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ABSTRACT It is shown with a simple mathematical
model that if a system exhibits a given form (a spatial
structure) and is put in contact with another system of the
same type but in a state of spatial disorder, then under certain
conditions their mutual interaction as they evolve in time
allows replication of form in the disordered system with a
controllable degree of faithfulness.

In evolution, from prebiotic to higher levels, replication of form
and function are basic processes (1–10). Take, for instance, a
protein that is already a highly sophisticated form. Crick (2, 3)
notes that “at first sight it would seem a very difficult task tomake
an exact copy of the intact three-dimensional structure of a
protein in its well organized native fold. One could conceive
making a molecular cast of the surface, as one might for a piece
of sculpture, but how would one copy the inside of the molecule?
We need to carry the considerable amount of information as
instructions to form the complexity that characterizes life, and
unless this information is copied with reasonable accuracy the
mechanism will decay under accumulated weight of errors.
Perfect accuracy is not a requirement.”
Here we show how during their time evolution, the (mutual)

interaction between two subsystems, one organized in a given
form, a steady pattern, and the other spatially disordered, leads
to replication of the form in the initially disordered system; the
disordered system provides the raw materials. A given form
and its replica may be replicated as many times as we wish
provided we have nearby enough raw material ready for
interaction. Replication produces entities that can themselves
be copied by the replication process. This replication process
is not merely that of a printing press.
We show with a simple two-dimensional model of reaction-

diffusion equations the possibility of replication of form with
a controllable degree of faithfulness. There are previous
reports on replication of form and self-replication of patterns
in reaction-diffusion systems (8–16). However, we depart from
those approaches in that we address the question of replication
of a form, a pattern at once, by using nearby available
appropriate raw materials, which are spatially disordered.
We consider two interacting dynamical subsystems with

dissipation, irreversibly evolving in time. In particular, we study
the interaction of two identical, gradient lattice subsystems,
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where u and v denote the evolving quantities (concentrations
of chemical species), the dot indicates time derivative, and the
cubic function f(w) is given by

f~w! 5 w~w 2 1!~a 2 w!, 0 , a , 1.

The symbols h and k denote coupling coefficients: h charac-
terizes the strength of coupling between the two lattices, one
describing the system with a pattern, the other the spatially
disordered system; and k characterizes the interaction among
elements in each lattice, which are bistable units with two
steady states. The pair (j, k) defines a space lattice point (j, k
5 1, 2, . . . , N). Thus one subsystem has (2N

2
) stationary states.

The fact that both systems, the patterned and disordered, are
taken to be identical greatly simplifies our task. Yet, the huge
space of accessible steady states of Eq. 1makes the interaction
and evolutionary problem nontrivial. The use of a gradient
system, i.e., a system derivable from a potential, is a technical
restriction to ensure the existence of steady states, hence time
evolution leading to permanent forms. If nonvariational terms
are involved in the dynamics, the system may not settle to any
time-independent state or structure.
We impose on the two systems (Eq. 1) the condition of no

mass transfer to the surroundings. If h 5 0, the system (Eq. 1)
represents two independent lattice systems. We denote by L0
each of these subsystems, and, for the particular choice of f(w),
they are a discrete version of the nonlinear Schlögl model with
diffusion (17). It can be shown (18, 19) that for the parameters
taken in the region

Dch : k , min H 2 fmin
4~1 2 umin!

,
fmax

4~1 1 umax!
J , [2]

where umin and umax are the coordinates of the minimum and
maximum of the function f(u), the system (Eq. 1) has (2N

2
)

steady states (attractors). This huge number of attractors can
be coded by arbitraryN3Nmatrices consisting of two symbols
(for instance, ‘‘0’’ and ‘‘1’’) corresponding to the concentra-
tions of the two steady states at each lattice site. Therefore, if
the lattice ‘‘size’’ is large enough, then depending on initial
conditions, this lattice displays attractors of an arbitrary spatial
structure corresponding to a matrix of 0 and 1 given before-
hand. Thus not only we have a huge number of accessible states
but also a rich variety of patterns. On the other hand, it can also
be shown that if

h .
1 2 a 1 a2
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[3]

is satisfied, for hÞ 0, the mutual interaction of the subsystems
in Eq. 1 is such that all the stationary states of the patterned
subsystem slave the disordered subsystem, and hence may
become replicated.
For illustration, initial conditions in each lattice of Eq. 1

were taken in the form of various patterns that had been
produced by each single subsystem L0 taken separately. Using
a Runge-Kutta integration routine we observed that for the
strength of coupling h satisfying Eq. 3 after interaction the two
lattices display identical forms. Fig. 1 depicts our first repli-
cation exercise. One subsystem initially possesses a given form
(Fig. 1a) and the other is in a state of spatial disorder at the
initial time (Fig. 1b). As time proceeds, the two systems evolve
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until they produce identical patterns (Fig. 1 c and d). Repli-
cation for a5 0.5 is quite faithful. We obtain an almost perfect
duplication of the initial pattern.
The rationale behind this result is the following. The ine-

qualities Eqs. 2 and 3 demand that the intralattice coupling be
weak enough, while the interlattice coupling h is strong
enough, hence h.. k. Because each lattice element is bistable,
the overall interaction can be considered as a competition
between the two possible locally stable states. It can be said
that the small, but nonnegligible, value of k provides the initial
condition for this competition. For instance, the elements
taken from the pattern carrying a regular image may have
predominance over those of the disordered pattern. Then as
the system (Eq. 1) derives from a potential, for a 5 0.5, both
competing states are at the same potential; the initial condi-
tions determine the winner, and among the initial conditions
a disordered state is less preferable, hence the loser.
However, for a Þ 0.5, say a 5 0.6, we do not have potential

