
Humid tropical forest clearing from 2000 to 2005
quantified by using multitemporal and multiresolution
remotely sensed data
Matthew C. Hansen*, Stephen V. Stehman†, Peter V. Potapov*, Thomas R. Loveland*‡, John R. G. Townshend§,
Ruth S. DeFries§¶, Kyle W. Pittman*, Belinda Arunarwati�, Fred Stolle**, Marc K. Steininger††, Mark Carroll§,
and Charlene DiMiceli§

*South Dakota State University, Brookings, SD 57007; †State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210;
‡United States Geological Survey, Sioux Falls, SD 57103; §University of Maryland, College Park, MD 20742; �Indonesian Ministry of Forestry, Jalan Gatot
Subroto, Senayan, Jakarta, 10270 Indonesia; **World Resources Institute, Washington, DC 20002; and ††Conservation International, Washington, DC 20002

Contributed by Ruth S. DeFries, May 2, 2008 (sent for review February 21, 2008)

Forest cover is an important input variable for assessing changes to
carbon stocks, climate and hydrological systems, biodiversity rich-
ness, and other sustainability science disciplines. Despite incremen-
tal improvements in our ability to quantify rates of forest clearing,
there is still no definitive understanding on global trends. Without
timely and accurate forest monitoring methods, policy responses
will be uninformed concerning the most basic facts of forest cover
change. Results of a feasible and cost-effective monitoring strategy
are presented that enable timely, precise, and internally consistent
estimates of forest clearing within the humid tropics. A probability-
based sampling approach that synergistically employs low and
high spatial resolution satellite datasets was used to quantify
humid tropical forest clearing from 2000 to 2005. Forest clearing is
estimated to be 1.39% (SE 0.084%) of the total biome area. This
translates to an estimated forest area cleared of 27.2 million
hectares (SE 2.28 million hectares), and represents a 2.36% reduc-
tion in area of humid tropical forest. Fifty-five percent of total
biome clearing occurs within only 6% of the biome area, empha-
sizing the presence of forest clearing ‘‘hotspots.’’ Forest loss in
Brazil accounts for 47.8% of total biome clearing, nearly four times
that of the next highest country, Indonesia, which accounts for
12.8%. Over three-fifths of clearing occurs in Latin America and
over one-third in Asia. Africa contributes 5.4% to the estimated
loss of humid tropical forest cover, reflecting the absence of
current agro-industrial scale clearing in humid tropical Africa.

deforestation � humid tropics � remote sensing � change detection �
monitoring

Quantifying rates of humid tropical forest cover clearing is
critical for many areas of earth system and sustainability

science, including improved carbon accounting, biogeochemical
cycle and climate change modeling, management of forestry and
agricultural resources, and biodiversity monitoring. Concerning
land cover dynamics, humid tropical forest clearing results in a
large loss of carbon stock when compared with most other
change scenarios. The humid tropical forests are also the site of
considerable economic development through direct forestry
exploitation and frequent subsequent planned agro-industrial
activities. The result is that tropical forests and their removal
feature prominently in the global carbon budget (1). In addition,
the humid tropics include the most biodiverse of terrestrial
ecosystems (2), and the loss of humid tropical forest cover results
in a concomitant loss in biodiversity richness.

Assessing the dynamics of this biome is difficult because of its
sheer size and varying level of development within and between
countries. To date, there is no clear consensus on the trends in
forest cover within the humid tropics. Grainger (3) illustrated
this point mainly through the use of data from the Food and
Agriculture Organization of the United Nations Forest Re-
source Assessments (4–6) and consequently emphasized the

need for improved monitoring programs. A practical solution to
examining trends in forest cover change at biome scales is to
employ remotely sensed data. Satellite-based monitoring of
forest clearing can be implemented consistently across large
regions at a fraction of the cost of obtaining extensive ground
inventory data. Remotely sensed data enable the synoptic quan-
tification of forest cover and change, providing information on
where and how fast forest change is taking place. Various
remote-sensing-based methods have been prototyped within this
biome (5, 7–11) and combined with information on carbon stocks
to estimate carbon emissions (8, 12, 13). The method presented
here advances the science of monitoring forest cover change by
employing an internally consistent and efficient probability-
based sampling approach that synergistically employs low- and
high-spatial-resolution satellite datasets. The results represent a
synoptic update on rates of forest clearing within the humid
tropics since 2000. For this study, forest clearing equals gross
forest cover loss during the study period without quantification
of contemporaneous gains in forest cover due to reforestation or
afforestation. The method presented could be implemented
repeatedly for both forest cover loss and gain in establishing
internally consistent biome-scale trends in both gross and net
forest cover loss and/or gain.

