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ABSTRACT To ‘‘control’’ a system is to make it behave
(hopefully) according to our ‘‘wishes,’’ in a way compatible
with safety and ethics, at the least possible cost. The systems
considered here are distributed—i.e., governed (modeled) by
partial differential equations (PDEs) of evolution. Our ‘‘wish’’
is to drive the system in a given time, by an adequate choice
of the controls, from a given initial state to a final given state,
which is the target. If this can be achieved (respectively, if we
can reach any “neighborhood” of the target) the system, with
the controls at our disposal, is exactly (respectively, approx-
imately) controllable. A very general (and fuzzy) idea is that
the more a system is ‘‘unstable’’ (chaotic, turbulent) the
‘‘simplest,’’ or the ‘‘cheapest,’’ it is to achieve exact or approx-
imate controllability. When the PDEs are the Navier–Stokes
equations, it leads to conjectures, which are presented and
explained. Recent results, reported in this expository paper,
essentially prove the conjectures in two space dimensions. In
three space dimensions, a large number of new questions
arise, some new results support (without proving) the con-
jectures, such as generic controllability and cases of decrease
of cost of control when the instability increases. Short com-
ments are made on models arising in climatology, thermoelas-
ticity, non-Newtonian fluids, and molecular chemistry. The
Introduction of the paper and the first part of all sections are
not technical. Many open questions are mentioned in the text.

Section 1. Introduction

To control a system is to (try to) make it behave according to
our wishes, at least possible cost, in a way which is compatible
with safety, regulations, and ethics. A vast program indeed . . .
In this expository paper, we consider a particular family of

“wishes,” related to controllability: we are given a time horizon T
(assuming the process starts at time t 5 0) and we are given two
states, yo, the given state at initial time t 5 0, and yT, a given
element of the state space (yT5 target). The “wish” is to drive the
system, by an adequate choice of the control, from yo to yT (resp.,
to a “neighborhood” of yT). If this is possible, one says that the
system is controllable (resp., approximately controllable).
According to our very general definition of control of a

system, if the system is controllable or approximately control-
lable, we want to achieve our “wish” at the least possible cost.
We now make all this more precise.
We consider evolution systems which are governed (mod-

eled) by partial differential equations (PDEs). These are the
so-called distributed systems—i.e., the phenomenon under
study is “distributed” in a three-dimensional geometrical do-
main V.
The state space is denoted by Y, the state at time t is denoted

by y(t). One can act on the system through actuators. It means

that the state y(t) depends on the choice of the control (on the
instructions we give to the actuators). The control will be
denoted by v; it depends on t and on the “distributed” variable
corresponding to the location of the actuators. Once v(t) is
chosen, the PDE is “solved” and it defines “the” state y(t; v)
(or “a” state if we are in situations where it is not known if there
is a unique solution).
The first controllability question is then to know if there exists

a choice vo(t) of v(t) (a choice of a policy) such that at time T, y(T;
vo) equals yT, or belongs to a “neighborhood” of yT.
If this is possible, it is possible in infinitely many ways.

Indeed, choose v arbitrarily in (0, t1), t1 , T. At time t1, we
reach a state y1. In interval (t1, T) we drive the system from y1
to yT (on a neighborhood of yT). We obtain in this way infinitely
many controls “which do the job.” Then it makes sense to try
to minimize ivi (which expresses the “cost” of the control)
among all vs “which do the job.”
This is still fuzzy. There are technical questions, such as the

choice of the topologies on the state space. We shall avoid these
questions in this paper. There are also fundamental questions,
related to “minimizing the cost.” The control v is applied at parts
of the domain V and (or) of its boundary G (applying controls to
all points of V does not make sense physically and it is not
interesting mathematically). If the control v is applied on a region
2 contained in V (resp., on a part Go of G) one deals with a
distributed (resp., a boundary) control.
Then we wish to choose 2 (resp., Go) as “small” as possible

(if 2 reduces to one or several points, one has point-wise
control), and once 2 (resp., Go) is chosen, and if there is some
kind of controllability, then one minimizes ivi as above.
Moreover, the location of 2 (resp., Go) is very important.
Remark 1.1: If we deal with a system where waves (or

singularities) propagate with finite speed, then it is obvious (at
least formally) that if one acts on a region 2 , V, some time
will be needed in order for the state to be modified at time T
on all of V, and also that some kind of geometric condition on
2 will be needed (because of trapped rays). The same com-
ments apply if the actuators are on Go , G.
The above questions (and many others) have been studied

by Russel (1). Another type of method has been introduced by
the author in refs. 2 and 3 (methodHUM5Hilbert uniqueness
method. A hint of this method is given below in Section 2). A
general theory has been given in ref. 4 for the wave equation.
In this paper, we will concentrate on systems with diffusion,

hence time irreversibility.
The main questions we want to address (different to

solve . . .) is the Control of the Navier–Stokes equations (even,
if I dare to say, the ‘‘control of turbulence,’’ whatever that
means . . .).
It will be presented according to the following plan. As a

“warming up” I explain in Section 2 the situation for the heat
equations, linear and nonlinear.Copyright q 1997 by THE NATIONAL ACADEMY OF SCIENCES OF THE USA
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Some ideas on the possible methods are briefly introduced.
Section 3 presents the conjecture made a few years ago (ref.

