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Summary
We propose a new causal parameter, which is a natural extension of existing approaches to causal
inference such as marginal structural models. Modelling approaches are proposed for the difference
between a treatment-specific counterfactual population distribution and the actual population
distribution of an outcome in the target population of interest. Relevant parameters describe the effect
of a hypothetical intervention on such a population and therefore we refer to these models as
population intervention models. We focus on intervention models estimating the effect of an
intervention in terms of a difference and ratio of means, called risk difference and relative risk if the
outcome is binary. We provide a class of inverse-probability-of-treatment-weighted and doubly-
robust estimators of the causal parameters in these models. The finite-sample performance of these
new estimators is explored in a simulation study.
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1. Introduction
Robins (2000) proposed estimators for a new class of models that relate the distribution of
counterfactuals in a population to the universal application of, or exposure to, a treatment or a
risk factor. For example, Robins proposed estimators for parameters such as E(Ya | V ), which
is interpreted as the mean of the outcome of interest in the target population when every subject
receives the same treatment, or exposure, a, among strata defined by a subset of the baseline
covariates, V , such as gender. Several estimators have been proposed for this parameter,
including the likelihood-based G-computation estimator, and those based on an estimating
equation approach, namely the inverse-probability-of-treatment-weighted estimator and the
doubly-robust extension (van der Laan & Robins, 2002). Given a specific model, such as E
(Ya | V ) = m(a, V | β) = β0 + β1a + β2V + β3aV , these estimators require respectively an estimator
of the conditional distribution of the outcome given the treatment and confounders, an estimator
of the treatment assignment distribution, or both. Here, we discuss similar approaches to a new
class of regression models that are particularly relevant to population-based studies of risk
factors. We term these models population intervention models.

The estimating equation approach provides a convenient mathematical method for deriving a
class of estimators for a wide variety of causal inference problems. However, before applying
the machinery (van der Laan & Robins, 2002), one must first define the parameter of interest.
We suggest that E(Ya | V ) is often not the parameter of interest in observational studies of risk
factors. For instance, marginal structural models compare the prevalence of disease in a
population in which everyone smokes three packs of cigarettes against the prevalence in the
same population in which everyone smokes two packs and so on. Of more public health interest
might be a model which relates the prevalence of disease in the current target population, with
its distribution of smokers, to a population where no one smokes; that is, a more compelling
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regression might be one that returns estimates of the impact of intervention in a population,
relative to the current distribution of a risk factor, such as E(Ya) – E(Y ) or E(Ya)/E(Y ), where
a is a target level of the risk factor. Epidemiologists might recognize this parameter as
something akin to attributable risk. In this paper, we will propose a new class of estimators for
parameters comparing the distribution of an outcome in the current target population relative
to that in the same population when all individuals have uniform treatment/exposure.

2. Data, model and parameters of interest
To define our model, we use the causal inference framework originally proposed by Rubin
(Rubin, 1978) treating causal inference as a missing-data problem. Consider a study in which
we observe, chronologically ordered, on each randomly sampled subject baseline covariates
W ,a treatment/exposure variable A and a final outcome Y . The observed data structure O =
(W, A, Y ) represents a random variable with a certain population distribution P0 , and the
sample O1,..., On represents n independent and identically distributed observations of O. We
are concerned with estimation and testing of the effect of an intervention, A = a, on the
distribution of Y relative to the actual population distribution of Y , possibly within strata
defined by a subset of baseline covariates V ⊂ W .

In order to formulate such a parameter of interest and corresponding model we will use the
counterfactual framework in which the observed data structure O is viewed as a missing-data
structure on a collection of treatment-specific data structures, the so-called counterfactuals.
First, we assume that each subject has a set of associated treatment-specific outcomes (Ya : a
∈ A), so that X = {(Ya : a ∈ A), W} represents a full data random variable with a population
distribution FX0 Here A denotes the set of possible treatments. Secondly, one assumes that the
observed data, O = (W, A, Y = YA), correspond to observing the A-specific component of the
collection of treatment-specific data structures X ={Xa ≡ (Ya, W ) : a ∈ a} corresponding to
the treatment A the subject actually received; that is, treatment assignment serves as a censoring
variable. Here A is short-hand for a vector of censoring indicators, where the 0’s and a single
1 correspond to unobserved counterfactuals, Xa, a ≠ A, and the observed counterfactual, XA,
respectively. This assumption was originally introduced by Rubin (1986) as the stable-unit-
treatment-value assumption and has also been referred to as the consistency assumption. Since
O is a missing-data structure on the full data structure X with missingness variable A, the
distribution of O is a function of the distribution FX0 of X and the conditional distribution g0

of treatment A,given X; that is , where g0(a | X) ≡ pr(A = a | X) is referred to as the
treatment mechanism. In order to have an identifiable causal parameter we will also rely on
the so-called randomization assumption on g0:

or, equivalently, A is conditionally independent of X, given W . Within Rubin's framework,
this assumption is known as strong ignorability; it is also often referred to as the assumption
of no unmeasured confounding. Under these assumptions, the density of the observed data
structure with respect to an appropriate dominating measure factorizes as follows:

If g0(a | W ) > 0, FW almost everywhere, then it also follows that the first two factors of the
observed data density identify the counterfactual distribution of (Ya, W ):

(1)

where (1) was named the G-computation formula by Robins (2000).
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This counterfactual framework allows us to define our parameter of interest as some difference
between the conditional distribution FYa | V and the population distribution FY V , where this
difference can be parameterized in several ways. Formally, our parameter of interest is

for some known functional Φ. In words, ψ0 measures the effect of setting A = a for everybody
in our population on the distribution of Y , within stratum V = v. A Φ-specific intervention
model is now defined as a model on this parameter ψ0:

for some Euclidean parameterization β → m(a, V | β). The following sections present estimators
for two classes of parameters, namely the additive risk and relative risk:

(2)

Note that the structural nested mean models of Robins (1989, 1994) provide parameters that
compare the mean of an outcome, within strata of A and W , under the ‘natural’ population
distribution of treatment versus that under an intervention when A = 0 for all subjects, that is,
E(Y | A, W ) – E(Y0 | A, W ). Thus, the parameters discussed here capture a different effect,
specifically not conditioning on A. Also, as discussed in the Appendix of van der Laan et al.
(2007), one can also derive the marginal or stratified causal parameters of interest from these
structural nested mean models.

3. Estimating additive risk for a single target intervention
This section presents estimators for the case of only one target intervention of interest, a*. For
instance, if A measures cigarette smoking, we would only be interested in the intervention a*
= 0. We describe a direct estimating equation approach for the additive risk that enjoys the
very attractive property of being consistent even when the model for E(Y | V) is misspecified.
Note that, if m(V | β) = E(Ya* | V) – E(Y | V), then E(Ya* | V) = m(V | β) + E(Y | V) and thus,
treating E(Y | V) as known, we can use the estimating functions already provided by Robins &
Rotnitzky (1992) for models E(Ya* | V) = m(V | β) + E(Y | V). For instance, the
inverseprobability-of-censoring-weighted estimating function for E(Ya* | V) is

(3)

where η(V ) ≡ E(Y | V ) and h(V ) is some arbitrary function of V . The estimator, defined as

the solution of the estimating equation , is consistent if gn(A | W )
consistently estimates g0(A | W ) and ηn(V ) consistently estimates η0(V ), where the subscript,
0, always refers to the true parameter. The doubly-robust estimating function extension to this
estimator is given by

(4)

(van der Laan & Robins, 2002, p. 35), where Q(A, W ) ≡ E(Y | A, W ). The doubly-robust

estimator, defined as the solution of the estimating equation , is
consistent if ηn(V ) consistently estimates η0(V ) and either Qn(W , A) consistently estimates
Q0(A, W ) or gn(A | W ) consistently estimates g0(A | W ).
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Both of these estimators thus rely on consistent estimation of η(V ), which can be problematic
if V is high-dimensional and nonparametric estimation is infeasible. However, a small
modification to both the Dh,IPCW and Dh,DR estimating functions yields consistent estimators
even when η(V ) is misspecified. To be specific, we propose estimators based on the following
estimating functions, now indexed by h and η1:

(5)

(6)

where Ch(O | η1, β) = –Yh(V ) + E{h(V )η1(V )} and η1 represents an index of the estimating
function with the optimal choice being η0 = E(Y | V ). In the estimating equation η1 can now
be replaced by an estimator of η0, which is not necessarily consistent, and Ch can be obtained
by finding the expected values of the original estimating functions Dh,η1, ipcw(0 | g,β) and
Dh,η1, DR(0 | g, Q,β), assuming that all parameters other than η are known. It turns out that the
resulting ‘leftover’ part can be easily estimated nonparametrically by Ch(O | ηn,β), where ηn is
an estimator converging to η1.