Moderate spatial resolution (250 m, 500 m, and 1 km) data
from the MODerate Resolution Imaging Spectroradiometer
(MODIS) are imaged nearly daily at the global scale, providing
the best possibility for cloud-free observations from a polar-
orbiting platform. However, MODIS data alone are inadequate
for accurate change area estimation because most forest clearing
occurs at sub-MODIS pixel scales. High-spatial-resolution Land-
sat data (28.5 m), in contrast, do allow for more accurate
measurement of forest area cleared. However, because of infre-
quent repeat coverage, frequent cloud cover, and data costs, the
use of Landsat data for biome-scale mapping is often precluded.
Integrating both MODIS and Landsat data synergistically en-
ables timely biome-scale forest change estimation.

We used MODIS data to identify areas of likely forest cover
loss and to stratify the humid tropics into regions of low, medium,
and high probability of forest clearing. A stratified random
sample of 183 18.5-km � 18.5-km blocks taken within these
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regions was interpreted for forest cover and forest clearing by
using high-spatial-resolution Landsat imagery from 2000 and
2005. Typically, Landsat imagery has been used to provide
regional forest area change estimates because its sufficiently high
spatial resolution enables the detection of most forest clearing
events (11, 14, 15). Consistent with this practice, our estimates
of forest clearing are based on interpreting Landsat imagery for
the 183 sample blocks selected. Our sampling strategy differs
from previous efforts (5, 8) in that we took advantage of forest
clearing information available from independent imagery, the
MODIS change indicator maps, to define strata and to construct
regression estimators of forest clearing.

Results
Our results reveal that rates of clearing in the biome remain
comparable with those observed in the 1990s (5, 8, 9). Forest
clearing is estimated to be 1.39% (SE 0.084%) of the total biome
area. This translates to an estimated forest area cleared of 27.2
million hectares (SE 2.28 million hectares) and represents a
2.36% reduction in year-2000 forest cover. Fig. 1 depicts the
spatial variation in gross forest cover loss from 2000 to 2005. The
biome can be divided into three regions of forest clearing
intensity. The first region consists of areas with �5% clearing per
block and largely captures the current centers of agro-industrial
scale clearing in South America and Insular Southeast Asia. Of
the total biome area cleared, 55% occurs in this region that
constitutes only 6% of the biome area, illustrating the presence
of forest clearing ‘‘hotspots’’ (region 1 in Fig. 1). The second
region of 0.7–5% clearing per block constitutes 44% of the biome
area. This region consists of less spatially concentrated clearing
and accounts for 40% of all clearing within the biome. The other

5% of forest clearing is found within a third region consisting of
the remaining predominantly intact forest zones (35% of the
biome area) and areas largely deforested before 2000 (15% of
the biome area).

Our findings emphasize the predominance of Brazil in humid
tropical forest clearing (Table 1). By area, Brazil accounts for
47.8% of all humid tropical forest clearing, nearly four times that
of the next highest country, Indonesia, which accounts for 12.8%
of the total. Over three-fifths of clearing occurs in Latin America
and over one-third in Asia. Forest clearing as a percentage of
year-2000 forest cover for Brazil (3.6%) and Indonesia (3.4%)
exceeds the rest of Latin America (1.2%), the rest of Asia (2.7%),
and Africa (0.8%). Beyond the arc of deforestation in Brazil,
Latin American hotspots include northern Guatemala, eastern
Bolivia, and eastern Paraguay. As a percentage of year-2000
forest cover, Paraguay features the highest areal proportion of
change hotspots, indicating an advanced, nearly complete forest
clearing dynamic. Indonesian island groups of Sumatra, Kali-
mantan, Sulawesi, and Papua feature varying degrees of forest
removal, with Sumatra the site of the most intense recent
large-scale clearing and Papua a measurable but low level of
forest clearing. Riau province in Sumatra has the highest indi-
cated change within Indonesia. Hot spots of clearing are present
in every state of Malaysia, and clearing in Cambodia along its
border with Thailand is among the highest of indicated change
hot spots. Africa, although a center of widespread, low-intensity
selective logging (16), contributes only 5.4% to the estimated loss
of humid tropical forest cover. This result reflects the absence of
current agro-industrial scale clearing in humid tropical Africa.