5, †) concerning the control of Navier–Stokes equations.
Actually if the dimension of V is 2, the ‘‘conjecture’’ has been
proven by Coron and Fursilov (6), as briefly explained in
Section 3.
In Section 4, we consider the same problems for the Stokes

equations. This consideration leads to a ‘‘generic’’ result of
controllability, due to the author and Zazua (7), and also to
some new open problems
One idea behind the conjecture of Section 3 is that the more

a system is ‘‘unstable,’’ the cheaper it is to control. Some precise
results along this line, together with open questions, are given
in ref. 8. An example is given in Section 5.
Needless to say, many other very interesting questions arise

in the control of distributed systems. Some of them are briefly
mentioned in Section 6.
All the results that are going to be mentioned are construc-

tive, in the sense that numerical computations can be based on
the proofs of the results given below, as reported in a series of
papers with R. Glowinski (9–11). But most of these compu-
tations are ‘‘off line.’’ The ‘‘real time’’ problems are not
addressed in this paper.
Very important industrial applications lie behind what is

presented here. A huge bibliography is devoted to these
questions. For the physical aspects of them, refer to ref. 12 and
to the bibliography therein.
Of course, whatever the approach, if there are difficulties in

the implementation of the (optimal) control, it is because of
the ‘‘complexity’’ of the model. But, after all, the system could
be ‘‘simpler’’ than the model. Hence the search for ‘‘low-
dimensional models’’ (cf. ‡). In this respect, I mention paper
13, in the context of the remark of John Von Neumann
‘‘Climate is simpler to control than to predict’’ (quotation
according to P. Dvoretsky, personal communication).
In the search of models with ‘‘reduced complexity,’’ asymp-

totic methods, such as boundary layers equations, are classical.
It should be pointed out here that rapidly oscillating controls
can also be useful for the control of Navier–Stokes equations.
This will be reported elsewhere.
I wish to mention also the neural networks approach (14).
The beginning of each section is not technical, and can be

read without looking at the more specialized remarks. Many
open questions are given in the text.
Section 2. The Case of the Heat Equation

2.1. Linear Problem. Let us start with the linear heat
equations

­y
­t

2 Dy 5 vx in V 3 ~0, T!, [2.1]

where x is the characteristic function of an open set 2 , V and
where v is any square integrable function in 2 3 (0, T) (all
functions are real valued).
To fix ideas, we take for boundary conditions

y 5 0 on G 3 ~0, T!, G 5 ­V [2.2]

and, with the notations of Section 1, the initial condition is
given by

yut50 5 yo, yogiven in L2~V!

~ 5 square integrable functions in V). [2.3]

We are given yT in L2(V) [the space Y of the Introduction
equals L2(V)], and we want to drive the system ‘‘close’’ to yT.
This is possible. Indeed,

y~., T; v! 5 y~t; v! spans a dense (affine) space of L2~V!.

[2.4]

This result can be verified (cf. ref. 15) by using Hahn–Banach
theorem and a backward uniqueness result (16).
A more constructive approach is presented below.
Thanks to Eq. 2.4, one can drive (in infinitely many ways) the

system (modeled by Eqs. 2.1, 2.2, and 2.3) from yo to the set
yT 1 bB, where B5 unit ball of L2(V), b . 0 arbitrarily small.
We can then consider the problem

inf
1
2 EE

23~0,T!

v2dxdt for all vs such that y~T; v! [ yT 1 bB.

[2.5]

Before we proceed a few remarks are in order.
Remark 2.1: The equations 2.1, 2.2, and 2.3 admit a unique

solution, in adequate Sobolov spaces. This is classical.
Remark 2.2: Result 2.4 is true for 2 ‘‘arbitrarily small’’ and

located at any place in V. It is also true for T given arbitrarily
small.
Remark 2.3: With the terminology of the Introduction, result

2.4 implies that in the present situation we have approximate
controllability.
Remark 2.4: Because of the classical property of smoothness

of solutions of Eq. 2.1, y(T; v) is always C` outside 2, so that
y(T; v) cannot span the whole space L2(V). We have approx-
imate controllability, and not exact controllability.
2.2. Duality Arguments. I introduce now, in the simple

situation of Section 2.1, a method which is extremely useful. It
is based on the Fenchel–Rockafellar duality (cf. ref. 17). A few
notations are needed. I introduce

yo 5 y~v 5 0! i.e., the solution of
­yo
­t

2 Dyo 5 0, yo~0!

5 yo, yo 5 0 on G 3 ~0,T!. [2.6]

Then

y 5 yo 1 z

where z 5 z(v) is the solution of

­z
­t

2 Dz 5 vx, z~0! 5 0, z 5 0 on G 3 ~0, T!. [2.7]

I introduce two proper convex functions,

F1~v! 5
1
2 EE

23~0,T!

v2dxdt on L2~2 3 ~0, T!!,

F2~f! 5 H01`
if f [ yT 2 yo~T! 1 bB on L2~V!,
otherwise.

