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Abstract
The likelihood ratio, or ideal observer, decision rule is known to be optimal for two-class
classification tasks in the sense that it maximizes expected utility (or, equivalently, minimizes the
Bayes risk). Furthermore, using this decision rule yields a receiver operating characteristic (ROC)
curve which is never above the ROC curve produced using any other decision rule, provided the
observer’s misclassification rate with respect to one of the two classes is chosen as the dependent
variable for the curve (i.e., an “inversion” of the more common formulation in which the
observer’s true-positive fraction is plotted against its false-positive fraction). It is also known that
for a decision task requiring classification of observations into N classes, optimal performance in
the expected utility sense is obtained using a set of N − 1 likelihood ratios as decision variables. In
the N-class extension of ROC analysis, the ideal observer performance is describable in terms of
an (N2 − N − 1)-parameter hypersurface in an (N2 − N)-dimensional probability space. We show
that the result for two classes holds in this case as well, namely that the ROC hypersurface
obtained using the ideal observer decision rule is never above the ROC hypersurface obtained
using any other decision rule (where in our formulation performance is given exclusively with
respect to between-class error rates rather than within-class sensitivities).

Index Terms
ROC analysis; ideal observer; N-class classification

I. Introduction
IN a two-class classification task, observations x⃗ are randomly drawn from a distribution of
“signals” (or “positive” or “abnormal” observations) and a distribution of “noise” (or
“negative” or “normal” observations). The probability density functions (pdfs) are px⃗(x⃗| πs)
for the signal observations and px⃗(x⃗|πn) for the noise observations. (We use boldface type to
denote statistically variable quantities, and arrows above quantities to denote them as
vectors.) It is well known that using the likelihood ratio, defined as
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(1)

as the decision variable yields the optimal classification performance achievable in an ideal
observer sense [1], [2]. In particular, the ideal observer is obtained when one requires that
expected utility be maximized (or equivalently, that Bayes risk be minimized). Here LR is
to be interpreted as a function of the underlying random variable x⃗ describing the data. We
denote the pdf of LR as pLR(LR), distinct from px⃗(x⃗) above. The receiver operating
characteristic (ROC) curve for this decision variable is defined as the locus of all sensitivity
and specificity pairs, or equivalently as the parametric curve (FPF(LRc), TPF(LRc)), where

(2)

is the true-positive fraction (TPF), or sensitivity; and where

(3)

is the false-positive fraction (FPF), or one minus the specificity. Here, LRc is a threshold
applied to the decision variable LR.

It is clear from this standard formulation that any monotonic transformation of the decision
variable LR will yield the same ROC curve [2]. The decision variable LR, or any monotonic
transformation of this decision variable, will produce an ROC curve which is optimal in the
sense that at any given FPF, no ROC curve produced using a different decision variable can
have a TPF higher than that of the ideal observer. This optimality can be demonstrated in
two ways: by showing that the observer which satisfies the Neyman–Pearson criterion
(maximizing TPF at any given FPF) is in fact the ideal observer [1]; or by showing that
maximizing expected utility results in an ROC curve with this property [3].

Note that we can just as well specify the observer’s performance using the parametric pair
(FPF(LRc), FNF(LRc)) where

(4)

is the false-negative fraction (FNF), or one minus the sensitivity. In this equivalent
formulation, the ideal observer decision variable will produce an ROC curve which is
optimal in the sense that at any given FPF, no ROC curve produced using a different
decision variable (i.e., one which is not a monotonic transformation of LR) can have a FNF
lower than that of the ideal observer. Similarly, the Neyman-Pearson criterion is now
satisfied by minimizing FNF at any given FPF. This is the formulation which we will adopt
throughout this paper; despite being somewhat unusual for the two-class classification case,
it has certain notational advantages when considering more than two classes.

The ideal observer can be extended to the case of N classes [1]. Since the dimensionalities of
the probability spaces and of the decision variable vectors involved increase rapidly with the
number of classes, we will review this extension in detail for the N-class classification
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problem in the next section. In the remaining sections, we show that the result for two-class
classification holds in the N-class extension of ROC analysis as well; namely, that an ROC
hypersurface obtained by using the ideal observer decision rule is never above the ROC
hypersurface obtained using any other decision rule. Here “above” has the simple
interpretation that a function f(x⃗) is above g(x⃗) at a particular point x⃗0 if f(x⃗0) > g(x⃗0).

II. Maximization of Expected Utility
We seek to classify observations x⃗ as coming from one of N classes, which we label πi
where i varies from 1 to N. (Informally, class πN may be thought of as representing
“normal” cases, while the other N − 1 classes represent various types of “abnormality,” as
in, for example, a medical diagnostic task. The actual properties of the classes are, however,
irrelevant to the analysis here.) For any observation x⃗, we may define the actual class (the
“truth”) to which it belongs as t, and the class to which it is assigned (the “decision”) as d,
where t and d can take on any of the values πi, …, πi, … πN, the labels of the various
classes. A given observation x⃗ thus arises from one of N conditional pdfs px⃗(x⃗ | t = πi), and
is classified according to a set of N rules of the form

(5)

where the sets Zi partition the domain of x⃗. In effect, the sets Zi define a classifier.

The performance of this classifier is described by N2 conditional probabilities of the form
P(d = πi | t = πj), which represent the various probabilities of classifying an observation as
belonging to class πi given that it is actually drawn from the distribution of class πj. From
the definition of conditional probability [4]

(6)

meaning that only N2 − N of these N2 probabilities are needed to completely describe the
behavior of a particular classifier. (This generalizes the familiar fact that, for two classes, we
do not need to consider explicitly the true negative fraction (TNF), or the false negative
fraction (FNF), since TNF = 1 − FPF and FNF = 1 − TPF.)

Some researchers have suggested that in, e.g., a three-class classification task [5], [6], the set
of three “sensitivities” (P(d = πi | t = πi) in our notation) provides a complete description of
observer performance. This is incorrect in general, because it ignores the N2 − N
misclassification probabilities, not all of which are determined uniquely by the
“sensitivities” when N > 2 unless particular restrictions are imposed on the observer’s
behavior. Complete quantification of the trade-offs available among the probabilities of
various kinds of misclassification error is important in medical diagnosis, where different
misclassification errors often have substantially different clinical consequences. Moreover,
restrictions concerning the observer’s behavior are inappropriate when considering ideal
observers, human observers, or automated observers (such as automated schemes for
computer-aided diagnosis) designed to approximate ideal or human observer behavior.

Hypothetically, a “perfect” classifier would have P(d = πi | t= πj) = δij; that is, data drawn
from class πj would always be assigned to class πj, and never assigned to any class πi for i
≠ j. Since the data x⃗ are random, and since the pdfs of the data will overlap in any nontrivial
classification task, this is not possible even in principle. We therefore seek a classifier which
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performs optimally given the random nature of the data. Ideal observer decision theory
requires that a decision alternative be selected only if its expected utility is greater than the
expected utility of any other possible decision. That is, for a given observation x⃗

(7)

(8)

(9)

(10)

where the random variable Uπi (x⃗, t) is the utility of assigning an observation x⃗, actually
drawn from class t, to class πi [1]. (Since we are free to define the “utility” as the negative
of the Bayes risk, it should be clear that maximizing the expected utility is equivalent to
minimizing the Bayes risk.) Note that the choice of which decision to make when the
expected utilities of a given pair of decisions are equal (informally, where “equality”
symbols appear in the above relations) is arbitrary, since in this case the overall expected
utility is unchanged regardless of which decision is made.

For a particular observation x⃗ actually drawn from class πj, the utility Uπi (x⃗ t) is just a
number, which we denote Ui | j. The expectation values in (7) through (10) can then be
evaluated, yielding decision rules of the form

(11)

We apply Bayes’s rule to obtain

(12)

and then multiply the resulting equations by px⃗(x⃗), which is independent of the summation
index k and nonnegative for any feasible observation. The decision rules are now
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(13)

By defining N − 1 likelihood ratios as

(14)

for i < N, we can divide the decision rules in (13) by px⃗(x⃗|t = πN) and rearrange terms to
obtain

(15)

(16)

Expression (15), with equality holding, defines a set of (N/2) (N − 1) hyperplanes which
partition the decision variable space, i.e., the domain of the vector LR⃗ whose components
are defined by (14), into N subsets. (A portion of each hyperplane determines a boundary
between two classes.) The partitioning is determined by the parameters

(17)

with i, j, and k varying from 1 to N, and j ≠ i. These parameters are not independent,
however, because

(18)

For a given k, all the other parameters may be derived from γ1jk, with j varying from 2 to N.
This leaves a total of N2 − N parameters over all j and k.

A further constraint may be obtained by noting that the hyperplanes represented by the N −
1 equations

(19)
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are unchanged if we multiply all of these equations by a single scalar, such as 1/|γ1NN|. This
reduces the total number of parameters which determine the partitioning of the decision
variable space to N2 − N − 1. Note that we cannot multiply different equations by different
scalars, as this would change the relative orientations of the remaining decision boundary
hyperplanes derived via (18).

Thus, an N-class ideal observer is described by an (N2 − N − 1)-parameter ROC
hypersurface in an (N2 − N)-dimensional probability space. These probabilities will be given
by expressions of the form

(20)

where the region  is the set of all LR⃗ such that d = πi is decided, as defined in (15) and
(16).

III. The Neyman-Pearson Criterion
In the preceding section, we showed that when classifying observations drawn from N
classes, the ideal observer, which maximizes expected utility, uses N − 1 likelihood ratio
decision variables to form its decision rule as stated in (15) and (16). However, this does not
directly tell us anything about the actual performance of the ideal observer in terms of its
correct and incorrect classification rates, i.e., the probabilities in (20). We wish first to
generalize concepts familiar from two-class ROC analysis [7] to the N-class case under
consideration, which will enable us to extend the concept of the Neyman-Pearson observer
to N classes as well.

The performance of any observer which classifies observations into N classes is determined
by the N2 probabilities P(d = πi | t= πj) {1 ≤ i ≤ N, 1 ≤ j ≤ N}, where d = πi indicates a
decision that the observation belongs to class i and t = πj indicates that the observation is
actually drawn from class j. As shown above in (6), only N2 − N of these probabilities are
necessary to completely describe the classifier’s performance. Without loss of generality, we
will eliminate the N probabilities P(d = π1 | t= π1),…, P(d = πi | t= πi),…, P(d = πN | t=
πN), i.e., the within-class sensitivities. (In the two-class case, with class π2 representing
“negative” observations, this would be equivalent to using FNF and FPF, or one minus
sensitivity and one minus specificity, to specify an observer’s performance.)

The N2 − N probabilities are functions of a set of parameters defined by the observer’s
decision rule. Given these functions, the observer’s performance is given by an ROC
hypersurface in which one of the probabilities is an implicit function of the other N2 − N − 1
probabilities; without loss of generality, we take P(d = πN | t= π1) (an analogue of the FNF
in the two-class case) to be the dependent variable defining our ROC hypersurface.

In the preceding section, it was shown that the ideal observer’s performance depends on N2

− N − 1 parameters as well as the N conditional pdfs of x⃗. It may be that a particular
observer (not necessarily ideal) uses a decision rule that depends on more than N2 − N − 1
parameters; note that in this case, however, we may define a “simpler” observer whose
performance is always given by the set of aggregated parameters which minimize P(d = πN |
t= π1) at a given set of fixed values of the other N2 − N − 1 probabilities. The performance
of this simplified observer is thus effectively determined by only N2 − N − 1 parameters.
Furthermore, in this work we will not consider observers which use discrete decision
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variables, or which use decision rules dependent on fewer than N2 − N − 1 parameters.
Thus, in what follows, we explicitly assume that the performance of any observer under
consideration is continuous and dependent on exactly N2 − N − 1 free parameters.

By definition, the Neyman-Pearson observer is that which minimizes the dependent variable
(in our case P(d = πN | t = π1)) at a fixed set of values of the other probabilities; this
condition is known as the Neyman-Pearson criterion. Note that the Neyman-Pearson
criterion for two classes is typically stated as the minimization of, e.g., P(d = π2 | t= π1) for
values of P(d = π1 | t= π2) less than or equal to a given fixed value. However, the inequality
in this formulation is relevant only to the case of discrete decision variables [1] for which
arbitrary values of P(d = π1 | t= π2) may not in fact be achievable; as stated in the preceding
paragraph, we are not considering observers which use discrete decision variables, and
thuswe will adopt the simplified version of the Neyman-Pearson criterion appropriate for
continuous decision variables.

In order to optimize classification performance in a Neyman-Pearson sense, we wish to
minimize P(d = πN | t= π1) at a particular point in the domain of the probability space, i.e.,

(21)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N, and where the term for i = N, j = 1 is excluded. The αij are
fixed but arbitrary, apart from the obvious constraints 0 ≤ αij ≤ 1 and 0 ≤ Σi≠j αij ≤ 1. We
construct the function

(22)

where the case i = N, j = 1 is excluded from the sum. When the constraints P(d = πi | t= πj)
= αij are all satisfied, minimizing F is equivalent to minimizing P(d = πN | t= π1). This is
achieved, using the method of Lagrange multipliers [1], by first minimizing F and then
finding values of λij which satisfy the constraints.

Rearranging terms in (22) and expressing the probabilities explicitly via the definition in (5),
we obtain
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(23)

where n is the dimensionality of the observations x⃗, and where the case i = N, j = 1 is again
excluded from any sum in which it would otherwise occur.

Clearly, F is minimized by choosing the class partitions Zi so that each observation x⃗ is
assigned to the term in (23) that has the smallest integrand. That is, for i < N

(24)

and

(25)

where 1 ≤ j ≤ N − 1, and where the restrictions on the sums are the same as before. Cases for
which particular integrands are equal may be decided in an arbitrary but consistent manner.

We now divide (24) and (25) by p(x⃗ | t = πN) and rearrange terms to obtain (for i < N)
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(26)

(27)

where 1 ≤ j ≤ N − 1, and where λN1 ≡ 1. Note that some of the λij above may actually be
zero, because we have for clarity removed the explicit restrictions on the sums.

Comparison of (26) and (27) with (15) and (16) reveals that the observer which satisfies the
Neyman-Pearson criterion is in fact an ideal observer. That is, given the inherent
arbitrariness in the definition of utility, we are free to define

(28)

(29)

yielding inequalities in (15) and (16) identical to those in (26) and (27); furthermore,
equalities in (26) and (27) may be decided consistently with those in (15) and (16). The
known result for two-class classification tasks, that the ideal observer achieves optimal
performance in an ROC sense [1], thus holds for N-class classification tasks as well.

IV. Expected Utility and Optimal Performance: An Alternative View
We have shown that in an N-class classification task, the observer which maximizes
expected utility, and that which maximizes performance in an ROC or Neyman-Pearson
sense, are the same, namely the ideal observer. It is interesting to ask whether there is a
more direct connection between maximization of expected utility and optimization of
performance in an ROC sense. Such a connection was explored by one of us [3] for the two-
class classification task; in this section we extend those results to the N-class classification
task.

Consider again the expected utility as given in (7) through (10), but now in general form
rather than with respect to the utility of particular decisions. That is

(30)

As in Section III, we simplify this expression by eliminating N of the N2 conditional
probabilities (namely, the within-class sensitivities) to obtain
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(31)

Although this expression appears cumbersome, it can be regarded quite simply as a linear
relation between the expected utility E{U} and the N2 − N probabilities which have been
chosen to represent observer performance; the coefficients in this linear relation are
determined by the various decision utilities and the a priori class probabilities.

Equation (31) can be rearranged to give P(d = πN | t= π1) as a function of the other
conditional probabilities (i.e., a locus in ROC space) and of E{U}. The result is

(32)

For what follows it will be necessary to assume that U1 | 1 > UN | 1; if this were not the case,
an increase in expected utility would correspond to an increase in the incorrect-classification
probability P(d = πN | t = π1) (or P(d = πN | t = π1) would be undefined).

Consider a fixed set of decision utilities Ui | j and a priori class probabilities P(t = πi). For
this fixed set of values, (32) defines a hyperplane in ROC space. In particular, the operating
point achieved by the ideal observer via (15) and (16) using the given decision utilities and a
priori class probabilities is contained in this hyperplane. The ideal observer achieves a
particular value of E{U} when operating at this operating point; an observer using a
different decision rule, but still with the same fixed values for the decision utilities and a
priori class probabilities, would obtain a generally different E{U} and, thus, would have an
operating point lying in a hyperplane parallel to that just described. Moreover, because the
ideal observer is that which maximizes E{U} for any given set of decision utilities, this
second hyperplane would necessarily be above the hyperplane containing the ideal
observer’s operating point. This implies that no operating points below the hyperplane
containing the ideal observer’s operating point under consideration are achievable, no matter
what decision rule is used.

Now suppose we allow the decision utilities Ui | j, or the a priori class probabilities, to
change slightly. A generally different operating point will be attained by the ideal observer,
and this point will lie in a different hyperplane. The remaining arguments of the preceding
paragraphs are unchanged, however, and it follows that no decision rule can achieve any
operating point lying in the union of the two regions below the hyperplanes containing the
two ideal observer operating points in question. Continuing in this fashion for every point in
the domain of the ROC space, we find that the ideal observer’s performance is given by the
concave hull of the set of hyperplanes so defined, and that no observer using any decision
rule can achieve a performance (operating point) which lies below this hypersurface.
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V. Conclusion
The N-class classification task presents many challenges which are daunting when compared
with the great successes achieved in analyzing two-class classification tasks. In particular,
the number of parameters required by a nontrivial decision rule, and the dimensionalities of
the ROC spaces involved, increase rapidly with the number of classes.

Nevertheless, we have shown that certain conclusions regarding ideal observers can in fact
be carried over from the two-class task to the N-class task. In particular, the two standard
definitions of the ideal observer—the observer which maximizes expected utility, and the
observer which satisfies the Neyman-Pearson criterion (optimizing ROC performance)—are
consistent, as in the two-class case. Furthermore, a direct relation between maximizing
expected utility and ROC performance, originally developed for the two-class case, was
found to generalize in a straightforward fashion to the N-class case.

Whether these promising results can be extended to more practical issues in characterizing
observer performance—e.g., fitting an ROC hypersurface to a set of estimated observer
operating points—is currently unknown. It is our hope that the present work may at least
provide a starting point for addressing these more difficult questions.
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