Our results reveal a higher degree of regional variation in
forest clearing than currently portrayed by the only other source

Fig. 1. Forest clearing and forest cover in the humid tropical forest biome, 2000–2005. Total forest clearing over the study period is estimated to be 27.2 million
hectares (SE 2.28 million hectares). Regional variation in clearing intensity is shown: Region 1 covers 6% of the biome and contains 55% of clearing; region 2
covers 44% of the biome and contains 40% of forest clearing; and region 3 covers 50% of the biome and contains 5% of forest clearing. Data from this figure
are available at http://globalmonitoring.sdstate.edu/projects/gfm.
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of information for the pan-tropics during the study period, the
2005 Forest Resource Assessment (FRA) report from the Food
and Agriculture Organization of the United Nations (6). The
FRA 2005 report highlights Africa and South America as having
the highest rates of forest area loss, both in excess of 4 million
hectares per year. For those African countries predominantly
within the humid tropics, our humid-tropics-only estimate is less
than one-third of the FRA estimate. For both this study and the
FRA, Brazil and Indonesia are the countries featuring the
highest forest clearing rates. However, our results differ as to
the relative magnitude of change. For Brazil and Indonesia, the
FRA reports annual change in forest area from 2000 to 2005
equal to 3.10 and 1.87 million ha/yr, respectively (6). Our
estimates of forest clearing for Brazil and Indonesia are 2.60 and
0.70 million ha/yr, respectively. The results for Indonesia rep-
resent a dramatic decrease from 1990 to 2000 clearing rates.

Discussion
Our strategy incorporating the MODIS-derived forest clearing
information in both the sampling design (stratification) and
estimation (regression estimator) components of the monitoring
strategy yielded the requisite precision and cost efficiency
desired for an operational monitoring protocol at the pan-
tropical scale. The standard error we obtained for the biome-
wide estimated forest loss of the humid tropics was comparable
with those reported by the Food and Agriculture Organization
of the United Nations in 2000 (5) and Achard et al. (8), but we
were able to achieve this level of precision with much smaller
sample coverage. The total area of Landsat imagery sampled in
our study was 0.21% of the biome, whereas previous studies (5,
8) used samples covering 10% and 6.5% of the tropical domain.
Our sampling strategy thus yields precise estimates of forest
clearing based on an areal sample coverage that could be
sustainable from an effort and cost standpoint for future mon-
itoring goals. Our approach is readily adaptable to other high-
spatial-resolution sensors because the success of the strategy
derives from advantageously incorporating the MODIS data in
both the sampling design and analysis components.

Considerable debate on the appropriate use of Landsat data
for regional monitoring has concerned the alternative uses of
exhaustive mapping versus sampling-based approaches (17–19).
Data limitations, namely cloud cover and costs of imagery, have
been the principal arguments against exhaustive mapping. The
challenge to a sampling approach is that change is typically rare
at the scale of a biome. Consequently, a critical requirement for
obtaining precise sample-based estimates is to construct strata
that effectively identify areas of intensive forest clearing. The use
of expert opinion to delineate broad regions of suspected change
has been used to achieve this end (8). In contrast, we imple-
mented a more spatially targeted approach to stratification,
using MODIS imagery to flag areas of likely forest clearing. The
MODIS imagery allowed assigning each 18.5-km � 18.5-km
block in the biome individually to a stratum, thus improving on
the broader regional strata used previously (8). Furthermore,
MODIS imagery allows for the identification of clearing on an
annual basis and therefore provides a more temporally resolved
view of change than possible with Landsat data alone.