If we set

Lv 5 z~T; v!

we define in this way a continuous linear map from L2(2 3 (0,
T)) 3 L2(V).
Problem 2.5 can now be equivalently formulated as

inf
v
F1~v! 1 F2~Lv!. [2.8]

All this is nothing but notations! But in this form we can
apply ref. 17. It gives

†Lions, J. L., Ninth Institut National de Recherche Informatique et
Automatique International Conference, June 12–15, 1990, Antibes.
‡Tang, K. Y., Graham, W. R. & Peraire, J., American Institute of
Aeronautics and Astronautics 27th Fluid Dynamics Conference, June
1996.
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inf
v
F1~v! 1 F2~Lv! 5 2 inf

f[L2~V!

@F*1~L*f! 1 F*2~2f!#,

[2.9]

where

F*i 5 conjugate function of Fi

(i.e., F*i(h) 5 supg(^h, g& 2 Fi(g)),

L* 5 adjoin tof L.

After a few computations, the dual problem (given in the
right-hand side of Eq. 2.9) is given as follows.
The ‘‘dual state’’ w is given by the solution of the backward

equation

2
­w

­t
2 Dw 5 0 in V 3 ~0, T!

w~x, T! 5 f~x! in V, w 5 0 on G 3 ~0, T!. [2.10]

Then L*f 5 wx and we obtain

inf
v
F1~v! 1 F2~Lv! 5 2 inf

f[L2~V!

(~f!, [2.11]

where

(~f! 5
1
2 EE

23~0,T!

w2dxdt

1 bifi 2 ~f, yT! 1 ~w~0!, yo!, [2.12]

where ifi 5 (*V f2dx)1y2.
Remark 2.5: Since the mapping f3 w 5 solution of Eq. 2.10

is linear, the expression

SEE
230,T

Dw2dxdt1y2

defines a semi-norm on L2(V). It is actually a norm, since if w
5 0 on 2 3 (0, T), then (cf. ref. 18 for this type of uniqueness
theorem for much more general equations; cf. also the general
results of refs. 19 and 20) w 5 0, hence f 5 0.
We set

ufu 5 SEE
230,T

Dw2dxdt)1y2. [2.13]

Then of course

(~f! 5
1
2
2 1 bifi 2 ~f 2 yT! 1 ~w~0!,yo!. [2.14]

But ufu is a norm which is weaker than ifi, so that a direct
minimization of ((f) is not trivial.
The introduction of norm of the type 2.13 is the key element

of the Hilbert uniqueness method (2, 3).
Remark 2.6: The duality formula is very useful (after slight

modifications) for numerical computations. See refs. 9 and 10.
Remark 2.7: The above method is very general for linear

problems. But it does not apply to nonlinear problems, situa-
tions that are now introduced.
2.3. Nonlinear Problems and Unstable Problems. Let us

now ‘‘slightly perturb’’ the state equation 2.1 but in a nonlinear
fashion:

­y
­t

2 Dy 1 ay3 5 vx, a . 0, [2.15]

2.2 and 2.3 unchanged.
Problem 2.15, 2.2, 2.3 admits a unique solution, still denoted

by g(v). But y(T; v) spans a ‘‘small’’ set of L2(V), no matter how

small a is (cf. refs. 21 and 22). The ‘‘small’’ perturbation ay3
completely destroys the approximate controllability.
What would be the situation for ‘‘destabilizing’’ perturba-

tions?
If we consider Eq. 2.15 with a , 0, then the corresponding

problem does not admit in general a global solution in V 3 (0,
T).
One has to set the problem in a different way. One considers

all couples {y, v} such that (we change a into 2a)

­y
­t

2 Dy 2 ay3 5 vx in V 3 ~0, T!, a . 0, [2.16]

and such that conditions 2.2 and 2.3 hold true.
In other words 2.16, 2.2, 2.3 is thought of as a set of

constraints, not a set of equations. This set of couples {y, v} is
not empty (it suffices to start with y smooth with support in 2
3 (0, T), which shows the nonemptiness, at least if yo has
support in 2).
Then one can consider the set described by y(T; v) when {y,

v} are subject to the constraints 2.16, 2.2, 2.3. We conjecture
that this set is dense in L2(V). [We even do not exclude the
possibility of this set being the whole space L2(V)].
Remark 2.8: We can consider an even more unstable situa-

tion. We consider the set of all couples {y, v} such that

­y
­t

1 Dy 5 vx, [2.17]

and such that 2.2 and 2.3 hold true with yo 5 0. This problem
is non-well-set, so that we have to consider the set of couple
{y, v}. One has then

y~T; v! describes exactly L2~V!. [2.18]

The proof is an immediate corollary of ref. 23 (cf. also ref. 24
and the report§). Indeed, let yT be given in L2(V).
We define y(t; v) as the solution of 2.17 and 2.2 and

y~T; v! 5 yT. [2.19]

(This is now a well-set problem.) The problem amounts then
to drive this system to zero. This is indeed possible, according
to ref. 23 (a nontrivial result, which, in a sense, relies on a
precise estimate of the norm 2.13, using ideas based on
Carleman’s estimates, one of the key ingredients for proving
uniqueness theorems and controllability to zero).
We are now ready to proceed with Navier–Stokes equations.

