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Abstract

It has been known since antiquity that gender-specific behaviors are regulated by the gonads. We
now know that testosterone is required for the appropriate display of male patterns of behavior.
Estrogen and progesterone, on the other hand, are essential for female typical responses. Research
from several groups also indicates that estrogen signaling is required for male typical behaviors. This
finding raises the issue of the relative contribution of these two hormonal systems in the control of
male typical behavioral displays. In this review we discuss the findings that led to these conclusions
and suggest various genetic strategies that may be required to understand the relative roles of
testosterone and estrogen signaling in the control of gender specific behavior.

All animals exhibit sex differences in behavior that are characteristic of the species. Such
gender typical behaviors are often used to court mates, to defend territory and other resources,
and to procure food for mates and offspring. These sexual dimorphisms in behavior are often
innate and can be displayed without prior social experience or training, suggesting that the
neural circuits that mediate these behaviors are developmentally hardwired in the brain.
Nevertheless, the display of these behaviors is tightly regulated by external sensory cues as
well as internal physiological regulators such as hormones. Such dual control ensures that
animals engage in these behaviors only at the appropriate time and circumstance. While we
have learned much about the sensory and hormonal control of sexually dimorphic behaviors
(Morris et al, 2004; Arnold, 2004; Simerly, 2002; Scordalakes et al, 2002; Dulac and Torello,
2003; Axel, 1994), several major issues remain to be resolved. Recent advances in genetic
engineering in mice should permit a sophisticated dissection of many of these issues. In this
review we focus on how such advances will eventually permit a mechanistic understanding of
the spatial and temporal requirements of androgen receptor signaling in male typical behaviors
in mice.

Rodents exhibit sexual dimorphisms in many social behaviors. These include qualitative and
quantitative differences in patterns of aggression, the scent marking of territory, courtship
vocalizations, mating, sexual partner preference, and nursing (Goy and McEwan, 1980; Meisel
and Sachs, 1994). Note that throughout this review we use the terms “sexually dimorphic
behaviors,” “sex specific behaviors” and “sex typical behaviors” interchangeably. Testosterone
appears to be necessary and sufficient for the display of most, if not all, male typical behaviors
in rodents (Goy and McEwan, 1980; Meisel and Sachs, 1994; Burns-Cusato et al, 2004;
Gandelman, 1980; Beeman, 1947). The sensory and hormonal regulation of sexually dimorphic
behaviors in various vertebrate species has been exhaustively reviewed elsewhere (Perkins and
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Roselli, 2007; Pfaus and Heeb, 1997; Kollack-Walker and Newman, 1995; Heeb and Yahr,
1996; Wade and Arnold, 2004), and we limit our discussion to the hormonal control of mating
and aggression in male mice. Testosterone is required in a reversible manner in adult rodents
for the display of male typical behaviors. Mice and other rodents castrated as adults rapidly
lose male typical mating and aggressive patterns of behavior. These deficits, however, can be
reversed by supplementation with testosterone (Table 1) (Wallis and Luttge, 1975; Luttge et
al, 1974; Edwards and Burge, 1971a; Edwards, 1969; Beeman, 1947). This adult requirement
is also referred to as the “activational role” of testosterone in male specific behavior (Phoenix
et al, 1959). In addition to this activational role, testosterone also appears to be required
perinatally in rodents for the subsequent expression of the full complement of male specific
behaviors. For example, male mice castrated within a few hours of birth show significant
deficits in mating and intermale aggression as adults (Quadagno et al, 1975; Motelica-Heino
etal, 1993; Peters et al, 1972). Importantly, these deficits cannot be corrected in adult life with
exogenous testosterone (but see also vom Saal et al, 1976). This irreversible effect of
testosterone during early life is also referred to as the “organizational role” for testosterone in
male behaviors (Phoenix et al, 1959). Testosterone provided perinatally and in adult life also
elicits male typical patterns of mating and aggression in female rodents, suggesting that it is
sufficient to drive these behaviors (Edwards and Burge, 1971a; Edwards, 1968; Edwards,
1969).