An additional criticism of the sampling approach is the
absence of a spatial representation of where in the biome forest
clearing is occurring. We address this concern by applying the
stratum-specific regression models relating Landsat-derived
clearing to MODIS-derived clearing at the support of the
18.5-km � 18.5-km blocks to predict clearing for each block (Fig.
1). This spatial depiction of forest clearing takes advantage of the
respective strengths of the complete coverage MODIS imagery
and the high spatial resolution of the Landsat imagery. The more
frequent temporal coverage of the MODIS imagery alleviates
the problem of cloud cover obscuring tropical areas during the
few available Landsat overpasses (20). Calibrating the MODIS-
derived clearing values based on the Landsat-derived clearing
observed on the sample blocks compensates for the inability of
the larger MODIS pixel size (500 m) to detect smaller areas of
clearing that are observable from the 28.5-m Landsat pixels.
Although area estimates derived from coarser-resolution data
are commonly calibrated by using a nonrandom sample of
high-resolution data (21, 22), a strength of our approach is that
by implementing a probability sampling design to collect the

Table 2. Stratified sampling design

Humid tropics (excluding Indonesia) Indonesian humid tropics

MODIS change
(�90%) Stratum no.

No. of blocks
sampled

Percent of
stratum sampled Stratum no.

No. of blocks
sampled

Percent of
stratum sampled

0–2% 1A 21 0.08 5A 8 0.51
1B 25 0.12 5B 33 1.17

2–9% 2 23 1.76 6 17 9.24
�9% 3 32 8.10 7 18 26.09
— 4 (certainty) 5 100 8 (certainty) 1 100

Table 1. Regional estimates of humid tropical forest area cleared

Region
Percent of
biome area

Percent contribution
of region to forest
loss in the biome

Within-region forest
loss as percent of

land area (SE)

Within-region forest loss
as percent of year 2000

forest area
Blocks

sampled

Brazil 27.09 47.8 2.45 (0.14) 3.60% 53
Americas sans Brazil 21.27 12.6 0.82 (0.13) 1.23 10
Indonesia 9.16 12.8 1.95 (0.20) 3.36 77
Asia sans Indonesia 27.60 21.4 1.08 (0.33) 2.68 31
Africa 14.88 5.4 0.50 (0.13) 0.76 12
Pan-Americas 48.36 60.4 1.73 (0.10) 2.56 63
Pan-Asia 36.76 34.3 1.29 (0.25) 2.90 108
Biome total 100 100 1.39 (0.084) 2.36 183
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sample of high-resolution data, we retain the rigorous design-
based inference framework (23) to support the statistical validity
of our estimates. Furthermore, by construction, the aggregate
predicted change over any defined subregion of the biome (Table
1) equals the estimated forest cover loss derived from the sample
blocks, thus ensuring internal consistency between the mapped
(Fig. 1) and estimated forest loss.

The results of this analysis highlight the need for internally
consistent biome-scale monitoring to accurately depict relative
variations in forest clearing dynamics within and between coun-
tries. Results from national-scale studies that employ varying
methods, definitions, and input data may result in incompatible
products that preclude regional syntheses (24). Biome-scale
forest cover and change estimates derived from remotely sensed

data offer a way forward for monitoring forests in support of
both basic earth science research and policy formulation and
implementation. For example, these results could be combined
with information on carbon stocks to support carbon accounting
programs such as the ‘‘Reducing Emissions for Deforestation
and Degradation’’ (REDD) initiative (25). Such an approach
could be implemented at both national and regional scales for
the synoptic assessment of forest cover change and the moni-
toring of intra- or international displacement, or leakage, of
forest cover clearing.