4. Estimating intervention effects over all possible interventions
4.1. Background

In this section, we propose estimating functions for more general models that simultaneously
capture the effect of a number of different interventions, corresponding to all the different
values that the treatment variable A can assume. We focus on models for the additive risk
difference and the relative risk, see (2), for which we present inverse-weighting-based
estimating functions as well as their doubly-robust extensions. Since we now observe one
counterfactual outcome of interest for each observation, the former will be referred to as
inverse-probability-of-treatment-weighted rather than inverse-probability-of-censoring-
weighted estimating functions.

The estimators based on these estimating functions are consistent if the user can supply a
consistent estimator of the treatment mechanism g0(A | W ). In order to deal with the curse of
dimensionality, it will generally be necessary to assume a model G within which one can then
obtain a maximum likelihood estimator,

or versions of this involving regularization and/or model selection. Our proposed doubly-robust
estimators are consistent if g0(A | W ) or E(Y | A, W ) is estimated consistently; E(Y | A, W ) can
be estimated using straightforward regression methods.

Note that the models discussed in this section can also be applied if one is interested in a single
target intervention a*. By borrowing information from other interventions to estimate the effect
at the intervention of interest, the resulting estimators can achieve a smaller variance than those
described in § 3. However, they are likely to suffer from greater bias if the model is incorrectly
specified.

4.2. Estimation and inference
In each of the models we will apply the following general strategy for deriving a class of
estimating functions, using as an illustrative example the additive risk intervention model. Our
general strategy corresponds to the estimating function methodology presented in van der Laan
& Robins (2002); estimating functions are implied by the so-called orthogonal complement of
the nuisance tangent space, which is equivalent to the class of all influence curves of regular
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asymptotically linear estimators. Such estimating functions are orthogonal in the L2(P) Hilbert
space to all scores implied by fluctuations of the nuisance parameters. Such estimating
functions always have first-order robustness with respect to specifying a variation-independent
nuisance parameter; in many settings, these estimating functions remain unbiased even under
complete misspecification of nuisance parameters. This has important practical consequences,
such as in testing a null hypothesis about the additive risk, since the validity of such a test is
not affected by bias in the model for η(V ).

Stage 1—The population parameter η0, which is used for comparison by the intervention
model, implies a marginal structural model for the conditional distribution of Ya, given V . For
example, for a given η0(V ), the additive risk intervention model implies the marginal structural
model E(Ya | V ) = η0(V ) + m(a, V | β0).

Stage 2—Given η0, this marginal structural model implies a class of inverse-probability-of-
treatment-weighted and doubly-robust estimating functions as established in previous
literature. For example, the class of doubly-robust estimating functions for E(Ya | V ) = η0(V )
+ m(a, V | β0), with η0 treated as known, is given by

(7)

where the index h1 can be an arbitrary function of A and V . Note that this estimating function
depends on the unknown nuisance parameters g0(A | W ) and Q0(A, W ). The first term of this
estimating function represents the inverse-probability-of-treatment-weighted estimating
function, and the last two terms are its projection on to the nuisance tangent space TRA = [φ
(A, W ) : E{φ(A, W ) | W }= 0] of the treatment mechanism only assuming the randomization
assumption. This estimating function is doubly-robust with respect to misspecification of g0
and Q0 in the sense that, if maxa{h1(a, V)/g1(a | W)} < ∞, FW0 almost everywhere, and either
g1 = g0 or Q1 = Q0, then

Stage 3—To make the estimator robust to misspecification of η, determine the influence curve
of the estimator βn, solving 0 = ∑iDh1(Oi | g0, Q0,ηn,β) for an appropriate estimator ηn of η0
under a nonparametric model for η0. We treat this class of influence curves, ignoring
standardizing constants and matrices, as a new class of estimating functions. This results in a
corrected class of estimating functions given by

The latter term actually corresponds to the influence curve of the estimator E0Dh1(O | g0, Q0,
ηn, β0) of the parameter E0 Dh1(O | g0, Q0, η0,β0), with the parameters other than η0 treated as
known. The influence curve is defined with regard to a regular, asymptotically linear estimator,

μn, of parameter μ0 as follows: In the additive risk
intervention model,

where this class of influence curves is indexed by h1, with β treated as known, and η is the only
unknown parameter.
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Stage 4—Finally, in each of our three intervention models, the corrected estimating functions
remain unbiased if η is misspecified. This allows us to treat η as another index in the class of
estimating functions, which results in the final class of proposed estimating functions indexed
by functions h1, h2:

The members of our class of estimating functions {Dh1, h2 : h1, h2 are doubly-robust against
misspecification of its two nuisance parameters, g0 and Q0, in the following sense: if maxa
h1(a, V )/g1(a | W ) < ∞, FW0 almost everywhere, and either g1 = g0 or Q1 = Q0, then

For each of our models we propose a particular choice (h1, h2) depending on the true data-
generating distribution, which can easily be estimated. Misspecification of this choice does not
affect the unbiasedness of the estimating function, but only results in using a different,
suboptimal, unbiased estimating function. As a consequence, a different choice from the
optimal h1 and h2 does not affect the consistency and asymptotic linearity (van der Laan &
Robins, 2002) of the resulting estimator of β0.

