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Abstract

We have known for some time that the epidemiology of human stroke is sexually dimorphic until
late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept
is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by
biological sex as well as the availability of sex steroids to the brain. The principal mammalian
estrogen (17 B estradiol or E2) is neuroprotective in many types of brain injury and has been the
major focus of investigation over the past several decades. However, it is becoming increasingly
clear that although hormones are a major contributor to sex-specific outcomes, they do not fully
account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight
recent studies in cell culture and animal models that suggest that genetic sex determines
experimental stroke outcome and that divergent cell death pathways are activated after an ischemic
insult. These sex differences need to be identified if we are to develop efficacious neuroprotective

agents for use in stroke patients.

Background

Stroke affects 15 million people worldwide each year, and
is the leading cause of disability in the United States. The
epidemiology of ischemic stroke is sexually dimorphic in
that ischemic events occur with greater frequency in men
vs. women regardless of country-of-origin and ethnic cul-
ture [1]. The underlying mechanisms involved in these sex
differences remain unclear [2] but exposure to gonadal
hormones, particularly estrogen, has been thought to play
a major role [3,4]. In experimental stroke studies, female
animals suffer less damage from an induced stroke than
males, an effect that can be reversed in part by ovariec-
tomy [5]. However, despite preclinical and observational
evidence of a protective role for estrogen, recent rand-
omized clinical trials such as the Women's Health Initia-
tive (WHI) have failed to translate the beneficial effects of

estrogen into a viable therapy for stroke prevention in
post-menopausal women, as treatment with estrogen led
to an unexpected increase in stroke rates [6]. In addition,
women continue to have a decreased incidence of stroke
compared to men well beyond (>20 years) the meno-
pause, suggesting that not all the observed "female protec-
tion" is mediated by steroids.

It is becoming clear that innate differences in stroke risk
exist between the sexes that are independent of hormone
exposure [7]. Hormone-independent sexual dimorphism
has been described in pediatric stroke studies as well as in
experimental animal models of neonatal hypoxic-
ischemic encephalopathy (HIE) [8]. For example, male
sex is a significant risk factor in childhood stroke and is
linked to higher mortality after ischemic stroke in boys
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relative to girls [9]. Female pre-term neonates have better
survival and fewer handicaps compared to males [10],
and animal studies show clear sex differences in outcome
in models in which hormone levels are similar between
the sexes [11]. Much less evidence is available for adult
animals, as the confounding effect of hormones has made
this a difficult area of investigation [4,12] and it remains
relatively understudied. There is abundant preclinical evi-
dence that estrogen protects ischemic brain [13-15], how-
ever very little work has examined male hormones as a
possible mediator of the innate male sensitivity to cere-
bral ischemia. One recent study has shown that removal
of androgens protects the male brain from damage
induced by middle cerebral artery occlusion (MCAO),
which is reversed by testosterone replacement [16], sug-
gesting that testosterone exposure could be deleterious. It
is important to note that the effects of hormones can
never be completely eliminated, even in neonatal models
of ischemia. It has been well described that some sex-
related traits may be influenced by variations in hormonal
exposure during fetal development due to intrauterine
positioning [17]. Ischemic sensitivity could be related to
prenatal hormonal exposure (ie. testosterone, progester-
one or estrogen) even in in vitro studies that utilize neuro-
nal cultures derived from embryonic cells or neonatal
slice studies.

Modeling ischemic "stroke" in the laboratory setting is
also difficult. Results from cell culture systems after
ischemic or excitotoxic insults and animal studies of
induced stroke should be interpreted with some caution.
Stroke incidence and functional outcome measures com-
monly used in our stroke patients are clearly distinct from
the pre-clinical measurements of "infarct size", short term
histological assessment, and simple behavioral endpoints
frequently used in rodent studies. Additionally, although
it is becoming accepted that sex differences are present in
acute stroke outcomes in both animals and humans, pos-
sible sex differences in repair and regeneration after injury
have yet to be addressed.