Although forest resources are a key component of economic
development in this biome, forest governance is greatly hindered
by a lack of timely information on change within the forest
domain. A monitoring strategy combining data from sensors at

Forest cover, 2000            Forest loss areas
Non-forest areas            No data/Clouds

a  Central African Republic (3°25’N, 15°37’E). Low change stratum. Forest loss 0.1%. 
 12/14/2000                                            1/10/2005                                            Classification results 

b Brazil (11°25’S, 56°32’W). Medium change stratum. Forest loss 8.2%.
   7/30/2001                                              7/9/2005                                            Classification results 

     Malaysia (4°15’N, 117°24’E). High change stratum. Forest loss 33.0%.
   7/10/2001                                            2/27/2005                                            Classification results 

     Brazil (11°25’S, 55°51’W). Highest change stratum (certainty stratum). Forest loss 37.3%.
   7/30/2001                                              7/9/2005                                            Classification results 

c

d

Fig. 2. Examples of Landsat sample blocks characterized to estimate forest cover and change from 2000 to 2005. Each block covers 18.532 km per side and has
been reprojected into local Universal Transverse Mercator coordinates. The strata are created by using the biome-wide MODIS 2000 to 2005 forest clearing probability
maps. (a) Sample block from the MODIS change strata 1 and 5. (b) Sample block from MODIS change strata 2 and 6. (c) Sample block from MODIS change strata 3 and
7. (d) Sample block from MODIS change certainty strata 4 and 8. All blocks used in this analysis can be viewed at http://globalmonitoring.sdstate.edu/projects/gfm.
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multiple temporal and spatial resolutions offers a feasible and
cost-effective methodology to produce timely, precise, and in-
ternally consistent estimates of biome-wide forest clearing for
5-year updates, and even annual updates for areas where rapid
forest clearing is taking place (i.e., South America).

Methods
The humid tropical forest biome was delineated by using the World Wildlife
Fund ecoregions map (26) as the primary reference. Biome-wide forest change
indicator maps were created by using annual MODIS imagery for 2000–2005.
We used a classification tree bagging algorithm (27) to produce per MODIS
pixel annual and 4- and 5-year change probability maps within the humid
tropics. MODIS 32-day composites were used as inputs and included data from
the MODIS land bands (blue, 459–479 nm; green, 545–565 nm; red, 620–670
nm; near infrared, 841–876 nm; and mid infrared, 1230–1250, 1628–1652, and
2105–2155 nm) (28), as well as data from the MODIS Land Surface Tempera-
ture product (29). To produce a more generalized annual feature space that
enabled the extension of spectral signatures to regional and interannual
scales, the 32-day composites were transformed to multitemporal annual
metrics. Annual metrics capture the salient features of phenological variation
without reference to specific time of year and have been shown to perform as
well or better than time-sequential composites in mapping large areas (30,
31). For each annual and 4- and 5-year interval, a total of 438 image inputs
were used (146 metrics per year plus their calculated differences). The classi-
fication tree bagging algorithm related the expert-interpreted forest cover
loss and no loss categories to the MODIS inputs. We applied a threshold to the
annual and 4- and 5-year forest cover loss maps at various change probability
values to produce per-500-m pixel forest change/no change maps. For each
map, the 500-m pixel data were aggregated to produce a percent cover loss
value (threshold dependent) for each block in the biome.

Standard error calculations based on ancillary data from another tropical
deforestation study (9) led to the decision to use square sample blocks of 18.5
km per side grouped into strata (0–2%, 2–9%, and �9% forest clearing) as
defined by the MODIS change indicator map using a threshold that corre-
sponds to 90% probability [see supporting information (SI) Figs. S1 and S2].
The sample was further stratified geographically as resources were available
to prototype the methodology for Indonesia before biome-wide implemen-
tation. The three MODIS-defined strata were used in both the Indonesian
tropics and in the tropics outside of Indonesia (Table 2). The sample size
allocated per stratum was initially determined by optimal allocation (32) but
was modified slightly to obtain more sample blocks in the high forest loss
strata. The six blocks with the highest MODIS-derived forest loss were placed
in a certainty stratum. The effectiveness of the MODIS-change-based stratifi-
cation can be quantified by estimating the ratio of the standard error of a
simple random sample to the standard error for our stratified random sample
(32). For Indonesia, this ratio was 2.04, and for the rest of the tropics, this ratio
was 1.16, indicating a considerable advantage of stratification for Indonesia,
and a modest advantage for the rest of the tropics.