4.3. Class of estimating functions for additive risk intervention models
For a given η0(V ), the additive risk intervention model implies the marginal structural model
E(Ya | V ) = η0(V + m(a, V | β0). Our general strategy now results in the following class of
estimating functions for β0, indexed by arbitrary functions h1(A, V) and h2(V) and depending
on two nuisance parameters g0(A | W) and Q0(A, W):

(8)

Our proposed choice for (h1, h2)is given by

(9)

The optimal choice for (h1, h2) remains to be investigated. Our goal was to propose choices
that are sensible and relatively simple. The natural choice for h2 is E(Y | V ). The choice of
h1 is motivated by the discussion in Chapter 6 of van der Laan & Robins (2002), with g0(A |
V ) added as a stabilizing factor that can ameliorate the impact of very small estimated treatment
probabilities gn(A | W), as also suggested in Robins et al. (2000). A more general discussion
of the choice of h in the context of nonparametric models of causal effects can be found in
Neugebaur & van der Laan (2006). Finally, to simplify the notation, the dependence of the
estimating function on the unknown mean, in the last term, is not reflected in our notation.

4·4. Class of estimating functions for relative risk intervention models
For a given η0(V), the intervention relative risk model implies the marginal structural model
E(Ya | V) = η0(V)m(A, V | β0). Our general strategy now results in the following class of
estimating functions for β0, indexed by arbitrary functions h1(A, V) and h2(V) and depending
on two nuisance parameters g0(A | W) and Q0(A, W):
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Our proposed choices for (h1, h2), similar to those discussed for the additive risk model, are
given by

4.5 General mean intervention models
We now consider a general mean intervention model corresponding to a general choice of Φ
{E(Ya | V ), E(Y | V )}= m(a, V | β). Given η0(V ), this model implies a marginal structural model
E(Ya | V ) = f{η0(V ), m(a, V | β)} for some bivariate real-valued function f . Our general strategy
now results in the following class of estimating functions for β0:

where f10(x, y) ≡ ∂f(x, y)/∂x.

It follows that E0Dh1(O | g0, Q0, η1, β0) only equals zero at a misspecified η1 if x → f(x, y) is
linear, which holds precisely for the additive and relative risk models, but fails to hold for most
other functions of interest. For example, if one models the log odds in the binary outcome case,
then this class of estimating functions does rely on consistent estimation of the nuisance
parameter η0(V ), beyond consistent estimation of either g0(A | W )or Q0(A, W ).

4.6. Estimation and asymptotic inference
Given estimators h1n, h2n, gn and Qn of h1, h2, g0 and Q0, the estimator βn for the additive and
relative risk models is defined as the solution of the estimating equation

One can use the Newton–Raphson algorithm for solving this estimating equation, and, if one
has a good initial estimator available, then βn will be asymptotically equivalent to the one-step
estimator as obtained in the first step of the Newton–Raphson algorithm:

where
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Statistical inference for β0 can now be based on βn ∼ N(β0, ∑n), where

and EIC(O) is an estimator of the influence curve IC(O | P0) of our estimator. The Appendix
contains a derivation of the influence curve when gn consistently estimates g0. In general, we
recommend using the bootstrap to estimate the distribution of n−1/2(βn – β0).

5. Simulation study
To examine the finite-sample properties of our estimators, simulation studies were conducted
to evaluate the performance of estimators of models of the additive risk. In the notation
introduced in § 2, the data consist of independent and identically distributed realizations of
O = (W = (V, Z), A, Y ). Interest lies in estimating the projection of the risk difference E(Y |
V ) – E(Ya | V ) on to the working model m(a, V | β) = β0 + β1a + β2V + β3(V – 3)+ + β4aV +
β5a(V – 3)+, where (V – 3)+ is a linear spline term. This model was chosen because we wanted
to examine the performance under situations in which the model for the additive risk does and
does not closely approximate the true additive risk as a function of V . Our model above
accomplishes this if, when a = 0, the model closely approximates the true function, whereas,
for a = 1, the model is clearly misspecified; see Figs 1 and 2. A linear model was used to
estimate the additive risk, which does not lead to difficulties in estimation given that our
estimating approach does not require this model to constrain the risk difference to the interval
(−1, 1) and, in this case, the true additive risks are well away from these bounds. If one expects
more significant additive risks and/or has V that are unbounded, then other forms of m could
be chosen to avoid estimating additive risks outside (−1, 1).