Due to cost constraints and high mortality, stroke
researchers also often utilize only young animals (8-12
weeks for rodents) with induced stroke examined at 24 or
72 hours after injury. This clearly does not adequately
reflect the clinical disease, as the vast majority of sponta-
neously occurring strokes occur in older individuals with
multiple risk factors (i.e., hypertension, diabetes etc.) who
accrue long-term disability. These issues are becoming
increasingly recognized as major blocks to translational
research [18,19]. Only one study has examined sex differ-
ences in naturally occurring stroke in rodents. Yamori et al
examined spontaneous stroke incidence in over 2000
genetically hypertensive and stroke-prone animals and
found results consistent with the intrinsic female protec-
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tion seen in other models. Female rats had longer life
expectancies compared to age-matched males and low
rates of cerebral hemorrhage and vascular lesions until an
advanced age [20]. Some of these effects can be attributed
to estrogen, but other possible mediators of these sex dif-
ferences need to be evaluated.

So what is the etiology of these sex differences? Over the
past five years, data has emerged from in vivo and in vitro
studies that demonstrate that ischemic cell death path-
ways are fundamentally different in the male and female
brain. It appears that females are exquisitely sensitive to
caspase-mediated cell death, whereas cell death in males
is triggered by caspase-independent pathways involving
apoptosis-inducing factor (AIF) and Poly(ADP-ribose)
polymerase (PARP) activation [4,21,22]. So why is it
important to further investigate these sex differences?
Even if we discover that differences exist, does this have
any relevance to clinicians developing drug therapies or
treating patients? The answer becomes clear when the few
experimental neuroprotective studies that have used both
sexes in their work are reviewed. Several clinically relevant
neuroprotective agents that are in development for the
treatment of stroke and HIE have shown clear sexual
dimorphic responses i.e., PARP inhibitors[4], erythropoi-
etin [23] hypothermia [24] and caspase inhibitors [22]. In
fact, in adult mice, agents designed to interfere with PARP
signaling actually worsened outcome in females, although
these agents had a dramatic protective effect in treated
males. These effects were independent of estrogen expo-
sure as they were seen in ovariectomized as well as intact
females [4]. These studies are extremely relevant to the
treatment of adult stroke patients with neuroprotective
agents, as the vast majority of women experiencing an
ischemic event are post-menopausal, with low circulating
estrogen levels [4].

An important new concept emerging in this field is that
therapies for stroke operate in a different genetic back-
ground in women and men [3]. This review aims to sum-
marize the recent literature on sex differences in animal
models of ischemic stroke as well as in ischemic cell death
in culture systems, with a focus on hormone-independent
mechanisms. Sex differences have also been reported in
other organ systems, the best studied being the kidney and
heart; however, most of the work has investigated direct
hormonal protection rather than intrinsic sex differences
[25-27]. This is not to suggest that the brain is the only
area where sex differences play an important role in out-
come. In one recent study sex differences were described
in neonatally-derived cardiomyocytes, demonstrating the
wide relevance of these sex differences to other organ sys-
tems [28]. There is also considerable clinical literature
suggesting sex differences exist in clinical stroke epidemi-
ology, prevention and treatment. Many of these effects are
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likely related to hormone exposure, and are summarized
in an excellent recent review on this topic, [29] yet dis-
cerning which effects are attributable to hormones and
which are intrinsic to gender is essential. Advancing our
knowledge of the mechanisms of ischemic cell death and
neuroprotective therapies is an important goal in both
sexes in order to optimize treatments for stroke. Many
researchers are unaware of the potential confounding
effects of sex differences. Much of the preclinical work in
stroke continues to focus on young male animals and
mixed sex cell culture systems despite the Stroke Therapy
Academy Industry Roundtable (STAIR) recommendations
that neuroprotective studies be performed in both male
and female animals [30]. It is imperative that investigators
are aware of the potential for erroneous conclusions when
attempting to translate promising experimental findings
into a clinical population at risk for stroke which includes
women.

Programmed cell death

Currently, the only FDA-approved treatment for stroke is
administration of tissue plasminogen activator (tPA),
which degrades the fibrin clot blocking blood flow to the
brain tissue [31]. Unfortunately this treatment is only
approved for the 1stthree hours after onset of stroke. Due
to this short time window, researchers and clinicians are
focusing on treatments that can be administered several
hours after ischemic onset, specifically targeting a slower
cell death pathway than necrosis: apoptosis. Apoptosis
plays a key role in stroke-related cell death, yet no drugs
targeting this pathway have been approved for clinical
use. New experimental data points to significant sex-based
differences in the activation and execution of apoptosis
between male and female animals in response to stroke.
The ability to discriminate such differences may help
increase success of these drugs in clinical trials.

