present study, mean oxygen
saturation was 94.5% in both lean and obese subjects,
indicating comparable and successful arterialization in
both groups.

In conclusion, the obese insulin-resistant state is char-
acterized by a reduced muscle glycerol release during
baseline fasting conditions, which was accompanied by a
lower HSL protein expression and phosphorylation on the
PKA target sites Ser"® and Ser®” and on the AMPK target site
Ser®®. This suggests a blunted fasting skeletal muscle lipol-
ysis in obesity, which may be an important factor contribut-
ing to the increased lipid storage in skeletal muscle of obese
insulin-resistant subjects. Further studies are necessary to
address in more detail whether these disturbances are pri-
mary factors or adaptation responses to the obese insulin-
resistant state.
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