The data were generated as follows. Both V and Z were distributed uniformly over the integers
1−7. Both Y and A are binary, following the conditional distributions

The performance of three estimators is examined: an inverse-probability-of-treatment-
weighted estimator, refered to as IPTW, without the correction factor, Ch1(O | η0, β0), which
is derived from the estimating function given by the first term of (7); a doubly-robust estimator,
referred to as DR1, that is defined by the estimating function (4) and also does not use the
correction factor; and another doubly-robust estimator, referred to as DR2, that is defined by
the estimating function (8), which has the correction factor that should make the estimator
robust to misspecification of η. For all these estimators, we use h1(A, V ) = ∂m(A, V | β)/∂β =
(1, A, V, (V – 3)3 , AV, A(V – 3)+). The functions g(A | W and η(V) are estimated through logistic
regression, with the model for α(A | W) correctly specified as logit{g(1 | W, α)}= α0 + α1Z +
α2V + α3 ZV , but the model for η(V ) misspecified as logit{η(V | γ)} = γ0 + γ1V; the true model
is a more complicated, approximately quadratic form. The estimator h2, n(V ) = ηn(V ) obtained
from this model is then used for h2(V ). One would thus expect the estimators IPTW and DR1of
β to be biased, because of an inconsistent estimator of η(V ), whereas the estimator DR2 should
be less biased. The nuisance parameter Q(A, W ), required by the estimators DR1 and DR2, is
estimated through the correctly specified logistic regression model logit{Q(A, W | θ)}= θ0 +
θ1Z + θ2V2 + θ3A + θAV2. The term E{∑a∈Ah1(a, V)h2(V)} required by the estimator DR2 is
estimated through the five-dimensional, to fit the dimension of β, vector of averages,
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Finally, we use a numerical optimization routine to find the minimum of the norm of the
estimating equations with respect to β:

We compare the three estimators to the true values of E(Y | V) – E(Ya | V) for a = 0, 1 and V =
1,..., 7, using sample sizes of n = 1000. Figure 1 compares the mean estimates, over the 1000
simulations, for the three estimators to the true values at the two values of the intervention, a
= 0and a = 1, separately in Figs 1(a) and (b), respectively. In addition, the overall relative
performance, both variance and bias, is displayed as the relative mean-squared error, relative
to the estimator IPTW, as RMSE1 and RMSE2 for the estimators DR1 and DR2, respectively,
see Figs 1(c) and (d). The same simulation is repeated for a sample size of 1000; see Fig. 2.

The results suggest that, although the model for the additive risk does not contain the truth, it
does a reasonable job of approximating the trend of E(Y | V ) – E(Ya | V ) as a function of V for
a = 0; see Fig. 1(a). However, for a = 1 the model is clearly biased; see Fig. 1(b). The gain in
relative efficiency is apparent for a = 0 for both of the doubly-robust estimators relative to the
estimator IPTW and this gain all comes from reduction in variance. In this particular case, the
bias reduction resulting from the correction factor, for misspecification of η(V ), is small relative
to the bias of the underlying additive risk model, Fig. 1(c). The biases for all three estimators
are relatively large if a = 1 and there is no gain over the simpler estimator IPTW; see Fig. 1
(d).

The story is somewhat different for larger sample sizes. The variance now is very small relative
to the bias so that all differences in performance are based on differences in bias. Thus, even
those estimators with, DR2, and without the correction factor for misspecification of η(V ),
IPTW and DR1, have similar performance at a = 0; see Figs 2(a) and (c). For a = 1, now the
two approaches without the correction factor again have identical performance, but the DR2
model now bends, see Fig. 2(b), to reduce the bias overall. However, given the limits of the
estimating model for the parameter of interest, i.e. additive risk, reducing bias for some V
increases it at others; the relative mean-squared error dips below 1 at V 4, 5 and 7 as shown in
Fig. 2(d). Finally, if one repeats these simulations with η(V ) correctly specified, DR1 and DR2
behave nearly identically, implying that there is no further bias-reduction advantage in the
estimator DR2 when the estimator of η(V ) is consistent and both estimators have similar
variances.