Several drugs inhibit apoptosis, a normal process used
during development that occurs to a smaller degree as we
age [32]. Quantifying the degree of apoptotic cell death is
difficult, as subtle changes in the techniques or time
points used may affect the results and initiating events
often occur concurrently [33]. Specifically, apoptosis can
be triggered through a number of factors either through an
"intrinsic" mitochondrial mediated or "extrinsic" cell
death receptor pathway [34]. In stroke, the intrinsic path-
way is usually initiated by the release of cytochrome C
from the mitochondria (Figure 1). This is followed by the
formation of the apoptosome, caspase cleavage with sub-
sequent amplification of downstream targets, and the
eventual cleavage of DNA and structural molecules lead-
ing to the death of the cell [33]. Alternatively, DNA dam-
age may trigger over-activation of poly-ADP-ribose
polymerase (PARP), with corresponding release of AIF
and endonuclease G from the mitochondria eventually
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terminating in cell death [35]. The relationship between
these two forms of apoptosis is still under examination,
yet substantial research exists demonstrating that these
pathways can be activated in a sexually dimorphic way.
More importantly, agents that interfere with activation of
a specific triggering event in each pathway (ie., PARP vs.
the caspase cascade) have very different results in male or
female animals or tissue, suggesting that intrinsic differ-
ences exist based solely on sex.

Many of the early observed clinical and experimental sex
differences were explained by the pronounced effect that
gonadal hormones confer in stroke. Numerous studies
have documented the protective role of estrogen in stroke
and in vitro oxygen-glucose deprivation models [36-38].
Physiological levels of sex hormones may mask innate
gender differences, but these differences may be uncov-
ered when hormone levels are equalized between sexes.
This necessitates ovariectomizing (OVX) adult females
and thus explains the substantial emphasis placed on neo-
natal animal research in this area. The utilization of neo-
natal animals allows for the investigation of cell death
independently from the effects mediated by hormones
[39]. Here we will briefly discuss neonatal, adult, and in
vitro studies that have formed the foundation of the hypo-
thesis that cell death is sexually dimorphic, even at a
molecular level. A summary of articles that specifically
examined sex-related differences in response to ischemic
stress in the brain is listed in table 1.

Sex differences in cell culture models

Early studies examining adult rodents found that OVX
females displayed similar infarct volumes compared to
age-matched males after 2 hr. MCAO [40]. Additionally,
males supplemented with equine estrogens had smaller
strokes than untreated males [41]. This supported the idea
that estrogen was the principle cause of dichotomous
stroke outcome between sexes. However, examining sur-
vival rates of embryonically-derived cortical neurons (DIV
14) separated by sex revealed that female neurons in both
the cortical plate and the ventricular zone survived longer
than male neurons [42]. Furthermore, phospho-ERK1
and Akt levels were higher in female neurons, suggesting
that different pro-survival pathways could be activated in
XX vs. XY cells independently of hormone exposure. The
vast majority of previous studies specifically examining
sexual dimorphism focused on sexual differentiation and
the organizational effect of hormones on areas involved
in reproductive and mating/maternal behaviors. It is
becoming increasingly clear that sexual dimorphisms can
be the result of the genetic complement of the cell and
occur completely independently of hormonal exposure
[43,44] in areas that are unrelated to sexual development.
Indeed, sex-differences in gene expression occur prior to
gonadal differentiation [45-47]. The possible conse-
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quences of genetic contributions (XX vs. XY) to ischemic
sensitivity have only recently been investigated.