Testosterone initiates organizational and activational changes in the brain by binding its
cognate receptor, the androgen receptor (AR) (Chang et al, 1988; Lubahn et al, 1988).
Additionally, testosterone is a prohormone, and it can be metabolized into dihydrotestosterone
(DHT) or estrogen (Lephart, 1996; Imperato-McGinley and Zhu, 2002). DHT also binds and
activates AR whereas estrogen binds distinct cognate receptors. Estrogen binds to estrogen
receptor o (ERa), estrogen receptor f (ERp), and the G-protein coupled receptor (GPCR),
GPR30 (Walter et al, 1985; Kuiper et al, 1996; Revankar et al, 2005). AR and ERo and f are
ligand-activated nuclear hormone receptors that modulate the transcription of target genes. By
contrast GPR30 is a transmembrane receptor that binds estrogen and initiates heterotrimeric
G-protein mediated signaling. While androgens can rapidly activate intracellular signaling
cascades independent of direct transcriptional modulation by liganded AR, the functional
relevance of these activities for male mating and aggression remains to be elucidated (Michels
and Hoppe, 2007; Sun et al, 2006).

Each of the receptors for testosterone and estrogen is expressed in many brain regions,
including those that have been implicated in the control of male typical mating and aggression
(Shah et al, 2004; Merchenthaler et al, 2004; Simerly et al, 1990; Brailoiu et al, 2007; Lein et
al, 2007; Meisel and Sachs, 1994). Such brain regions include the medial amygdala (MeA),
the bed nucleus of the stria terminalis (BNST), and the medial preoptic area of the
hypothalamus (POA). The enzymes that catalyze the conversion of testosterone into DHT and
estrogen are also found in the rodent brain, including in the regions mentioned above (Lauber
and Lichtensteiger, 1994; Wagner and Morrell, 1996; Melcangi et al, 1998). This suggests a
scenario in which testosterone may also act as a prohormone in the rodent brain (Naftolin et
al, 1972). Indeed, estrogen signaling is also required for most male typical behaviors in mice.
Adult castrated mice supplemented with estrogen show recovery of most components of male
typical mating and fighting (Dalterio et al, 1979; Edwards and Burge, 1971b; Simon and
Gandelman, 1978). However, such studies suggest that a complete recovery of male specific
patterns of behavior is observed when the castrates are supplemented with both estrogen and
DHT (Wallis and Luttge, 1975; Finney and Erpino, 1976). The genetic background is an
important factor—in some strains DHT alone can rescue mating and aggression in castrate
mice (Luttge et al, 1974; Luttge and Hall, 1973a; Luttge and Hall, 1973b; Burns-Cusato et al,
2004; Maxson et al, 1983). These classic hormone supplementation and deprivation paradigms
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have provided a strong demonstration of the critical role of androgen and estrogen signaling
in male behaviors.

The genetic strategies we discuss in this review should shed additional light on the temporal
and spatial requirements of hormone signaling in the control of rodent male behaviors. These
two approaches, hormonal manipulations and gene targeting, often provide complementary
information. For example, the loss of male mating after adult castration suggests that
testosterone is required for this particular behavior. The resumption of male mating following
testosterone replacement provides evidence that testosterone is sufficient to initiate these
displays. Such studies do not reveal whether testosterone signaling through AR is required for
male sexual behaviors nor do they suggest which particular brain regions respond to
testosterone to mediate male mating. As genetic deletion of AR also abolishes male mating
routines (Ohno et al, 1974; Olsen, 1992; Sato et al, 2004), this approach strongly implicates
testosterone signaling through AR in regulating sexual behavior. One limitation of this
interpretation is that AR may have a ligand-independent role in modulating male mating.
However, as both AR and its cognate ligand, testosterone, are required for male mating, the
parsimonious explanation is that testosterone acts via AR to mediate male mating. In other
words, a combination of hormonal manipulations and gene targeting often offers a more
nuanced insight into the neuroendocrine control of behavior and other physiological processes.
We discuss several examples of such a combined approach in the following sections. Note that
as the genetic deletion of AR is constitutive this experiment does not reveal when and where
AR function is required for male sexual behavior (see Nelson, 1997, for an extended
discussion). In later sections, we discuss various genetic approaches that have been devised to
generate deletions in a regionally or temporally restricted fashion in order to bypass this
limitation.

The role of estrogen signaling in male mating and aggression in mice

Targeted deletion of aromatase, the enzyme that converts testosterone into estrogen, abrogates
all estrogen production in the body (Fisher et al, 1998). Male mice null for aromatase have
profound deficits in mating and aggression (Table 2) (Honda et al, 1998; Matsumoto et al,
2003; Toda et al, 2001a; Toda et al, 2001b). In a standard mating assay, these mutant males
mount a female less frequently than wildtype males, exhibit reductions in intromissions, and
rarely ejaculate. Aromatase mutant males also exhibit a severe reduction in aggression towards
wildtype males in standard resident-intruder assays. These observations directly implicate a
role for estrogen synthesis in the control of male typical behaviors.