Each Landsat sample block was classified by using a supervised decision tree
classifier (33) to yield 2000 forest cover and 2000–2005 forest clearing areas.
Each block was examined in detail by one or more interpreters, and the
procedure was iterated if necessary, including manual editing where required,
to achieve accurate per block depictions of forest cover and forest clearing.
Forest was defined as �25% canopy cover, and change was measured without
regard to forest land use. All tree cover assemblages that met the 25%
threshold, including intact forests, plantations, and forest regrowth, were
defined as forests. Sample block imagery and characterizations from each of
the generic low, medium, high, and certainty strata are shown in Fig. 2.
Missing data per sample block consisted of hand interpreted cloud and
shadow cover and data gaps from the Landsat 7 Scan Line Corrector-Off
(SLC-off) malfunction. To produce the within-biome forest cover values shown
in Fig. 1, MODIS Vegetation Continuous Field (VCF) tree cover products (30) for
the year 2000 were regressed against the forest masks derived for the Landsat
block samples and extrapolated for all blocks within the biome.

Within original strata 1 and 5, poststratification was implemented to
partition blocks into poststrata representing areas of near-zero change and
areas of some change. The poststratification used data from the Intact Forest
Landscapes (IFL) project (34) and the VCF tree cover map (30). Blocks that had

�25% IFL or �20% VCF tree cover, and a 90% MODIS threshold change value
of 0% were placed in poststrata 1A and 5A (areas expected to show virtually
no change), and the remaining blocks were placed in poststrata 1B and 5B.

Fig. 3 illustrates the relationship between the expert-interpreted Landsat
block change and the operationally implemented MODIS block change, using
a 75% change probability threshold. For each stratum, a separate regression
estimator (32) was used in the analysis to estimate Landsat-derived forest area
loss. The simple linear regression model applied to strata 2, 3, 5B, 6, and 7 used
the MODIS 75% threshold data as the explanatory variable (y axis of Fig. 3). A
two-variable linear model was applied to stratum 1B that used both the
MODIS 75% and 90% threshold data. A regression estimator was not applied
to strata 1A and 5A because these poststrata had very little change. Therefore,
for these strata the estimates were based on the sample mean Landsat-derived
clearing. The models selected were the best or nearly best fitting models
evaluated for a suite of auxiliary variables that included MODIS-derived forest
loss based on different thresholds and forest cover variables. Each model was
applied per stratum and then aggregated to derive biome-scale forest clear-
ing estimates. Subregional estimates were calculated for the three continents
and for Brazil and Indonesia, all of which had enough samples to yield
estimates of forest clearing with reasonable standard errors. Three other
subregions (Fig. 1) were defined based on per block clearing thresholds to
highlight biome-scale variations in clearing intensity.

Sample blocks were processed in a randomly ordered sequence. A sample
was excluded if the Landsat data exhibited seasonal offsets or image misreg-
istration, or if �25% of the block had useable data (area unaffected by SLC-off
data gaps and cloud cover). In any of these cases, the next sample block in the
randomly ordered list was processed. Just over 10% of samples did not meet
the analysis criteria. The number of blocks excluded by stratum and by region
and the distribution of the percent useable data for the blocks included in the
sample are documented in Table S1. To evaluate possible biases introduced by
having to exclude cloud-covered blocks, the MODIS change probability and IFL
data were used to construct regression imputed values (23) for the excluded
blocks. The forest loss estimates were recomputed by using weighted means
derived from the observed sample values and the imputed values (for each
stratum). For the full biome, the estimated forest loss incorporating the
imputed values was 1.35%, compared with the reported estimate of 1.39%.
For Indonesia, including the regression imputed values resulted in an esti-
mated forest loss of 1.91%, compared with the reported estimate of 1.95%.
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dos Campos, Brazil).

10. Hansen M, DeFries R (2004) Detecting long term global forest change using continuous
fields of tree cover maps from 8 km AVHRR data for the years 1982–1999. Ecosystems
7:695–716.

11. Mayaux P, et al. (2005) Tropical forest cover change in the 1990s and options for future
monitoring. Philos Trans R Soc London Ser B 360:373–384.