Sex differences in the response to oxygen-glucose depriva-
tion (OGD) or ischemic-like insults have been evaluated
in vitro (see Table 1). A consistent sex difference after
either OGD or NMDA exposure has been seen in hippoc-
ampal slice cultures; slices derived from female post-natal

(PND 7) pups were intrinsically protected compared to
slices derived from male animals [48]. Primary rat female
hippocampal neurons were also more resistant to hypoxia
than male neurons [37]. Sex differences in sensitivity to
ischemia have also been recently described in post natal
astrocytes [38]. In a study using cytotoxic agents to induce
cell death, female neurons demonstrated greater resist-
ance to nitrosative stress than male neurons [21]. Addi-
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Table I: Studies examining gender-differences independent of gonadal hormones in response to cellular stressors

Author Age* Insult Treatment/drug/ Sex difference Key molecules
mutation
Du, L [21] Neurons Cytotoxic agents estradiol, NMDA Yes AlF, cytochrome C,
antagonist, z-VAD, PARP glutathione
inhibitor, antioxidants
Hagberg, H [53] Neonatal 50 minutes unilateral PARP-1 -/- Yes NAD+, PAR
hypoxia-ischemia
Heyer, A [37] Neurons 15 hr. Hypoxia testosterone Yes sex hormones, estrogen
receptors
Kitano, H [60] Neonatal and adult 2 hr. MCAO isoflurane PC, Akt KO Yes Akt, NIPK
Li, H [48] Neurons Oxygen-glucose 7-nitroindazole, estradiol Yes SOD, NO(x)
deprivation & NMDA
Li, K [57] Juvenile Embolic infarct None Yes various cytokines
Liu, M [38] Astrocytes Oxygen-glucose Arimidex, estradiol Yes cypl9 mRNA, aromatase
deprivation & cytotoxic activity
agents
Mabley, J. G. [12] Adult LPS injections OVX, PARP-1 -/- Yes TNF, PAR, Ero.
Mcullough, L. D. [4] Adult 90 min. MCAO nNOS -/-, PARP- |-/-, Yes eNOS, iNOS, nNOS
OVX, PJ-34, 7-
nitroindozole
Nijboer, CH [11] Neonatal (P7) 2 hr. Hypoxia-ischemia 2-iminobiotin Yes AlF, cytochrome C,
caspase-3
Nijboer, CH [51] Neonatal (P3) 2 hr. Hypoxia-ischemia 2-iminobiotin Yes AlIF, cytochrome C,
caspase-3, HSP70
Park, EM [59] Adult 20 min. MCAO OVX, PARP-1 -/-, Mixed iNOS
aminoguanidine, iNOS-/-
Renolleau, S [22] Neonatal 50 min. MCAO Q-VD-Oph Yes cytochrome C, caspase-3,
caspase- |
Wen, TC [23] Neonatal permanent MCAO Erythropoietin Yes None
Zhang, L [42] Neurons None None Yes Phospho-ERK I, Akt, Bcl-
2
Zhu, C [54] Neonatal 45 min. Unilateral Q-VD-OPh, Edaravone, No AlF, cytochrome C,
hypoxia-ischemia Harlequin mutation caspase-3, PAR
Zhu, C [56] Neonatal and Adult  45-65 min. Unilateral None Mixed AlF, cytochrome C,

hypoxia-ischemia

caspase-3, PAR,
nitrotyrosine

*all studies were performed on rats or mice

tionally, male and female neurons responded differently
to drugs targeting specific proteins and pathways includ-
ing a PARP-1 inhibitor and z-VAD.fmk, a pan-caspase
inhibitor. Higher levels of AIF, a major downstream medi-
ator of PARP's cytotoxic effects, were observed in the
nucleus of male neurons, while higher levels of cytosolic
cytochrome C, an initiating event in the intrinsic caspase
cascade, were observed in female neurons [21]. Similar
results in in vivo stroke models (see below) support this
concept: male cell death after stroke is mediated in large
part by the activation of neuronal nitric oxide synthase
(nNOS) with subsequent activation of PARP, whereas
female cell death is triggered by cytochrome C and caspase
activation. If this is true, then drugs that interfere with
nNOS/PARP activation are unlikely to benefit female-
derived neurons, and conversely agents that interfere with
caspase activation are unlikely to benefit male-derived
neurons. Evidence for this is accumulating in the literature
both in vitro and in vivo. Treatment of hippocampal slices
with a nNOS inhibitor had no effect in female slices (PND

7; DIV 13) after OGD [48], but protected male neurons.
Similar sex dichotomies have been observed in spleno-
cytes, suggesting that this may be a ubiquitous sex-differ-
ence in response to stress in cells outside of the central
nervous system as well [21]. These sex differences may be
an important but relatively ignored source of variation in
mixed sex cell cultures. Single sex cultures are much more
time consuming, but this recent data does highlight
potential translational problems when only mixed sex
neuronal or astrocytic cultures are examined. These in vitro
studies set the stage for subsequent in vivo examinations of
sex differences after stroke. From this work it is becoming
apparent that there is a possible "switch-point" for cell
death leading to a cascade of death events that differ in
males and females (see Figure 1).

Sex differences in neonates

There is considerably more data on sex-divergent cell
death in neonatal stroke models than what currently exists
in the adult animal literature. The clinical phenomenon
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of female protection after neonatal injury has been well
described, and is much less likely to be due to hormonal
differences. This has prompted investigators to examine
sex differences earlier than we have in adult models. Most
sex differences in adults have been ascribed to estrogen;
this issue has been largely avoided by researchers who
often utilize only males in experimental studies to avoid
the variability in ischemic outcome seen in cycling
females [13,49]. One way to address these issues is to
examine models in which hormonal exposure is minimal;
in neonatal animals. A series of recent studies has evalu-
ated the protective effects of 2-iminobiotin (2-IB) in a
neonatal HI model [50]. This agent was protective and
reduced damage 6 weeks after injury in post-natal day 12
rats, an effect attributed to 2-IB's actions as a putative neu-
ronal and inducible nitric oxide synthase (nNOS and
iNOS) inhibitor. However, treatment with 2-IB did not
lead to decreased levels of nitrotyrosine, a marker of acti-
vation of NO. In contrast, 2-IB prevented hypoxia-
induced increases in cytochrome C levels. If the effects of
2-1B were on caspase pathways, then it would be expected
that female animals would benefit more than males. The
original experiments were not designed to look at sex
effects, but these authors subsequently examined their
data by sex and discovered that female pups benefitted
from treatment, whereas no effect was seen in males [50].
Later studies further confirmed these findings [51].
Female post-natal day 7 rats had reduced long-term brain
damage whereas no treatment effect was seen in males
[51]. Furthermore, elevated levels of AIF were only
observed in males, and these levels were unaffected by 2-
IB treatment. Alternatively, only females displayed
decreased levels of cytochrome C and cleaved caspase-3 in
response to 2-1B treatment. Similar results were reported
after repeating the experiment on P3 rats, with only
females displaying protection with 2-IB treatment [11].
This study, however, found no difference in cytochrome C
release or HSP70 between sexes.

The question remained as to whether these differences are
secondary to enhanced caspase activation in females, or
an intrinsic female sensitivity to caspase-induced cell
death. Recently, it was shown that P7 female rats were dra-
matically protected when given the pan-caspase inhibitor
Q-VD-OPh at reperfusion after a 50 min. focal injury,
while males showed no protection from the treatment
[22]. Males had a large increase in cytolosic cytochrome C
levels (implying its release from the mitochondria)
between 6-12 hrs. after reperfusion, whereas females had
a gradual appearance of cytosolic cytochrome C which
peaked at 16 hrs. Furthermore, females had significantly
higher levels of cleaved caspase-3 than males, which
peaked at 12 hrs. after reperfusion. Sex differences in
mitochondrial membrane permeability and caspase path-
way activation could explain these findings but the under-
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lying mechanisms leading to these sex differences remains
unknown. Sex differences have also been seen in behavio-
ral outcome and infarct size after administration of the
putative neuroprotective agent, erythropoietin (EPO). A
permanent middle cerebral artery occlusion (MCAOQO) was
performed in male and female neonatal rats given EPO or
vehicle and infarct volume at 6 weeks and functional
recovery at 12 weeks were examined. A greater reduction
in infarct volume as well as improved functional recovery
was observed in females compared to males [23].
Although specific cell death molecules were not meas-
ured, a clear sex difference in response to this potential
neuroprotective agent that is already utilized in clinical
populations emphasizes the clinical importance of these
investigations.

These studies have begun to explore differences in cas-
pase-mediated apoptosis between the sexes, yet the ques-
tion of how caspase-independent cell death via PARP
activation and AIF translocation differs by sex is also an
important question. Although there is a considerable
amount known about PARP and its role in post-ischemic
brain injury [52], most of this data has been generated
exclusively in male animals and cell cultures derived from
both male and female embryos. A study in 2004 using
neonatal PARP-1 deficient mice observed neuroprotec-
tion in males but not females in response to a unilateral
hypoxia-ischemic injury [53]. Many of the deleterious
effects of PARP activation are thought to be secondary to
PARP-induced translocation of the pro-apoptotic mole-
cule AIF from the mitochondria to the nucleus. Therefore,
if sex differences are present in the response to PARP dele-
tion, they may be secondary to changes in AIF. This does
not appear to be the case in neonatal models. A recent
study using P9 Harlequin (Hq) mutant mice, which have
a 60% reduction in AIF expression, [54] demonstrated
neuroprotection in both male and female Hq pups after
HI insults. Neither male nor female Hq mutant mice had
decreased caspase-3 activation or cytochrome C release
after injury, suggesting that the NO/PARP/AIF pathway is
distinct from the cytochrome C/caspase pathway. Addi-
tional experiments demonstrated that treatment with Q-
VD-OPh in Hq mutant mice led to greater neuroprotec-
tion than the Hq mutation alone. In this study, the cas-
pase inhibitor was given to both wild type (WT) and Hq
mice of both sexes and appeared to lead to neuroprotec-
tion in both, but results were not dichotomized or ana-
lyzed by gender. Renolleau has demonstrated that caspase
inhibition with Q-VD-OPh is ineffective in reducing
injury in male neonatal WT mice [22]. These disparate
findings could be due to differences in the ages, models,
or doses used or simply be due to the fact that the study
was not designed to directly evaluate sex differences. It is
also possible that blocking the NO/PARP/AIF in the Hq
mice unmasks a sensitivity to caspase-induced cell death
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in the male brain that is not usually present that can sub-
sequently be inhibited by Q-VD-OPh. In adult models,
the hq mutation decreases infarct in adult males [55] and
has little effect in females (McCullough, et al unpublished
results). Levels of AIF drop in the Hq mice as the animal
matures (60% loss at P7 to 80% at 3 months), which
could account for these differences.

Another study from the same laboratory examined both
neonatal and intact adult mice and reported mixed results
regarding sex differences [56]. Although they subjected
the mice to various durations of unilateral HI, sex differ-
ences were only observed at specific durations and at cer-
tain ages. P9 males did have more AIF+ cells and more
AIF-PAR co-localization in the nuclei of the striatum and
cortex than females after HI. Females had higher cleaved
caspase-3 levels than males after injury, yet the difference
was only observed at 24 hours post-HI. Lastly, no sex dif-
ference in the amount of cytochrome C release at any time
point was observed. These results suggest that the gender
differences may be related to the duration of the ischemic
insult or the model used. The higher amount of AIF
release and cleaved caspase-3 levels in males and females
respectively, does reinforce results from earlier studies.
The disparity between elevated levels of cleaved caspase-3
in females with no sex difference in cytochrome C release
may again indicate that other cytosolic molecules are
present, possibly attenuating caspase activation in male
cells.

Sex differences in cell death in adult models
Acknowledging that rates of apoptosis differ among devel-
opmental ages, examining sex differences in adult models
is critical, especially as the vast majority of stroke patients
are older adults. One of the first studies to examine sex dif-
ferences in experimental stroke outcome utilized an
embolic infarct model and demonstrated smaller infarct
volumes in female rats compared with males [57].
Females had an increased inflammatory response even
after adjusting for infarct size. Caspases have been demon-
strated to be activated after inflammatory insults [58], yet
specific proteins were not measured in the previously
described study [58].