3. Conjectures for Navier–Stokes Equations

After proper scaling, we write the Navier–Stokes equations in
the form

­y
­t

1 y¹y 2 mDy 5 2¹p 1 vx in V 3 ~0, T!, [3.1]

div y 5 0 in V 3 ~0, T!, [3.2]

subject to the boundary conditions

y 5 $y1, y2, y3% 5 0 on G 3 ~0, T!, G 5 ­V, [3.3]

and the initial condition

yut50 5 yo in V. [3.4]

In Eq. 3.1, m is . 0, p denotes the pressure, x is the
characteristic function of 2 , V, and

v 5 $v1, v2, v3% [ L2~2 3 ~0, T!!3 [3.5]

denotes the control.
We introduce the Hilbert space

§Zuazua, E., Congress of European Mathematicians, July 24, 1996,
Budapest.
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H 5 $wuw [ ~L2~V!!3, div w 5 0, wn 5 0 on G%
[3.6]

where n denotes the unit normal to G directed toward the
exterior of V. The initial condition yo is given in H.
On the basis of the classical contributions of Leray (25, 26), it

is known that there exists a global solution in time of 3.1 . . . 3.4
but uniqueness is still an open question (uniqueness is known in
two dimensions). Therefore we denote by y any solution of
3.1 . . . 3.4 (and in dimension 2 the solution of 3.1 . . . 3.4).
Remark 3.1: As it appears in Eq. 3.1, the control is distrib-

uted.
Physically it is much more interesting to consider boundary

control. Technical details are more complicated. But the
conjectures and the results which follow are essentially valid in
the case of boundary control.
Remark 3.2: One knows the existence of a global solution in

time which is square integrable in t with values in the space V
defined by

V 5 $wuw [ ~H1~V!!3, div w 5 0, w 5 0 in G%, [3.7]

where H1(V) 5 {cuc, ­cy­xi [ L2(V), i 5 1, 2, 3} and which
is weakly continuous with values in H. Therefore we can
consider the set

R(T)5set of all states y(T; v) at time T
when v describes the space 3.5,
where y denotes all possible solutions
of 3.1 3.4 (it denotes the solution
if V,R2). [3.8]

The first conjecture is (3, †)

CONJECTURE. R(T) is dense in H. [3.9]

Remark 3.3: Actually a very interesting result in this direc-
tion has been obtained in dimension 2 by J. M. Coron and A. F.
Fursikov (see below).
Remark 3.4: We have a stronger conjecture

CONJECTURE R(T) is dense in H
when v spans a subspace a. 5 0 of
L2(2 3 (0, T))3, a [ R3. [3.10]

In other words, two controls are used instead of three
controls. As briefly reported below, the result analogous to
3.10 is proven in the case of Stokes equations.
In Section 4 below, I also report on the case (introduced in

ref. 7) where one considers only one control.
Remark 3.5: Let g be given arbitrarily in H and let z be a (or

the) solution (depending if space dimension is 3 or 2) of

­z
­t

1 z¹z 2 mDz 5 2¹p

div z 5 0, zut50 5 g, z 5 0onG 3 ~0,T!. [3.11]

We then consider the following question: given g, and given
yo [ H, can one find a control v such that

y~T; v! 5 z~T!? [3.12]

Of course this is trivial if yo 5 g by taking v 5 0. The above
formulation is slightly ambiguous if V , R3. It is clear in the
case V , R2 where z is uniquely defined by g.
The following (highly nontrivial) result has been proven in

ref. 6:

In dimension 2, one can always find v

such that 3.12 holds true [3.13]

(and this is possible in infinitely many ways).
Let us express this result in a slightly different equivalent

way. Let us denote byG(t) the nonlinear semi-group generated
in 2 dimensions by the solution of 3.11, i.e.,

z~t! 5 G~t!g. [3.14]

Then 3.13, is equivalent to the following statement:

In dimension 2, one can always find
a controlv which drives the system from
any yo [ H to any element of G(T)H. [3.15]

Again differently:

One drives the system from a state to a solution.
[3.16]

This notion, systematically used in ref. 26, has been intro-
duced for finite dimensional control by Willems (27).
The proof of result 3.13 uses Carleman-type estimates (as in

refs. 26 and 28) and topological arguments as in ref. 29.
Remark 3.6: Result 3.13 proves conjecture 3.9 in two dimen-

sions if one knows (using formulation 3.15) that

G~T!H is dense in H. [3.17]