12. DeFries RS, Houghton RA, Hansen MC (2002) Carbon emissions from tropical defores-
tation and regrowth based on satellite observations for the 1980s and 90s. Proc Natl
Acad Sci USA 99:14256–14261.

13. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the
atmosphere from changes in land use and land management 1850–2000. Tellus
55B:378–390.

14. Global Climate Observing System (2003) The Second Report on the Adequacy of the
Global Observing Systems for Climate in Support of the UNFCCC, WMO-IOC-UNEP-ICS,
GCOS-82 (World Meteorological Organization, Geneva), Technical Document 1143.

15. US Climate Change Science Program (2003) Strategic Plan for the Climate Change
Science Program Final Report (US Climate Change Science Program, Washington, DC).

16. LaPorte N, Stabach J, Grosch R, Lin T, Goetz S (2007) Expansion of industrial logging in
Central Africa. Science 316:1451.

17. Tucker CJ, Townshend JRG (2000) Strategies for monitoring tropical deforestation
using satellite data. Int J Remote Sens 21:1461–1471.

18. Czaplewski R (2003) Can a sample of Landsat sensor scenes reliably estimate the global
extent of tropical deforestation? Int J Remote Sensing 24:1409–1412.

19. Stehman SV (2005) Comparing estimators of gross change derived from complete
coverage mapping versus statistical sampling of remotely sensed data. Remote Sens
Environ 96:466–474.

20. Asner GP (2001) Cloud cover in Landsat observations of the Brazilian Amazon. Int J
Remote Sens 22:3855–3862.

21. Hayes DJ, Cohen WB, Sader SA, Irwin DE (2008) Estimating proportional change in
forest cover as a continuous variable from multi-year MODIS data. Remote Sens
Environ 112:735–749.

22. Mayaux P, Lambin EF (1995) Estimation of tropical forest area from coarse spatial
resolution data: A two-step correction function for proportional errors due to spatial
aggregation. Remote Sens Environ 53:1–15.

23. Särndal C-E, Swenson B, Wretman J (1992) Model-Assisted Survey Sampling (Springer,
New York).

24. Mayaux P, Achard F, Malingreau J-P (1998) Global tropical forest area measurements
derived from coarse resolution satellite imagery: A comparison with other approaches.
Environ Conserv 25:37–52.

25. United Nations Framework Convention on Climate Change (2005) Reducing Emissions
from Deforestation in Developing Countries: Approaches to Stimulate Action—Draft
Conclusions Proposed by the President (United Nations Framework Convention on
Climate Change Secretariat, Bonn, Germany).

26. Olson DM, et al. (2001) Terrestrial ecoregions of the World: A new map of life on Erath.
BioScience 51:1–6.

27. Breiman L (1996) Bagging predictors. Mach Learn 26:123–140.
28. Wolfe RE, Roy DP, Vermote EF (1998) MODIS land data storage, Gridding, and com-

positing methodology: Level 2 grid. IEEE Trans Geosci Remote Sens 36:1324–1338.
29. Wan Z, Zhang Y, Zhang Q, Li Z-L (2002) Validation of the land surface temperature

products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data.
Remote Sensing Environ 83:163–180.

30. Hansen M, et al. (2003) Global percent tree cover at a spatial resolution of 500 meters:
First results of the MODIS vegetation continuous fields algorithm. Earth Interact
7:1–15. Available at http://ams.allenpress.com/archive/1087–3562/7/10/pdf/i1087–
3562-7–10-1.pdf.

31. Hansen MC, Townshend JRG, DeFries RS, Carroll M (2005) Estimation of tree cover using
MODIS data at global, continental and regional/local scales. Int J Remote Sens
26:4359–4380.

32. Cochran WG (1977) Sampling Techniques (Wiley, New York), 3rd Ed.
33. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees

(Wadsworth and Brooks/Cole, Monterey, CA).
34. Greenpeace International (2006) Roadmap to Recovery: The World’s Last Intact Forest

Landscapes (Greenpeace International, Amsterdam).

9444 � www.pnas.org�cgi�doi�10.1073�pnas.0804042105 Hansen et al.