The literature in the adult brain is sparser than the neona-
tal studies, and there has only been one paper on sex dif-
ferences in NO/PARP in the ischemic brain to date [4] and
one on sex differences in iNOS [59]. Neuroprotective
agents do have differential effects based on sex, similar to
what is seen in neonates. For example, isoflurane precon-
ditioning decreased ischemic damage in male mice after
MCAO but markedly increased infarction in female mice
[60]. The mechanism for this remains unclear, but may
involve activation of nNOS and PARP. PARP may be the
key "switch point" in determining the mode of cell death.
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There is some evidence that sex differences also occur in
adults in models other than stroke that are mediated by
PARP activation. One interesting study examined the sys-
temic inflammatory response to lipopolysaccharides
(LPS) in males and females [12]. Female mice had a much
less marked inflammatory response to systemic inflam-
mation induced by endotoxin compared to males. Female
mice were also resistant to endotoxin-induced mortality,
an effect mediated in large part by estrogen, as this sur-
vival benefit was lost with ovariectomy. Deletion or inhi-
bition of PARP-1 [12] decreased the inflammatory
response in male animals but had no effect in female ani-
mals. The female's responsiveness to PARP inhibition was
regained after ovariectomy, suggesting that female sex
hormones may be acting in part by similar mechanisms as
PARP, as loss of either ameliorated the sex difference. It
was suggested that PARP may interact with the estrogen
receptor (ER) to form a complex that binds to DNA, pre-
venting the recognition of single strand breaks, (the main
initiating event in PARP activation) and reducing PARP
activation. Whether this putative ER binding plays a role
in the ischemic brain is not yet known but data suggests
that PARP deletion leads to loss of estrogen's neuroprotec-
tive effects after stroke.

The effects of nNOS and PARP-1 deletion or pharmaco-
logical inhibition in male and females after focal stroke
has been evaluated [4]. Both the loss of PARP and nNOS
or their inhibition protected males but not females. Phar-
macological inhibition of PARP-1 surprisingly enhanced
injury in ovary-intact females (Figure 2). Additionally,

100 - W Vehicle
m PJ34
S
8
£
8
o
|_
S
Male Female
Figure 2

The effects of the selective PARP-1 inhibitor PJ-34 in
WT mice of both genders. Treatment with PJ-34 at
ischemic onset reduced total infarction in male mice com-
pared to saline treated controls (*; p <.001). A significant
increase in ischemic damage was seen in PJ-34 treated
females compared to control (*; p <.001) [4].
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Effect of estrogen on infarction volume in PARP-/-
females. Physiological levels of E2 were restored to ovariec-
tomized (OVX) PARP-/- and WT female mice. WT females
had significant reductions in total, cortical (CTX) and striatal
(CP) infarct volumes after E2 replacement compared to oil
treated WT females (*; p < .0l). PARP-/- females demon-
strated increased damage compared to WT (*¥; p < .0l).
Interestingly the neuroprotective effect of E2 was completely
absent in PARP -/- females. E2 treatment exacerbated stroke
damage; both striatal and total infarct volumes were signifi-
cantly higher in E2 treated vs. oil treated PARP-/- mice (¥***; p
<.05) [4].

restoring estrogen to PARP-deficient OVX females exacer-
bated infarct volumes even further than PARP gene dele-
tion alone (Figure 3). These results suggest that in the
setting of PARP deficiency, estrogen may have deleterious
effects. This data also implies that PARP-1 and NOS are
endogenous neuroprotective pathways in the adult female
brain. Perhaps the loss of PARP leads to enhanced "flow"
through the caspase/cytochrome C pathway, to which
females may be exquisitely sensitive? These hypotheses
are currently being investigated by several laboratories.
The interaction between pro-death cascades, sex, and hor-
mones is a complex and intriguing line of inquiry that will
have practical applications for clinicians involved in treat-
ing stroke patients. The findings from research examining
gender differences in adult animals is less clear than
research from neonates and culture studies, primarily due
to the confounding influence that sex hormones exert.
Additional studies focusing on adults and even more
importantly, senescent animals will be needed to fully
understand the implications for clinical therapies

Conclusion

Reviewing the literature on sex differences in response to
stroke suggests that there is a dichotomous response
between male and female animals that is independent of

http://www.translational-medicine.com/content/6/1/33

sex hormones. Although the exact nature of these differ-
ences has yet to be fully explained, it appears that the abil-
ity to maintain normal mitochondrial function, as well as
the response to free radicals such as nitric oxide may play
a critical role. Several studies have also shown sex differ-
ences in the activation of caspase-3, and recently the tim-
ing of cytochrome C release between the sexes. PARP-1
may provide a protective role in females while stimulating
the production of PAR polymers and release of AIF from
the mitochondria in males, leading to cell death. Sex dif-
ferences are also clearly present in the efficacy of neuro-
protective agents in our pre-clinical stroke models, and
should be considered in clinical trial design. Lastly, a
greater emphasis on studying older mice is necessary
before clear conclusions can be drawn concerning clinical
applications to the population at greatest risk for stroke,
the elderly.
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