Adult males null for ERB appear to exhibit wildtype levels of mating and aggression (Ogawa
et al, 1999; Temple et al, 2003). Male mice homozygous null for ERa on the other hand do
exhibit partial deficits in mounting, intromission, and ejaculation in standard tests of sexual
behaviors (Ogawa et al, 1997; Wersinger et al, 1997; Ogawa et al, 1998). Note however that
these deficits stand in stark contrast to the abrogation of mating observed in adult castrates,
suggesting that multiple hormonal mechanisms control male mating. Consistent with this
notion, there is a complete loss of all male typical mating behavior in mice homozygous null
for both ERa and B (Ogawa et al, 2000). This more profound mating deficit in the ERa and
3 double mutants suggests a functional redundancy between ERa and ERp in the control of
male sexual behavior. In contrast to this functional redundancy in the control of male mating
behavior, intermale aggression appears to require only a functional ERa as ERa mutant males
display minimal levels of intermale aggression, a phenotype that strongly resembles the deficits
observed in castrates. Taken together, these observations suggest that estrogen signaling
underlies the appropriate expression of many components of male mating and aggression.
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Note that the mating deficits observed in males doubly mutant for ERo and 3 are more severe
than those in males lacking aromatase. What might account for the difference in phenotypes
between males unable to synthesize estrogen and those unable to bind estrogen using nuclear
hormone receptors? One possible explanation for this discrepancy is that the ERs have
estrogen-independent activities that also control various components of male mating behavior.
Alternately, the estrogen deficiency in aromatase null animals may be partially rescued by
dietary estrogen. In any event, these genetic studies demonstrate that estrogen signaling via
the nuclear hormone receptor type ERs is required for male specific patterns of mating and
fighting.

The role of androgen signaling in male mating and aggression in mice

A functional AR is essential for masculinization of the external somatic phenotype and of sex
typical behavioral displays in many species. Naturally occurring mutations in AR have been
described in rats, mice, cattle, and humans (Bardin et al, 1970; Lyon and Hawkes, 1970; Short,
1967; Morris and Mahesh, 1963). In each instance, males bearing a null allele of AR have
feminized external genitalia and other secondary sexual characteristics. Such mutants fail to
exhibit male typical behaviors characteristic of the species, and in some cases even display
feminized behaviors. Studies in human populations reveal a large spectrum of clinical
presentations of men with mutations in AR, ranging from a mild feminization of the external
phenotype to completely feminized patients who are karyotypically male (XY). This syndrome,
referred to as the Androgen Insensitivity Syndrome (AIS) in the clinical literature, provides
dramatic evidence of the influence exerted by gonadal steroid hormones on the development
of gender typical physical and socio-sexual traits (McPhaul, 2002).

Mice also require an intact AR for the display of male typical patterns of mating and aggression
(Ohno et al, 1974; Olsen, 1992). The tfm (testicular feminization) allele is a naturally occurring
mutation which leads to a frameshift in the first exon of the mouse AR locus (Charest et al,
1991). This frameshift leads to a prematurely truncated protein, which lacks the DNA- and
ligand-binding domains and is therefore likely to be non-functional. As in other species, tfm
males have feminized external genitalia (Lyon and Hawkes, 1970). When presented with
females in estrus, tfm males exhibit virtually no mounting or other consummatory aspects of
male typical mating behavior (Ohno et al, 1974). However, this demasculinization is not
accompanied by the feminization of sexual behavior. Tfm males do not display female typical
sexual receptivity towards wildtype males (Ohno et al, 1974). This absence of sexual
receptivity persists even when AR null mutants are castrated and primed with estrogen and
progesterone, a hormonal regimen that induces sexual receptivity in ovariectomized female
mice (Sato et al, 2004). This defeminization of sexual behavior is likely mediated by estrogen
signaling through ERp. Castrated ERp null males primed with estrogen and progesterone show
enhanced female typical receptive behavior compared with WT males, indicating that ER3
signaling is necessary for the defeminization of male behavior (Scordalakes et al, 2002).
Therefore, the low-to-normal titers of testosterone observed in tfm males may provide sufficient
substrate for the neural synthesis of estrogen, which likely activates ERp to defeminize sexual
behavior.

Unlike wildtype male residents, tfm male residents are not aggressive toward wildtype male
intruders in the standard resident-intruder assay (Ohno et al, 1974). This deficit in male resident
typical behavior also manifests in altered urine marking. Wildtype males appear to mark their
home cage by depositing small quantities of urine all over the cage floor (Desjardins et al,
1973). By contrast, wildtype females and tfm males deposit their urine in large pools in a corner
of the cage (N. Shah, unpublished observations). The loss of aggression observed in tfm males
resembles the deficits in males null for ERa or ERa and . ER mutant males have not been
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tested in urine-marking assays. Nevertheless these findings suggest a dual requirement for AR
and ER signaling in the control of male typical territorial marking and defense.

So far we have described the behavioral deficits in mice null for ER or AR mediated signaling.
Interestingly, AR also appears to be essential for generating cues that permit other conspecifics
to recognize the animal as being male. Tfm intruder males do not elicit aggression from resident
wildtype males (Ohno et al, 1974). By contrast, ERa null intruder males are recognized as
males and are attacked in resident-intruder tests (Scordalakes and Rissman, 2004). Male mice
castrated as adults also do not elicit aggression in such testing, consistent with a role for AR
in generating male specific cues (Mugford and Nowell, 1970). Adult castrate males are attacked
when their backs are swabbed with urine obtained from wildtype male mice, suggesting that
AR may regulate the production of male typical pheromonal signatures (Maruniak et al,
1986).

The relative contributions of AR and ER signaling to male mating and
aggression

Male mice homozygous null for ERa and  do not engage in male specific patterns of mating
and fighting. Similarly, tfm males also do not mate or fight. This dual genetic requirement
suggests that these two hormonal systems operate independently to regulate these male specific
behaviors (Figure 1). Alternately, the estrogen and androgen signaling systems may act
sequentially within the same pathway to regulate male mating and fighting. Note that the
models shown in Figure 1 simply provide a genetic framework to understand the relative
contributions of AR and ER in the control of male mating and fighting. These models do not
reveal the cellular basis for the requirement for AR or ER in these behaviors.

The behavioral deficits in mice mutant for AR or ER do not demonstrate that these receptors
directly activate mating or fighting by signaling within the neural circuits that mediate these
behaviors. It is possible that the phenotype observed in these mutants arises from secondary
effects of the deletion. For example, it is formally possible that a group of neurons that
participates in the neural circuit that mediates male mating co-expresses both AR and ERa. In
this hypothetical scenario, AR may regulate neuronal survival whereas ERa may modulate
transcription of a set of genes whose products are required for the neurons to regulate male
mating. In tfm males therefore, the abrogation of male sexual behavior could result from the
loss of this particular group of neurons. In this instance, crossing the tfm allele into a mouse
strain over-expressing an anti-apoptotic gene such as Bcl-2 in these neurons should prevent
their cell death, thereby “rescuing” the mating deficit (Zup et al, 2003; Forger et al, 2004).
However, males null for ERo will exhibit a mating deficit that cannot be rescued even in the
presence of the transgenic Bcl-2. In this example therefore, AR would play a permissive role
in mediating male mating as its function does not directly control the activity of the neural
circuit for male sexual behavior (cf. differentiation of the spinal nucleus of the
bulbocavernosus, Morris et al, 2004). By contrast, ERa signaling would be a pre-requisite for
neuronal function during male mating, and consequently this receptor would play an instructive
role in this process. In an alternate scenario, it is possible that both AR and ER play instructive
roles in regulating mating behavior. For example, if ER signaling regulates AR signaling, and
in turn AR regulates genes required for the neurons to participate in the neural circuit, then
both AR and ER could be said to mediate mating in an instructive manner. In fact, estrogen
signaling has been shown to regulate AR expression in the rat brain during development,
consistent with the notion that disruption of ER signaling may mediate some male sex-typical
behaviors by modulating AR (McAbee and DonCarlos, 1999). Testosterone or AR have also
been shown to regulate the expression of aromatase in several species (Balthazart and Foidart,
1993; Roselli et al, 1987; Veney et al, 2000). While such regulation remains to be demonstrated
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in the mouse brain, these studies suggest a sequential, instructive role for AR and ER signaling
in the control of male behavior (Figure 1b).

The preceding discussion highlights the fact that much needs to be done to sort out the relative
contributions of AR and ER signaling in male mating and aggression. Inducible genetic
manipulations of AR and ERa and B should resolve many of these outstanding issues. As
discussed below, gonadectomy followed by appropriate hormonal supplementation also offers
the possibility of revealing potential interactions between the two hormone systems. Such
hormonal supplementation studies, which are analogous to inducible transgenic rescue
experiments, provide additional insight into the role of gonadal hormones in organizing and
activating sex specific behaviors.

Mating, as well as fighting, can be rescued in adult castrated AR null males by supplementation
with estrogen (Olsen, 1992; Sato et al, 2004; Scordalakes and Rissman, 2004). It is striking
that in males constitutively null for AR, adult administration of estrogen restores inter-male
aggression to essentially wildtype levels. Does this mean that hormonal signaling is dispensable
in neonatal life for adult displays of aggression? This remains to be tested, as males with a
constitutive deletion of AR have normal levels of testosterone neonatally (Sato et al, 2004). In
such males, testosterone levels subsequently decline due to atrophy of the testes later in life
(Goldstein and Wilson, 1972). In other words, neonatal aromatization of testosterone to
estrogen may be required for permitting aggressive displays in the adult mutants. In contrast
to the essentially complete rescue of intermale aggression, estrogen treatment of AR mutant
males only partially rescues various consummatory components of male typical mating. This
suggests that either the hormonal supplementation is inadequate or that there is a neonatal
requirement for intact AR signaling for male mating behaviors.

Testosterone or DHT supplementation of adult castrated ERo null males partially rescues
mating and aggression (Ogawa et al, 1998; Scordalakes and Rissman, 2003; Sato et al, 2004).
This rescue by DHT suggests that the low levels of mating and aggression observed in intact
ERa null males are dependent on AR-mediated signaling. Given that mice mutant for both
ERa and B exhibit significantly more profound behavioral deficits than those of the single
mutants alone, it is also possible that the low levels of mating and aggression present in intact
ERa null males are independent of AR signaling. Note that such androgen supplementation
experiments have not been performed to date in adult males doubly homozygous null for
ERa and .

The observation that hormonal supplementation can rescue many, and in some cases most,
deficits in mating and aggression in male mice bearing mutations in AR or ER provides insight
into the mechanisms that underlie these behaviors. For example, the finding that estrogen
administration to adult tfm males can rescue intermale aggression in these mutants immediately
suggests that the neural pathways that mediate male fighting can differentiate in the absence
of functional AR. It is also possible that the estrogen provided to these males activates an
alternate neural pathway to regulate aggression, and that this pathway develops normally in
the absence of AR function (Figure 1a). In both instances, the supplementation with estrogen
may simply be required because of the testicular atrophy observed in tftm males, which would
presumably lead to a decline in local, neural synthesis of estrogen. In an alternate scenario,
tfm males may have a homeostatic, compensatory upregulation of ER expression or function
in regions that can modulate intermale aggression. Such compensation could permit a
functional rescue of fighting when the mutant male is supplemented with estrogen.
Compensatory mechanisms have been observed in many other processes during development
as well as in adult life in many tissues, including the brain (Davis, 2006; Nelson, 1997). For
example, skeletal muscle differentiation is under the control of two basic helix-loop-helix
transcription factors, MyoD and Myf-5. Mice doubly null for MyoD and Myf-5 fail to form
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any skeletal muscle (Rudnicki et al, 1993). However, mice mutant only for MyoD exhibit
essentially normal muscle differentiation (Rudnicki et al, 1992). Myf-5 is expressed at higher
than wildtype levels in MyoD mutants, indicating that the loss of function of MyoD has been
compensated for by the up-regulation of Myf-5 (Weintraub, 1993). The rescue of aggression
in tfim males with estrogen administration could also reflect true redundancy in the hormonal
mechanisms that regulate this behavior. In other words, both AR and ER could function
redundantly to mediate male fighting. We wish to operationally define such redundancy as the
existence in vivo of two or more mechanisms that subserve the same process in the wildtype
state (Thomas, 1993). If these mechanisms are truly redundant, one should observe normal
biological function without alteration of activity or expression of the individual components
of one pathway when the other is rendered nonfunctional genetically. An example of such
redundancy is demonstrated in glial scarring subsequent to neural injury. Astrocytes and other
cells in the nervous system migrate towards an injury, proliferate, and clear debris to aid wound
healing. Vimentin and glial fibrillary acidic protein (GFAP), the two major intermediate
filament proteins of the astrocyte cytoskeleton, appear to be redundant for glial scar formation.
Mice singly null for vimentin or GFAP appear to undergo normal wound healing after injury
to neural tissue (Pekny et al, 1999). Importantly, neither GFAP nor vimentin appear to be
upregulated in these single mutants, suggesting true redundancy rather than homeostatic
compensation (Eliasson et al, 1999). By contrast, mice doubly mutant for vimentin and GFAP
have defective glial scar formation, accompanied by increased mortality subsequent to the
injury (Pekny et al, 1999). Taken together, these observations suggest that vimentin and GFAP
participate in glial scarring in a redundant manner. We should point out that mice singly mutant
for vimentin or GFAP do have deficits in processes unrelated to glial scar formation (Shibuki
et al, 1996; Terzi et al, 1997), providing a good example of redundant function for some but
not all biological processes in which these two proteins participate. It is often difficult to
distinguish true redundancy from homeostatic compensation, and the term “functional
redundancy” could be used to describe the phenotype until the underlying mechanism is
understood.

To summarize, the rescue of deficits in mating or fighting in AR and ER mutants with estrogen
or testosterone, respectively, may result from one or a combination of several mechanisms.
Identifying the mechanism which operates in vivo will require a molecular understanding of
the target genes regulated by sex steroid receptors as well as the identification of specific neural
circuits that regulate various routines in male typical mating and fighting. In the section that
follows we suggest genetic strategies to understand the role of AR in restricted neuronal
populations in regulating mating and aggression in male mice. These genetic strategies are also
applicable to the estrogen receptors, and provide a powerful complementary approach to the
hormonal manipulations discussed above.

Dissecting the temporal and spatial roles of AR in male behavior

As the findings discussed above illustrate, there are several outstanding issues that need to be
resolved about the role of AR in regulating mating and aggression in the mouse. It remains to
be genetically demonstrated whether AR is required in the brain to mediate male typical
behaviors. Alternately, AR may only function in non-neural, peripheral tissues such as the
gonads, indirectly regulating behavior through its effects on the neuroendocrine axis. Thus it
is possible that the behavioral deficits observed in tfm males result from a disruption of
neuroendocrine regulation, rather than from a loss of AR function within the neural circuits
that mediate mating and fighting. If AR is indeed required within the brain to control male
specific behaviors, is the requirement purely developmental, adult, or both? And finally, which
particular subclasses of neurons require AR to control male typical aggression and mating?
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It has so far been difficult to distinguish homeostatic compensation for AR deficiency from
redundancy in the requirement for either AR or ER mediated signaling in the regulation of
male typical behaviors. Engineering an inducible deletion of AR in the adult brain would
effectively bypass any developmental compensatory mechanisms. However, even this
approach may not distinguish between redundancy and acute homeostatic mechanisms that
may be activated in the face of adult AR deficiency. Additional insight into this issue may be
afforded by experiments that determine whether AR or ERs function within the same sets of
neurons to regulate fighting or mating. Clearly there is a pressing need for experimental
manipulation of AR and ER function that can be performed with spatial and temporal precision.
The Cre-loxP system (see Box 1) offers a genetically tractable approach to achieve such precise
control of AR function. Indeed, over the past five years, several groups have generated different
alleles of AR containing loxP-flanked (“floxed”) exons (Figure 2) (De Gendt et al,
2005;Holdcraft and Braun, 2004;Notini et al, 2005;Sato et al, 2004;Yeh et al, 2002). The exons
that have been flanked encode the N-terminal activation domain or the DNA binding domain.
Deletion of these exons, which occurs when Cre recombinase is provided in trans, leads to a
loss-of-function allele of AR. Indeed, when mice bearing such a floxed AR allele are bred with
mice expressing Cre recombinase under the control of an ubiquitous promoter, the male
progeny bearing both the floxed AR allele and the transgenic Cre recombinase appear to
recapitulate the tfrm phenotype (De Gendt et al, 2005;Holdcraft and Braun, 2004;Notini et al,
2005;Sato et al, 2004;Yeh et al, 2002). In the section that follows, we present several genetic
strategies utilizing the Cre/lox system that will permit the deletion of AR in a spatially and
temporally controlled manner.

Spatially restricted manipulation of AR function

The tfm mouse lacks AR signaling in all tissues. However, AR is likely to have important roles
in diverse tissues, including the gonads, the pituitary, and the nervous system. The behavioral
deficits of AR null mice could in principle result from a disruption of AR signaling in the
pituitary or from a lack of AR signaling in the brain. Using the Cre-lox system, brain-specific
deletions of AR can be generated with the available Cre and floxed AR lines (Figure 3a)
(Cinato et al, 2001; Goebbels et al, 2006; Korets-Smith et al, 2004; Tronche et al, 1999; Tsien
etal, 1996; Zhu et al, 2001). Deficits in either mating or aggression in such mice would provide
a convincing demonstration of a neural requirement of AR in these behavioral routines. If
neural AR is indeed necessary for these behaviors, is it required in the neural circuits that
regulate the hypothalamic-pituitary-gonadal (HPG) axis, or in circuits that directly control male
behaviors? These two (non-mutually exclusive) possibilities can be distinguished by profiling
circulating hormone titers. Any dysfunction of the HPG axis could be bypassed by castration
and supplementation with testosterone in order to test for additional deficits in the neural
circuits that control aggression and mating.

Temporally controlled manipulation of AR function

Classical experiments have shown that hormonal signaling is required both developmentally
and in adulthood for male typical behaviors. However, the relative contribution of AR versus
ER signaling at various time points has been difficult to establish using traditional hormone
supplementation experiments. The advent of temporally controlled Cre systems how provides
a novel way to test the necessity of AR signaling at defined time points. In order to distinguish
between the developmental and adult roles of AR in controlling male mating and aggression,
one has to compare the behavioral consequences of constitutive deletion of AR in the brain to
those resulting from the deletion of AR exclusively in the adult. The generation of ligand-
activated Cre recombinase offers an elegant, general solution to this problem (Metzger et al,
1995). In the most widely used version, Cre recombinase is fused to the ligand-binding domain
of a mutated version of human ERa (CreERT2), which does not recognize endogenous
estrogens, but binds tamoxifen with high affinity (Feil et al, 1997). The CreERT2 fusion protein
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will only enter the nucleus upon administration of tamoxifen, allowing Cre to access loxP sites
in the genome (Figure 3b). Cre needs only to be expressed transiently to recombine floxed
targets, so tamoxifen can be administered for a short, defined period. Alternative systems for
the temporally restricted manipulation of Cre function are also available (Kellendonk et al,
1996; Gossen and Bujard, 2002). At least a few transgenic lines bearing a CreERT2 allele under
the control of a brain restricted promoter have been generated (Erdmann et al, 2007; Kuo et
al, 2006), and the use of such strains should permit the inducible deletion of neural AR at
defined time points.

If AR is required in the adult brain, it is likely that only a subset of the neurons that express
AR control mating and aggression. AR is expressed in pools of neurons in diverse brain regions
(Shah et al, 2004; Simerly et al, 1990). In order to define the behavioral role of AR in these
subsets, it is necessary to delete AR function selectively within such candidate populations.
One approach to achieve such regionally and temporally restricted deletion of AR is to
stereotactically deliver Cre recombinase using a viral vector. Among the most promising viral
vectors are those generated using either lentiviral or adeno-associated virus (AAV) backbones
(Miyoshi et al, 1998; Burger et al, 2005). Both viruses are amenable to routine molecular
biological manipulations and can be generated in high titers in the laboratory. These viruses
can infect post-mitotic cell types, including neurons, and appear to be relatively non-toxic,
allowing for long term survival and behavioral analysis of virally transduced animals. Several
groups have demonstrated the feasibility of delivering Cre recombinase stereotactically to the
adult mouse brain using either a lentiviral or an AAV preparation (Ahmed et al, 2004; Heldt
etal, 2001; Thevenot et al, 2003; Kaspar et al, 2002; Pfeifer, 2001; Rajji et al, 2003; Scammell,
2003). As viral vectors are modular, they can be injected into different regions of the brain in
adult mice bearing the floxed AR allele, bypassing the need for the generation of multiple
region-specific Cre transgenic lines. The use of virally delivered Cre recombinase will permit
a facile analysis of how AR in specific brain regions may mediate male typical behaviors.

In this review we have attempted to synthesize the numerous observations on the roles of
androgen and estrogen signaling in the control of male mating and fighting in mice. While we
have discussed male typical behaviors in terms of mating and aggression, in fact each of these
two behaviors consists of distinct subroutines. Additionally these behaviors have motivational
and consummatory components (Wersinger and Rissman, 2000; Bodo and Rissman, 2007;
Bakker et al, 2002), and for the most part we have limited our discussion to the consummatory
aspects. Nevertheless, the Cre/lox reagents we describe will also be useful in understanding
the control of each of these individual subroutines by androgen and estrogen signaling.

Cre Recombinase

The P1 bacteriophage gene Cre encodes Cre recombinase, which recognizes sequence-
specific target sites in DNA referred to as loxP sites (Sauer, 1998). Each loxP element is a
pseudopalindromic 34 base pair sequence. This asymmetry in the loxP site has practical
consequences. The DNA target flanked by loxP sites (“floxed™) in head to tail orientation
will be deleted in the presence of Cre. By contrast, a DNA target flanked by two loxP sites
in head to head orientation will be inverted. In the former instance, the deletion of the floxed
target is accompanied by the loss of a loxP element, leaving behind a single loxP element
as a residue of the recombination event. As the loxP element is 34 base pairs long, it occurs
only infrequently in long stretches of genomic DNA. In fact, the sequenced mouse genome
appears to contain no endogenous loxP sites. This means that one can safely flox DNA
target sites in the mouse genome, as the provision of Cre in trans should lead to
recombination only at that locus. Note that appropriate placement of loxP sites in the target
locus should not interfere with normal gene function. To confirm that gene function has not
been altered, mice carrying the floxed allele, but no Cre, must be analyzed as well.
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Various versions of Cre are available, including one fused with a fluorescent reporter protein
to enable visualization of the Cre fusion protein (Gagneten et al, 1997). In another variant,
the activity of Cre recombinase is ligand inducible (see text). Finally, Cre belongs to a class
of recombinase proteins which share the property of mediating recombination events at
DNA targets flanked by unique recognition sequences. At least one of these, FLPe, is now
widely used in place of Cre in the mouse (Branda and Dymecki, 2004). FLPe recognizes
frt sites, which are distinct from the loxP sites recognized by Cre recombinase.
Consequently, it is now possible to design experiments using both Cre and FLPe to mediate
deletions of distinct targets in the genome of the same animal.
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Figure 1. Models for the control of male typical behaviors by androgen and estrogen signaling
AR and ER may directly regulate male behavior through parallel (a) or sequential (b) pathways
in the brain. (a) Androgen and estrogen signaling operate independently of one another to
masculinize the brain and behavior. (b) AR and ER may function within the same circuits to
masculinize behavior. In this scenario, AR and ER are postulated to interact epistatically, such
that either one could function upstream of the other receptor.
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Figure 2. Summary of published loxP flanked AR alleles

a) This schematic depicts the various functional domains of AR, including the N-terminal
transactivation domain (dark gray), the DNA binding domain (white), the hinge region
(hatched), and the ligand binding domain (light gray). The various exons encoding each of the
functional domains are shown using the same schema (b—e). Several groups have generated
loxP flanked (“floxed”) AR alleles. The exons that have been floxed include either those that
encode the N-terminal transactivation domain (b: Sato et al, 2004; c: Holdcraft and Braun,
2004) or the DNA binding domain (d: Yeh et al, 2002 and DeGendt et al, 2005; e: Notini et
al, 2005). Note that the configuration of loxP sites in (c) will result in the inversion of exon 1
rather than a deletion. The loxP sites are denoted as solid arrowheads.
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Figure 3. Spatial and temporal control of AR function with Cre recombinase

(a) To achieve tissue-specific recombination, the Cre transgene is placed under the control of
tissue specific regulatory elements. As Cre expression is spatially restricted, excision of the
floxed AR allele occurs only in defined regions, leaving behind a single loxP site. (polyA:
polyadenylation sequence.)

(b) To obtain spatial and temporal control of recombination, the CreER T2 fusion protein is
expressed under the control of tissue specific regulatory elements. In the absence of tamoxifen,
CreER T2 is sequestered in the cytoplasm and cannot act on floxed AR alleles in the nucleus.
Binding of tamoxifen induces CreER 2 translocation to the nucleus where CreER2 is now
free to recombine the floxed AR allele.
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