This is an interesting nontrivial question. For the linear diffu-
sion equations, it is equivalent using Hahn–Banach theorem,
to backward uniqueness (16), as recalled in Section 2. In the
nonlinear cases, one cannot apply Hahn–Banach. But one can
still study backward uniqueness, (cf. ref. 31), where 3.17 is
raised. Actually, 3.17 has been proven in ref. 32 for periodic
solutions (V 5 square) and with H equipped with a weaker
topology (the topology of the dual of V as introduced in 3.7).
We do not know if 3.17 is proven for Dirichlet boundary

conditions, and with the topology of H.
Remark 3.7: Other results which go in the direction of the

proof of the conjectures are given by Fabre (33, 34) and
Fernandez-Cara and Real (35).
Remark 3.8: For finite-dimensional Galerkin approxima-

tions of the solutions, the equivalent of the above conjectures
are proven in ref. 36, together with other results connected
with Section 5 below.
We now proceed with the (much simpler!) Stokes equations,

where I introduce the notion of generic controllability.
Section 4. Generic Controllability
4.1. General Formulation. When dealing with a man-made

system, one has of course some flexibility in the design of V
(the construction of noncontrollable structures should of
course be avoided!). This is the classical and fundamental
problem of Optimum Design (cf. ¶ and ref. 37 and the bibli-
ography therein), which is (in general) a static problem.
A very general (and fuzzy) question along these lines is the

following:

Can we improve controllability by a slight change of V?
[4.1]

Making this precise is not a simple matter, since one should
first define a notion of ‘‘measure of controllability” (see also
the following section).
A precise result related to question 4.1 has been obtained for

Stokes equations in ref. 7, as explained below.
4.2. Generic Controllability for Stokes System.We consider

the Stokes equations

­y
­t

2 mDy 5 2¹p 1 vx

in V 3 ~0, T!,V , R3,
div y 5 0,
yut50 5 0, y 5 0 on G 3 ~0, T! [4.2]

yt50 5 0, y 5 0onG 3 ~0,T! [4.3]

¶Jameson, A., and Reuther, J. & Jameson, A., American Institute of
Aeronautics and Astronautics 33rd Aerospace Sciences Meeting,
January 1995.
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obtained from the Navier–Stokes equations by suppressing the
nonlinear terms y¹y.
Now we consider one control function

v 5 $0, 0, w%, w [ L2~2 3 ~0, T!!. [4.4]

We indicate below an example where

y(T; w) spans a set which is not dense
in H when w spans the whole space
L2(23(0, T)).[4.5]

We conjecture that

One can always obtain the density of
the space described by y(T; w) in H by an
arbitrary small change of V. [4.6]

This is proven when

V 5 & 3 ~0,L!,& [ R2. [4.7]

Actually we are in the situation of 4.5 when & is a circle—i.e.,
we do not have approximate controllability for the Stokes
system, in the case & 5 circle, with only ‘‘one control’’ as in 4.4.
Moreover, if approximate controllability is not true for some

&, we can always modify & in &̃, a domain arbitrarily close to
& in a C` topology, in such a way that we do have approximate
controllability for &̃ 3 (O, L). In short,

approximate controllability is true generically
with respect to &(L is arbitrary). [4.8]

Remark 4.1: As before, the proof relies on a uniqueness
property: one considers any vector function w which satisfies

­w

­t
2 mDw 5 2¹r, div w 5 0 in V 3 ~0, T!)

w 5 0 on G 3 ~0, T! [4.9]

and

w3 5 0 on 2 3 ~0, T!. [4.10]

This implies that w [ 0 ‘‘in general’’ with respect to&. After some
computations and estimates (cf. ref. 7), everything is reduced to
using the fact (38) that the spectrum of the Laplace operator in
&, for Dirichlet boundary condition, is generically simple.
The counter-example is based on the existence [in the case

V 5 (circle x(0, L)] of an eigenfunction c of Stokes operator

2Dc 5 lc 2 ¹p, div c 5 0, c 5 0 on ­V, [4.11]

such that p 5 0 and c3 5 0 in V, c Þ 0.
Such a c is constructed in ref. 7. Actually, a similar example

was given long before by Dafermos (39) for problems of
stabilization.
Remark 4.2: Of course one can raise the question whether

this type of ‘‘generic approximate controllability’’ is true for
the Navier–Stokes system.
Remark 4.3: Of course Stokes equations are an extremely

simplified form of Navier–Stokes equations! An already more
realistic model—and indeed very useful in iterative numerical
analysis—is the following:

­y
­t

1 a¹y 2 mDy 5 2¹p 1 vx [4.12]

all other conditions being unchanged, and a 5 {a1, a2, a3}
being a vector function such that

a [ L`~V 3 ~0, T!! 3~bounded measurable functions) div a

5 0, an 5 0 on G 3 ~0, T!. [4.13]

(actually it would even be necessary to consider cases where
the assumptions on a are weaker).
One can raise questions similar to all those raised before. A

very important preliminary question is the uniqueness problem.

Let us assume that w is a (weak) solution of (compare to
Remark 4.1)

­w

­t
1 a¹w 2 mDw 5 2¹p, div w 5 0, w 5 0 on G 3 ~0, T!.