The results suggest that the safest estimator is DR2, as it had both the benefits of lower bias
and lower variance, where the relative contributions of these two sources of error change as a
function of sample size.

6. Discussion
For some risk factors, one is interested in a single intervention corresponding to a particular
level of the risk factor. In the case of smoking, for instance, we would only be interested in an
intervention that eliminates the exposure completely; it would make little sense to estimate the
disease distribution in a counterfactual population in which every subject smokes three
cigarettes a day as that would require one to compel many people to start smoking. In other
applications, such as air pollution studies, however, it does make sense to examine the
intervention effect for interventions corresponding to different target levels. For such cases,
we recommend the use of models of the form m(a, V | β) = E(Ya – Y | V ).

Although not presented here, the intervention-models approach can easily be extended to time-
dependent treatments, where the data structure includes both treatments A(j) and confounders
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L( j) measured at times j = 1,..., p, and a final outcome Y . In this case, the counterfactuals of
interest, Yā, are indexed by an entire treatment history, ā = (a(0), a(1),..., a(j)). As outlined
above, if η0(V ) is known or can be estimated nonparametrically, we can use the existing
estimating equations developed for estimating the mean of E(Yā | V ). Using the doubly-robust
estimating functions presented by van der Laan & Robins (2002) for marginal structural models
for time-dependent treatments, we can simply plug in η0(V ) + m(ā, V | β) for E(Yā | V ), where
m(ā, V | β) = E(Yā | V). In a manner analogous to the approach outlined in this article, these
estimating equations can also be altered for robustness against misspecification of η(V).

Appendix

Estimating the influence curve for asymptotic inference
Our estimator βn for the general mean intervention models will be consistent if either gn is
consistent for g0 or Qn is consistent for Q0. Regarding statistical inference, we assume that
gn consistently estimates g0. It is then straightforward to show that, under regularity conditions,
βn is asymptotically linear with influence curve

where icnuis is the influence curve of Γ(Gn) as an estimator of

In the special case in which h2 = h*2, it can be shown that

where Dh1(O | Q1, g0,η0,β0) is the doubly-robust estimating function for the standard marginal
structural model corresponding to the intervention model with η0 being known; see (7) for its
definition in the additive risk intervention model. Also, T2(P0) ⊂{φ(A, W ) : E(φ(A, W) | W) =
0} is the tangent space of the model  for g0 at p0, and Π{· | T2(P0) is the projection operator
on to this subspace T2(P0) within the Hilbert space .

In general, it seems to be a reasonable approach to use ic(O | P0) with this particular choice of
icnuis in this influence curve decreases the variance of the influence curve, since it subtracts a
T2(P0) component of Dh1(O | Q1, g0, η0, β0). As a consequence, a typically conservative
influence curve is given by

which corresponds to the influence curve one would obtain if one uses gn = g0 as if g0 were
known.

Statistical inference for β0 can now be based on βn ∼ N(β0, ∑n), where

HUBBARD and LAAN Page 10

Biometrika. Author manuscript; available in PMC 2008 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and eic(O) is the estimate of the influence curve ic(O | P0) obtained by plugging in our estimates
of g0, Q0, h*1, h*2 and β0. As mentioned in § 4, one can avoid deriving the influence curve of
the estimator by using the bootstrap to estimate the distribution of n1−/2(βn – β0).
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Fig. 1.
Simulation study. Performance of additive risk estimators with n = 100. The estimators and
true values for each V = v for (a) a = 0, (b) a = 1, for the truth, solid line, iptw, dashed line,
dr1, dashed-dotted line, and dr2, dotted line. The relative mean-squared error, rmse, relative
to the iptw for (c) a = 0 and (d) a = 1 for the DR1, dashed line, and DR2, solid line, with the
solid thick black line at rmse for reference.

HUBBARD and LAAN Page 12

Biometrika. Author manuscript; available in PMC 2008 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Simulation study. Performance of additive risk estimators with n = 1000. The estimators and
true values for each V = v for (a) a = 0, (b) a = 1, for the truth, solid line, iptw, dashed line,
DR1, dashed-dotted line, and DR2, dotted line. The relative mean-squared error, rmse, relative
to the iptw for (c) a = 0 and (d) a = 1 for the DR1, dashed line, and DR2, solid line, with the
solid thick black line at RMSE= 1 for reference.
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