equivalence of the two possible states, hence initial conditions
and potential asymmetry act simultaneously in the competi-
tion. Thus we have no accurate duplication of either initial
subsystem. Rather we have the appearance of two new pat-
terns, identical to each other although inheriting key features
of the original form we want to replicate. This can be appre-
ciated, qualitatively, in real space and, quantitatively, in the
spatial Fourier power spectra of the subsystems. Fig. 2 a and
b are the initial spectra corresponding to Fig. 1 a and b,
respectively. Fig. 2c is common to the two identical copies (Fig.
2d) obtained after the interaction, for a 5 0.6, of the two L0
subsystems in Eq. 1. Note that for vanishing k only the
nonlinearity (parameter a) defines the shape of the terminal
patterns.
We have checked our computations to assure that a steady

state is attained. For this purpose the function

dist~u~t!, v~t!! 5
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characterizes the distance between two patterns in the N2 state
space. The zero of this function corresponds to the terminal
stage in the replication process of the pattern. Fig. 3 illustrates
the evolution of the distance between the initial distributions
shown in Fig. 1, for a 5 0.5, and for different other values of
the coupling strength h.
Fig. 4 illustrates up to what extent the replication process

corresponds to copying key features of the original pattern
although as, said earlier, replication is quite faithful for a5 0.5
(Fig. 1). The two power spectra (Fig. 4 a and b), when inverted,
provide the patterns of Fig. 4 c and d, respectively. They have
been obtained by eliminating trace elements, i.e., broad band
noise or disorder at different amplitude levels (0.005 and 0.01,

FIG. 1. Replication of form through mutual interaction of a system
in a state defined by a steady ‘‘regular’’ pattern and another in a state
of spatial disorder, hence raw material. (a and b) Initial conditions. (c
and d) Offspring of two identical patterns. Parameter values, a 5 0.5,
5 0.006, and h 5 0.4.

FIG. 2. (a and b) Spatial Fourier power spectra corresponding to
the patterns of Fig. 1 a and b, respectively. (c) Spectrum corresponding
to two identical offspring permanent patterns (d) obtained when a 5
0.6 and that now exhibit noise in their core. Parameter values, a 5
0.006, and h 5 0.4.

FIG. 3. Plot of distance, Eq. 4 vs time. At the initial time, a
nonvanishing distance, dist Þ 0, accounts for the difference between
Fig. 1 a and b. In the course of evolution, the mutual interaction of the
two subsystems L0, Eq. 1, yields identical steady patterns (provided h
satisfies condition 3, and time goes to infinity). The numerical calcu-
lation is illustrated for three values of h, the parameter characterizing
mutual interaction, a5 0.5 and k 5 0.006. Similar behavior occurs for
other values of a.
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respectively). Fig. 5 shows the replication of a pattern, already
replicated, in particular the form shown in Fig. 4c. From the
initial states (Fig. 5 a and b) evolution with mutual interaction
leads to two copies identical to that shown in Fig. 5c. Then, Fig.
5d is their corresponding, and common, spatial Fourier power
spectrum. When comparing the first (Fig. 2d) and second (Fig.
5c) replicated forms with the original pattern (Fig. 1a) we see
the rather faithful replication of the essential aspects of the
original pattern (at least peaks in the power spectrum, and for
a 5 0.5 the complete spectrum).
Our system does not possess a ‘‘natural’’ selection mecha-

nism. Rather when two patterns compete, a mixed combina-
tion is produced in duplicate. It is only when one of the two

systems is in a disordered state, hence like raw material, that
a form tends to dominate, and eventually be replicated.
Fig. 6 shows various cuts in the spatial Fourier power

spectrum (Fig. 2c) of Fig. 2d. Fig. 6 (a and b), (c and d), and
(e and f ) provide the reduced power spectra with correspond-
ing forms in real space obtained by inverting the Fourier
transform. To obtain function of a given pattern we may not
be interested in the faithful replication of that pattern but
rather in the accurate replication of some of its key features,
significant for function, like correlations, correlation patterns,
or appropriate parts of the spatial Fourier spectrum. Thus, the
relationship of our findings to the study of pattern recognition
becomes evident (20–22). Note that neither catalyst-like
agents are needed nor any statistics are involved in our
replication process, other than that associated to the choice, or
spontaneous appearance, of initial conditions. Extending our
results to a three-dimensional case may present mathemati-
cally technical difficulties, but not an intrinsic impossibility.
We have shown the possibility of replication in vitro in

relatively simple reaction-diffusion equations by the interac-
tion of a structured subsystem on an equivalent, but spatially
disordered, subsystem. The process may be of interest for in
vivo systems. We believe that our results hold for systems
without a potential, a condition more commonly met. Further
we speculate that the results hold also for less restrictive
conditions, such as long-lived metastable states rather than
only stationary states.
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FIG. 6. (a, c, and e) Reduced power spectra of Fig. 1cwhen deletion
of parts is applied, and corresponding patterns (b, d, and f) obtained
by inversion of the Fourier transform.

FIG. 4. Details of replication features with reduced noise level. (a
and b) Trace elementynoise level reduced power spectrum (Fig. 2c) at
two cut-off levels in height (0.005 and 0.01, respectively). (c and d)
Corresponding patterns obtained upon inverting the Fourier trans-
form of a and b, respectively.

FIG. 5. Replication of an already replicated form for a 5 0.6, k 5
0.006, and h 5 0.4. a is Fig. 4c. (b) An initial disordered state. The
mutual interaction of the twoL0 subsystems (Eq. 1) yields two identical
steady patterns (c) with identical power spectrum (d).
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