[4.14]

It is not known whether 4.10 implies generically that w [ 0.
It is even not clear that the stronger hypothesis

w2 5 0 and w3 5 0 on 2 3 ~0, T! [4.15]

implies w 5 0 (this corresponds to 2 controls). Indeed, it has
only recently be proved by Fabre and Lebeau (40) that

w 5 0 on 2 3 ~0, T! implies that w 5 0 in V 3 ~0, T!.
[4.16]

This highly nontrivial result extends previous results of refs. 41
and 33, where some smoothness on the function a is assumed.
Remark 4.4: Results on the controllability for stochastic

Stokes equations are given in ref. 42. Generic results in this
framework are not known.
Remark 4.5: We have indicated for this section that for the

Stokes equations (and hopefully for others) approximate con-
trollability can be achieved with actions on an arbitrarily small
part of the domain, for an arbitrarily small time, and on only
one component of the equations. But at what cost? I introduce
questions of this type in the following section.
Section 5. Controlling Instability Is Cheap
5.1. General Setting. Let us consider now the state equation

­y
­t

1 D2y 1 kDy 5 vx in V 3 ~0, T!, x

5 characteristic function of 2, [5.1]

where now y is a scalar function. We assume that

y 5 0, Dy 5 0 on G 3 ~0, T! [5.2]

and that

y~0! 5 0. [5.3]

It is known that in this situation one has approximate
controllability—i.e., the space described by y(T; v) when v
spans L2(2 3 (0, T) is dense in L2(V). (See, for instance, ref.
8 for a more general result.)
Therefore, given

B 5 unit ball of L2~V!, b . 0 arbitrarily small
[5.4]

there are infinitely many vs in L2(2 3 (0, T)) such that

y~T; v! [ yT 1 bB. [5.5]

One can then define the function of k (assuming all other data
being fixed) given by

M~k! 5 inf
1
2 EE

23~0,T!

v2dxdt [5.6]

for v subject to 5.5. This function expresses the ‘‘cost’’ of the
control. (For an attempt to measuring the cost of controlla-
bility, see ref. 43.)
Our goal here is to see whether or not M(k) decreases as k

increases, and even whether M(k) 3 0 as k 3 1`. Let me
explain why I conjecture this kind of property (may be not
exactly as stated above) (proofs of results along these lines are
indicated in Section 5.2 below).
The main reason is that as km1`, Eq. 5.1 becomes less and

less stable.
Remark 5.1: Let us set k 5 1y«, v 5 (1y«)w and let us

introduce s 5 ty«. Then the first term of an asymptotic

4832 Applied Mathematics: Lions Proc. Natl. Acad. Sci. USA 94 (1997)



expansion of the solution of Eqs. 5.1, 5.2, and 5.3 is given
formally (there are boundary layers near ­V) by

­y
­s

1 Dy 5 wx, y 5 0 on G 3 ~0, T!, y~0! 5 0, [5.7]

an extremely instable problem (actually a non-well-set prob-
lem) which enjoys very nice properties as far as controllability
is concerned as indicated in Remark 2.8.
Therefore it is not unconceivable that M(k) decreases as k

3 `. But of course this remark is formal, not only because the
asymptotic expansion is formal, but, more importantly, be-
cause we change the time horizon of controllability when
working with the ‘‘fast time’’ s 5 ty«.
Remark 5.2: If we take instead of Eq. 5.3

y~0! 5 yo Þ 0 [5.8]

and if we take yT 5 0, then we can define another ‘‘cost’’

}~k! 5 inf
1
2 EE

23~0,T!

v2dxdt , v subject to 5.5 with yT 5 0.

[5.9]

Then }(k) 3 1` as k 3 2`. That is, it ‘‘costs’’ more and
more to ‘‘control to zero’’ a more and more unstable system.
It is the other way around if one wants to drive a more and

more unstable system from zero to any ‘‘neighborhood’’ of yT.
This is probably a very general situation . . .
Remark 5.3: No results in the direction of what is said just

above are known for nonlinear systems. It would be extremely
interesting to study ‘‘the cost’’ of increasing turbulence or of
having early explosions in unstable or non-well-set systems.
Remark 5.4: It seems likely that the results, presented in

Section 5.2 below, are independent of (reasonable) boundary
conditions for 5.1. But in the proofs of the results to follow, the
special structure of boundary conditions 5.2, 5.3 is used. If we
introduce the unbounded operator Ao in L2(V) defined by

Aof 5 2Df, [5.10]

with domain

D~Ao! 5 $fuf, Df [ L2~V!, f 5 0 on G% [5.11]

[in fact, with usual notations,D(Ao)5 H2(V)ù H01(V) at least
if G is Lipschitz], then, for the boundary conditions 5.2,

D2y 5 Ao
2y in the sense of unbounded operators.

This property is used for the spectral decomposition ofAo andAo2.
Some precise results along the lines of the above discussion

are given below.
5.2. The Cost Tends to Zero as k31`.Formal approach.One

of the main ingredients to obtain estimates on M(k) is to use a
duality formula, similar to the one presented in Section 2.2.
One has

M~k! 5 inf
f[L2~V!

7~f!, [5.12]

where 7(f) is given as follows.
For f in L2(V) we solve the backward (adjoint) state equation

2
­w

­t
1 D2w 1 kDw 5 0, w~x, T! 5 f~x! in G,

w 5 0, Dw 5 0 on G 3 ~0, T!. [5.13]

Then

7~f! 5
1
2 EE

23~0,T!

w2dxdt 1 bifi 2 ~f, yT!. [5.14]

Of course 7(f) depends on k, since w depends on k.

