Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Jun;122(3):1062–1070. doi: 10.1128/jb.122.3.1062-1070.1975

Changes in glucosamine and galactosamine levels during conidial germination in Neurospora crassa.

J C Schmit, C M Edson, S Brody
PMCID: PMC246160  PMID: 125259

Abstract

The levels of glucosamine and galactosamine were determined in conidia, germinating conidia, and vegetative mycelia of Neurospora crassa. In the vegetative mycelia about 90% of the amino sugars were shown to be components of the cell wall. The remaining 10% of the amino sugars were tentatively identified as the nucleotide sugars uridine diphospho-2-acetamido-2-deoxy-D-glucose and uridine diphospho-2-acetamido-2-deoxy-D-galactose. Conidia and vegetative mycelia contained about the same levels of glucosamine. During the first 9 h after the initiation of germination, the total glucosamine content had increased 3.1-fold, whereas the residual dry weight of the culture had increased 7.7-fold. This led to a drop in the glucosamine concentration from 100 mumol/g of residual dry weight to 42 mumol/g. During this time, all of the conidia had germinated and the surface area of the new germ tubes had increased to 10 times that of the conidia. Either germ tubes were initially produced without glucosamine-containing polymers, or these polymers (probably chitin) were deposited only at low densities in the germ tube cell walls. The chitin precursor uridine diphospho-2-acetamido-2-deoxy-D-glucose was present at all times during conidial germination. Conida contained very low levels of galactosamine. During germination, galactosamine could not be detected until the culture had reached a cell density of about 0.6 mg of residual dry weight per ml of growth medium. This was observed regardless of the time required to reach this cell density or the fold increase in dry weight. The accumulation of galactosamine-containing polymers does not appear to be necessary for germ tube formation. The levels of soluble galactosamine (uridine diphospho-2-actamido-2-deoxy-D-galatose) were very low in conidia and increased during germination at the same time that galactosamine appeared in the cellular polymers. In addition, under certain culture conditions, the appearance of galactosamine and the increase in the glucosamine concentration occurred simultaneously.