To make formulae slightly simpler, let us change t in T 2 t
in 5.13. We obtain

­w

­t
1 D2w 1 kDw 5 0, w~x, 0! 5 f~x!,

w, Dw 5 0 on G 3 ~0, T!, [5.15]

7(f) still being given by 5.14.
Let us proceed in an extremely formal fashion. Things can

be fixed (see below), but with other methods.
We introduce (as in Remark 5.1) the fast variables s 5 ty«,

with k 5 1y«.
Then formally the first term of an asymptotic expansion of

w (for fixed f) is given by

w 5 c 1 . . . [5.16]

where c is now ‘‘given’’ (more precisely satisfies the constraint)

­c

­s
1 Dc 5 0, c~x, 0! 5 f~x!, c 5 0 on G 3 $s . 0%. [5.17]

If f is such that 5.17 defines c, then

7~f! 5
«

2E
0

Ty«E
2

c2~x, s!dxds 1 bifi 2 ~f, yT! 1 . . .

5
T
2
1
S«
E
0

S«E
2

c2~x, s!dxds 1 bifi 2 ~f, yT! 1 . . . [5.18]

where S« 5 Sy«, so that (I think there is no need to recall once
more that this is formal)

lim
«30

7~f! 5
T
2
lim
S31`

1
SE

0

SE
2

c2~x, s!dxds 1 bifi 2 ~f, yT!.

[5.19]

But because of the fact that 5.17 is extremely unstable, the
limit which appears in 5.19 is always1`, so that the ‘‘only way’’
to minimize 7(f) when « is very small is to take f 5 0, so that
it is not unreasonable to think that M(k) 3 0 as k 3 ` . . .
5.3. A Precise Approach When the Notion of Neighborhood

of the Target Is Relaxed.We are going to relax condition 5.5.
We introduce the spectral decomposition of 2D:

2Dwj 5 ljwj in V, wj 5 0 on G, 0 , l1 # l2 # . . . [5.20]

where the wjs are normalized iwji 5 1.
We introduce the finite-dimensional space E defined by

E 5 space spanned by wj, lj # L, [5.21]

where L is finite given arbitrarily. We define

p 5 orthogonal projection L23 E, i.e.,pf 5 O
lj#L

~f, wj!wj.

[5.22]

We want now to drive the system to a state y(T; v) such that

P~y~T; v! 2 yT! 5 0. [5.23]

This is a (very) relaxed notion of ‘‘neighborhood’’ of yT!
It is known (and it is a simple matter to verify) that there

always exist v such that 5.23 holds true. We then introduce

P~k! 5 inf
1
2 EE

23~0,T!

v2dxdt , v subject to 5.23.

[5.24]

We then have

P~k!3 0 as k3 1`. [5.25]
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The proof (cf. ref. 8) is based on the duality formula which
now reads

P~k! 5 2 inf
f[E

+~f! [5.26]

where

+~f! 5
1
2 EE

23~0,T!

w2dxdt 2 ~f, yT!, [5.27]

w given by 5.15. But now f lies in the finite-dimensional space
E, so that

f 5 O
lj#L

fjwj. [5.28]

The solution of 5.15 is then given by

w 5 O
lj#L

fjwj~t!wj, wj~t! 5 exp~2lj
2 1 klj!t . [5.29]

By using the fact that the wjs are linearly independent on 2
(they are analytic functions in V),

E
2

f2dx $ c O
lj#L

fj
2 [5.30]

for a suitable constant c.
Applying this inequality to w(t), we obtain that

+~f! $
c
2 O

lj#L
F fj2E

0

T

wj
2dt 2

2
c
fj~yT, wj!G 5

c
2O+j~fj!,

hence

E
f[E

+~f! $
c
2 O

lj#L

inf
fj

+j~fj!. [5.31]

An explicit computation of the right-hand side of 5.31 shows that

inf +~f! $ 2t~k! [5.32]

where t(k) 3 0 as k 3 1` (in fact it goes to zero exponen-
tially). But using 5.26 we have

P~k! # t~k!

hence 5.25 follows.
Remark 5.5: In ref. 8, one studies the more general state

equation

­y
­t

1 Ay 2 kAuy 5 vx, k [ R, y~t! [ D~A!, y~0! 5 0,

[5.33]

where A is a self-adjoint operator in L2(V) [or in a product
(L2(V))N] which is strictly positive, and where 0 # u , 1.
The example given here corresponds with the notations of

Remark 5.4 to A 5 Ao2 and u 5 1⁄2.
Remark 5.6: Inequality 5.30 can be very much improved by

making explicit the way the constant c depends on L. The
following (highly nontrivial) inequality has been proven in ref.
24 (cf. also § footnote)

E
2

f2dx $ c1e2c2ÎL O
lj#L

fj
2, [5.34]

where the constants ci are now independent of L. Using 5.34
(in the cases it is proven!) allows one to obtain results of the
type of 5.25 with L depending (suitably) in k (cf. ref. 8).

Section 6. Other Physical Situations and
Mathematical Problems
6.1. Climatology. As was hinted at in the Introduction, the

main motivation (independent of the intrinsic mathematical
interest, at least in my opinion . . .) for working on the prob-
lems addressed in this paper lies with industrial situations.
Another motivation is connected with climatology problems

(themselves related to industrial questions!).
Back in 1955, John Von Neumann (44), observed that one

could achieve great changes in climate by changing the albedo on
(large) portions of the ice caps (adding that this was not a sensible
thing to do . . .). In more precise terms: If we observe some
unpleasant changes in the climate of planet earth, ‘‘can we return
to a solution’’ that we like better (using the terminology 3.16)?
Due to the central role played in any modelization of the

atmosphere and ocean (cf., for instance ref. 45) by the Navier–
Stokes equations, it is natural to arrive at questions of the sort
introduced in Section 3.
But other crucial components of climatology are the ice

caps—and this observation leads to the question of the con-
trollability of free boundary problems (problems of this sort also
arise in ‘‘classical’’ industry!), where irreversible changes could
happen (mathematically . . . !). This type of problem was men-
tioned in ref. 46. I refer here to a report by Diazi.
The interest of these questions is for the time being purely

theoretical, but the situation could change in view of the appear-
ance of many ideas of bioengineering in the specialized literature
(and also since the regulations are nothing but controls!).
6.2. Patterns. Let us consider the classical Bénard problem

in thermohydrodynamics, with boundary control. In a tank

V 5 & 3 ~0, L!

we consider, in a nondimensional form, the velocity y and the
temperature u of the fluid given by

­y
­t

1 y¹y 2 mDy 5 2¹p 1 e3~u 2 u1!,

div y 5 0,
­u

­t
1 y¹u 2 nDu 5 0, [6.1]

where e3 5 {0, 0, 1}.
Standard boundary conditions are given on y. We assume

that u1 is the temperature at the top (x3 5 L) and that we heat
at the bottom (x3 5 0) as we please:

u~x1, x2, 0; t! 5 u1 1 v~x1, x2, t! [6.2]

where v has no constraint (a nonphysical hypothesis).
What are the solutions that we can reach (terminology 3.16)

at time T by an adequate choice of v? What patterns can we
achieve in this way?
6.3. Thermoelasticity. Section 6.2 above gives a coupled

system where there is diffusion on all components of the state.
A different situation arises in thermoelasticity, where the
system is parabolic and hyperbolic, depending on the compo-
nents of the state. More precisely if y denotes the displacement
and u the temperature, a simplified model is

­2y
­t2

2 crDy 1 aDu 5 vx, x 5 characteristic function of 2,

­u

­t
2 nDu 1

­y
­t

5 0 in V 3 ~0, T!, [6.3]

with boundary conditions

y 5 0, u 5 0 on G 3 ~0, T!, [6.4]

\Diaz, J. I., Proceedings of France–Spain Meeting on Mathematical
and Numerical Aspects of Climatology, January, 1994, Malaga, Spain,
pp. 43–47.
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and the initial conditions

yut50 5 yo,
­y
­t
U
t50

5 y1, uut50 5 uo. [6.5]

Because of the ‘‘hyperbolic’’ part (6.3) of the equations,
some geometric condition on 2 is to be expected. Indeed, it has
been proven by Lebeau and Zuazua (24) that, if any ray of
geometric optics of length cT intersects 2, then one can drive
the system to zero at time T—i.e., one can find v such that the
corresponding solution of 6.3, 6.4, 6.5 satisfies

yut5T 5 0,
­y
­t
U
t5T

5 0, uut5T 5 0.

See the survey of Zuazua.§
6.4. Non-Newtonian Fluids. In all situations presented up to

now, many problems are open, but the results obtained so far
do support the conjectures.
In the examples presented now, no conjectures are of-

fered . . . We consider here non-Newtonian fluids of the
Oldroyd type—with a memory.
The problem we want to address is: can one control this type

of fluid? If y denotes the velocity and t the stress tensor, then
one has a coupled system of equations for y and t (and the
pressure). The equations for y are like Navier–Stokes plus a
term containing first-order space derivatives on the compo-
nents of t, and the equations for t are transport equations with
terms depending (in a rather complicated way) on y. These are
the Oldroyd derivatives, which express that the (non-
Newtonian) fluid has a memory.
Assuming distributed or boundary control, the natural ques-

tion seems now to be: can one drive the state y toward a
neighborhood of yT and of zero for t(T)? No theoretical result
seems to be known in this type of problem. Numerical results (for
extremely simplified models with memory) are given in ref. 11.
6.5. Schroedinger Equation. In the paper ‘‘Control of molec-

ular motion’’ (47) the following type of problem is introduced.
The state equation is given by

i
­y
­t

1 Hoy 5 Uy, [6.6]

where How 5 2Dw 1 Vo(x)w, Vo being the potential energy
function, and whereU can be thought of as a family of operators
which are the control functions. These operators should be
such that, under appropriate boundary conditions, and with
the initial condition

yut50 5 yo [6.7]

the state y is defined.
Given again a desired state yT at time T, can one find a family

of operators U 5 U(t) which drive the system from yo to a
neighborhood of yT?
The above question (which is of course a nonlinear problem

even if the state equation is linear when U is chosen) enters in
the family of bilinear control. The only mathematic results
available for such situations and for different (but related)
models seem to be those of Ball and Slemrod (48, 49).
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