Full text

PDF
1068

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. A., Chaudhari A. S. Galactosamine polymer isolated from the cell wall of Neisseria sicca. Can J Biochem. 1972 Apr;50(4):345–351. doi: 10.1139/o72-046. [DOI] [PubMed] [Google Scholar]
  2. Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22:87–108. doi: 10.1146/annurev.mi.22.100168.000511. [DOI] [PubMed] [Google Scholar]
  3. Buck K. W., Chain E. B., Darbyshire J. E. High cell wall galactosamine content and virus particles in Penicillium stoloniferum. Nature. 1969 Sep 20;223(5212):1273–1273. doi: 10.1038/2231273a0. [DOI] [PubMed] [Google Scholar]
  4. Bull A. T. Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol. 1970 Sep;63(1):75–94. doi: 10.1099/00221287-63-1-75. [DOI] [PubMed] [Google Scholar]
  5. CROOK E. M., JOHNSTON I. R. The qualitative analysis of the cell walls of selected species of fungi. Biochem J. 1962 May;83:325–331. doi: 10.1042/bj0830325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabib E., Farkas V. The control of morphogenesis: an enzymatic mechanism for the initiation of septum formation in yeast. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2052–2056. doi: 10.1073/pnas.68.9.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DISTLER J. J., ROSEMAN S. Galactosamine polymers produced by Aspergillus parasiticus. J Biol Chem. 1960 Sep;235:2538–2541. [PubMed] [Google Scholar]
  8. Endo A., Kakiki K., Misato T. Feedback inhibition of L-glutamine D-fructose 6-phosphate amidotransferase by uridine diphosphate N-acetylglucosamine in Neurospora crassa. J Bacteriol. 1970 Sep;103(3):588–594. doi: 10.1128/jb.103.3.588-594.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Endo A., Misato T. Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun. 1969 Nov 6;37(4):718–722. doi: 10.1016/0006-291x(69)90870-5. [DOI] [PubMed] [Google Scholar]
  10. GLASER L., BROWN D. H. The synthesis of chitin in cell-free extracts of Neurospora crassa. J Biol Chem. 1957 Oct;228(2):729–742. [PubMed] [Google Scholar]
  11. GLASSER L. Uridine diphosphate-N-acetylglucosamine-4-epimerase from Bacillus subtilis. Biochim Biophys Acta. 1959 Feb;31(2):575–576. doi: 10.1016/0006-3002(59)90046-0. [DOI] [PubMed] [Google Scholar]
  12. Gorin P. A., Eveleigh D. E. Extracellular 2-acetamido-2-deoxy-D-galacto-D-galactan from Aspergillus nidulans. Biochemistry. 1970 Dec 8;9(25):5023–5027. doi: 10.1021/bi00827a029. [DOI] [PubMed] [Google Scholar]
  13. Gratzner H. G. Cell wall alterations associated with the hyperproduction of extracellular enzymes in Neurospora crassa. J Bacteriol. 1972 Aug;111(2):443–446. doi: 10.1128/jb.111.2.443-446.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HAROLD F. M. Binding of inorganic polyphosphate to the cell wall of Neurospora crassa. Biochim Biophys Acta. 1962 Feb 12;57:59–66. doi: 10.1016/0006-3002(62)91077-6. [DOI] [PubMed] [Google Scholar]
  15. Katz D., Rosenberger R. F. A mutation in Aspergillus nidulans producing hyphal walls which lack chitin. Biochim Biophys Acta. 1970 Jun;208(3):452–460. doi: 10.1016/0304-4165(70)90218-7. [DOI] [PubMed] [Google Scholar]
  16. Livingston L. R. Locus-specific changes in cell wall composition characteristic of osmotic mutants of Neurospora crassa. J Bacteriol. 1969 Jul;99(1):85–90. doi: 10.1128/jb.99.1.85-90.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mahadevan P. R., Mahadkar U. R. Major constituents of the conidial wall of Neurospora crassa. Indian J Exp Biol. 1970 Jul;8(3):207–210. [PubMed] [Google Scholar]
  18. Mahadevan P. R., Tatum E. L. Localization of structural polymers in the cell wall of Neurospora crassa. J Cell Biol. 1967 Nov;35(2):295–302. doi: 10.1083/jcb.35.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mahadevan P. R., Tatum E. L. Relationship of the major constituents of the Neurospora crassa cell wall to wild-type and colonial morphology. J Bacteriol. 1965 Oct;90(4):1073–1081. doi: 10.1128/jb.90.4.1073-1081.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCormick J. J., Blomquist J. C., Rusch H. P. Isolation and Characterization of a Galactosamine Wall from Spores and Spherules of Physarum polycephalum. J Bacteriol. 1970 Dec;104(3):1119–1125. doi: 10.1128/jb.104.3.1119-1125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. POTGIETER H. J., ALEXANDER M. POLYSACCHARIDE COMPONENTS OF NEUROSPORA CRASSA HYPHAL WALLS. Can J Microbiol. 1965 Feb;11:122–125. doi: 10.1139/m65-017. [DOI] [PubMed] [Google Scholar]
  22. Reissig J. L., Glasgow J. E. Mucopolysaccharide which regulates growth in Neurospora. J Bacteriol. 1971 Jun;106(3):882–889. doi: 10.1128/jb.106.3.882-889.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmit J. C., Brody S. Developmental control of glucosamine and galactosamine levels during conidation in Neurospora crassa. J Bacteriol. 1975 Jun;122(3):1071–1075. doi: 10.1128/jb.122.3.1071-1075.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trevithick J. R., Metzenberg R. L. Genetic alteration of pore size and other properties of the Neurospora cell wall. J Bacteriol. 1966 Oct;92(4):1016–1020. doi: 10.1128/jb.92.4.1016-1020.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trevithick J. R., Metzenberg R. L. Molecular sieving by Neurospora cell walls during secretion of invertase isozymes. J Bacteriol. 1966 Oct;92(4):1010–1015. doi: 10.1128/jb.92.4.1010-1015.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turian G., Bianchi D. E. Conidiation in Neurospora crassa. Arch Mikrobiol. 1971;77(3):262–274. doi: 10.1007/BF00408119. [DOI] [PubMed] [Google Scholar]
  27. Zonneveld B. J. Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim Biophys Acta. 1971 Dec 3;249(2):506–514. doi: 10.1016/0005-2736(71)90126-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES