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Abstract
A statistical mechanical model is presented which explicitly accounts for the fluctuations, the
electrostatic, and the excluded volume correlations for ions bound to a polyelectrolyte such as DNA.
The method can be employed to treat a wide range of ionic conditions including multivalent ions.
The microscopic framework of the theory permits the use of realistic finite length and grooved
structural model for the polyelectrolyte and modeling of the finite size of the bound ions. Test against
Monte Carlo simulations suggests that the theory can give accurate predictions for the ion distribution
and the thermodynamic properties. For multivalent ions, the theory makes improved predictions as
compared with the mean-field approach. Moreover, for long polyelectrolyte and dilute salt
concentration, the theory predicts ion binding properties that agree with the counterion condensation
theory.

I. INTRODUCTION
Polyelectrolyte folding requires the proper ionic solution condition. It is essential to understand
how the ionic condition, such as ion concentration, ion size, and ion charges, determines the
polyelectrolyte folding stability and cooperativity. The ion-polyelectrolyte interaction is
crucial to the distribution of the ions in the close proximity of the polyelectrolyte surface. The
closely bound ions reside within a short distance of 1~2 hydrated ionic radii from the
polyelectrolyte surface, so the discrete properties of the bound ions can be very important.

The local ion concentrations near the polyelectrolyte surface, especially around the charged
groups, can be high.1,2 The condensed distribution of the bound ions causes strong correlations
between the ions, as are characterized by a large correlation parameter Γ=q2/(εawskBT),3–7
where q is the ionic charge, kB is the Boltzmann constant, T is the temperature, ε is the dielectric
constant, and aws is the Wigner-Seitz radius. Multivalent ions carry high charges q and
generally involve very strong correlations. In fact, the electrostatic correctional force may be
responsible for the attraction between like-charged polyelectrolytes,3,8–10 and may also
contribute to the folding driving force for nucleic acids.11–15

In addition, fluctuations in the ion binding will affect the mechanical and thermodynamic
properties of the polyelectrolyte. For example, fluctuations in ion distribution can reduce
bending rigidity for randomly charged polymer.16,17 Moreover, the ion fluctuation is closely
related to the stability of the system. Most previous models on ion fluctuation are based on
simplified models.16–21 In the present study, we address detailed polyelectrolyte structures
and ion sizes in addition to the ion-ion correlations due to both Coulombic and excluded volume
interactions.
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Classical approaches, including the counterion condensation (CC) theory22 and the Poisson-
Boltzmann equation (PB) theory,23–29 have enabled quantitative predictions for the
thermodynamic properties of proteins, DNAs, RNAs, and other polyelectrolytes. The CC
theory assumes a two-state ion distribution and assumes an average uniform distribution of the
bound ions, while neglecting the direct interactions between the bound ions and the
polyelectrolyte backbone charges. PB is a mean-field theory which neglects the correlation
effects. Both CC and PB ignore the fluctuations in counterion distributions and assume a mean
distribution of counterions. Monte Carlo (MC) and molecular dynamics simulations30,31 and
the hypernetted chain theory32,33 can account for the ion size, excluded volume, and inter-
ion correlations, but require random sampling of the ionic configurations or through convoluted
integral equation solutions.

In this paper, we present a statistical thermodynamics model for a rigid polyelectrolyte of finite
length immersed in a salt solution. The purpose here is to provide an analytical treatment for
the ion-polyelectrolyte binding by considering the detailed geometry of the polyelectrolyte and
the finite size of the ions. In contrast to the previous CC- or PB-based studies, the present study
considers electrostatic correlations and fluctuations for the bound ions. Moreover, compared
with the previous simplified salt-free models,3,20 we consider the contributions from the added
salt ions in the supporting solution. The current form of the theory is developed for rigid
polyelectrolyte. This is a first step towards a theory that can treat the interactions between
multiple polyelectrolyte chains and the folding of a flexible polyelectrolyte, which involves an
ensemble of chain conformations.

II. POLYELECTROLYTE STRUCTURE
In the present study, we use the double-helical B-DNA as a paradigm for the polyelectrolyte.
Previous studies have shown that the detailed grooved structure, and the positions of the
phosphate groups are important for the distribution of the bound ions.1,34 All-atom models
can give the details for the polyelectrolyte structure, but are intractably complex for a rigorous
statistical mechanical theory developed in the present study. Therefore, we employ a coarse-
grained semi-realistic polyelectrolyte model while retaining the key structural features.

First, the model should provide the major and minor grooves. The groove structures, which
have been neglected in many previous simplified models, are important because the
interactions of the bound ions are dependent on the detailed geometry of the polyelectrolyte
surface. Second, the model should properly account for the sizes and the positions of the
negatively charged phosphate groups as well as other neutral groups on the nucleotide
backbone. Previous simulations based on realistic polyelectrolyte structures have shown that
the thermodynamic results are quite sensitive to the backbone charge distribution.34,35 This
is different from the simplified cylindrical polyelectrolyte model, where the uniform and
discrete charge distributions give similar results.

We use a previously reported grooved DNA helix model to describe the polyelectrolyte
structure.34 The model, which retains a high degree of realism for the polyelectrolyte structure,
is tractable for our statistical mechanical calculations. Previous detailed molecular simulations
have validated the grooved model through the computation of the detailed ion distribution.
34 Figure 1 shows the grooved model. We represent a B-form DNA structure of L nucleotide
units as two helical strands, each with L/2 nucleotide units, around a central cylindrical rod of
radius rcore=3.9 Å. The central cylindrical rod represents the space occupied by the base pairs
and is assumed to be inaccessible to the salt ions. We use two hard spheres to represent the
chemical groups in a nucleotide unit: a charged sphere with a point charge −e (e=protonic
charge) at the center to represent the phosphate group and a neutral sphere to represent the rest
of the group in the nucleotide. The phosphate sphere is placed at the center of the phosphate
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group of the nucleotide and the neutral sphere lies between the phosphate sphere and the
cylindrical rod, as shown in Fig. 1. Both spheres are assumed to have radius of r0=2.1 Å. The
radii of the spheres are chosen to best simulate the more realistic soft potential (a smooth
distance-dependent potential functions).34 For a B-DNA, the phosphate charge positions

 are given by the following equation:36

(1)

where s (=1,2) denotes the two strands and i (=1,2,…, L/2) denotes the nucleotides on each
strand. The initial position parameters  and  are 0° and 0 Å for the first strand, and 154.4°
and 0.78 Å for the second strand.

III. TIGHTLY BOUND IONS AND BINDING MODES
We assume that ions are hydrated, i.e., the model does not treat the desolvated ions binding to
(often deeply penetrated) specific sites of the polyelectrolyte. We use ionic radii 3.5, 4.5, and
3.5 Å for the hydrated Na+, Mg2+, and Cl− ions,37 respectively. The positively charged
counterions tend to bind to the polyelectrolyte (polyanion in our model) in the solution. We
classify the bound counterions into two types: “the tightly bound ions” and “the diffusively
bound ions.” The tightly bound ions are trapped in the strong electrostatic field on the
polyelectrolyte surface. They lose, to a considerable extent, the radial degree of freedom,
though they may diffuse on the polyelectrolyte surface. On the other hand, the diffusively
bound ions are more mobile and are diffusively distributed in the solution around the
polyelectrolyte.

We can use the fluid model to describe the diffusively bound ions. In the mean-field
approximation, the local concentration cα(x) at position x for ions of species α obeys the
Boltzmann distribution, as determined by the electrostatic potential ψ(x),

(2)

where zαe is the charge of the ion and  is the bulk concentration. The electric potential ψ(x)
is given by the solution of the PB,

(3)

where ρf is the charge density of the fixed charges and ε0 is the permittivity of free space.

Since ψ(x) decreases rapidly as x approaches the polyelectrolyte surface, which, according to
Eq. (2), causes an abrupt increase in the counterion concentration cα(x). There may exist a
region of x sufficiently close to the polyelectrolyte surface where ions are sufficiently
condensed so that ions become strongly correlated. We call the strongly correlated ions as the
tightly bound ions, and the corresponding region as the tightly bound region. How to
quantitatively and unambiguously define the tightly bound region? We use the following
criteria.

a. Strong electrostatic correlation can be characterized by a large correlation parameter:
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(4)

Here we use ε≃78 (=bulk solvent) for inter-ion distance d≥2rc≥7Å (rc=ion radius) for
Na+ or Mg2+. Previous computer simulations suggest that Γc≃2.6 for the liquid to
gaseous phase transition for ion system.5–7 To measure the (excess) electrostatic
correlation induced by the polyelectrolyte, we use the Wigner-Seitz radius aws(x) for
counterion concentration in excess of the bulk solvent concentration:3

(5)

b. Ions of finite size in the high concentration region become crowded and can frequently
bump into each other, causing the excluded volume correlation between the ions. A
strong excluded volume correlation induced by the polyelectrolyte can be
characterized by a small mean inter-ion distance d,

(6)

where rc is the ion radius, Δr is the mean displacement of ions from the equilibrium
positions, and 2(rc+Δr) is the closest distance between two ions before they overlap.
From Lindermann’s melting theory, we choose Δr/d≃0.1 as the melting point for the
correlated structure.38–40

From the counterion concentration cα(x) in Eq. (2) and the corresponding aws in Eq. (5), we
can quantitatively map out the tightly bound region, from either Eq. (4) or Eq. (6)—whichever
is first satisfied as the ion position x approaches the polyelectrolyte surface. In fact, we find
that for Na+ solutions, Eq. (6) gives the tightly bound region, while for Mg2+ solutions, which
involve stronger electrostatic interactions, Eq. (4) determines the tightly bound region. In Fig.
1(c), we show the tightly bound region for a double stranded oligomeric B-DNA in Na+ and
Mg2+ solutions, respectively. As shown in the figure, the tightly bound region is roughly a thin
layer (or patches of thin layers) on the polyelectrolyte surface, and the tightly bound region
covers a wide area from the surface of the phosphate groups to the major or minor grooves,
depending on the size and the charge of the counterions. We call the tightly bound region for
each nucleotide (=monomer of the DNA polyelectrolyte) as a tightly bound cell. A tightly
bound ion in the tightly bound cell can either reside in the major or minor groove or bound to
the respective phosphate group.

As described above, according to the inter-ion correlation strength, we can classify two types
of ions: the tightly bound and the diffusive ions for counterions inside and outside the tightly
bound region, respectively. For the (strongly correlated) tightly bound ions, we need a theory
that goes beyond the PB to account for the strong correlation and fluctuation. In the following
sections, we develop such a theory. The main points of the theory include the following.

1. To consider the fluctuation of the tightly bound ions, we introduce binding modes. A
binding mode M is defined by the ion occupation numbers mi in the tightly bound
cells (i=1,2,…,N; N=the number of the tightly bound cells in the polyelectrolyte):
M={m1,m2,…,mi,…,mN}.

2. The use of the discrete modes makes it possible to fully account for the m-particle

(ion) electrostatic correlation (  is the number of the tightly bound ions).

3. For a given tightly bound mode, the tightly bound ions have freedom to move around
in their respective tightly bound cells. For each mode, we perform the statistical
average over the possible positions of the tightly bound ions to determine the potential
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of mean force (free energy) of the bound ions. The finite size of the ions, the
polyelectrolyte structure, and the electrostatic and steric correlations are fully
accounted for in the calculation.

4. For each mode (charge distribution) of the tightly bound ions, we use the mean-field
PB theory to describe the distribution of the (weakly correlated) diffusive ions. From
the ion distribution, we can determine the free energies of the system, including the
interaction between the tightly bound ions and the diffusive ions. We can also
determine the dominant binding modes, the fluctuations, and the radial distribution
of the bound ions, etc.

IV. STATISTICAL MECHANICS MODEL
Consider an L-mer polyelectrolyte immersed in a solution of N+ cations and N− anions. The
total partition function of the system is the sum of the partition functions ZM (M=the binding
mode) for all the possible binding modes:

(7)

From the mode partition function ZM we obtain the probability pM for the binding mode and
the mean distribution {m ̄1,m ̄2,…,m ̄L} of the tightly bound ions:

(8)

At the center of the theory is the mode partition function ZM. We consider a mode M with Nb
tightly bound ions (and Nd=N+ + N− − Nb diffusive ions). We use Ri (i = 1,2,…,Nb) and rj (j
=1,2,…,Nd) to denote the coordinates of the ith tightly bound ion and the jth diffusive ion,
respectively. The total interaction energy for a given configuration (R,r) can be decomposed
as Ub(R) for the electrostatic interactions between the tightly bound charges (=charges of the
tightly bound ions and the phosphate charges), Us(R,r) for the interactions between the
diffusive ions, and Uint(R,r) for the interactions between the tightly bound charges and the
diffusive ions.

For a given mode, Ri can distribute within the volume of the respective tightly bound cell and
rj can distribute in the volume V of the solution. Averaging over the possible ion distributions
gives the free energies ΔGb and ΔGd for the tightly bound and for the diffusive ions,
respectively,

(9)

(10)

Strictly speaking, for a given mode M, the diffusive ion free energy ΔGd is dependent on the
spatial coordinates R of the tightly bound ions in the tightly bound cells. However, assuming
the dependence of ΔGd on the tightly bound ions is mainly through the net tightly bound charge,
which is fixed for a given mode, we can ignore the R dependence of ΔGd. In practice, we
approximate ΔGd by ΔGd(R ̄), where R ̄ is the mean value of R.

The decoupling of R and ΔGd results in the separation of the R and the r variables in the
configurational integral for ZM,
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(11)

where c+=N+/V denotes the total cation concentration, and Z(id) is the partition function for an
ideal solution without the insertion of the polyelectrolyte:

The excluded volume and the electrostatic interactions are inherently coupled. In our
calculation, the excluded volume effect is considered not only for the configurational integral

( ) in Eq. (11) (see Sec. B below), but also for the electrostatic integral in Eq. (9) for
ΔGb (see Sec. A below). From the above expression for ZM and the total partition function Z
[see Eq. (7)], we can compute the electrostatic free energy ΔGel:

(12)

Physically, ΔGel is the free energy change upon the insertion of the polyelectrolyte.

A. Free energy of the tightly bound ions
The interaction energy Ub in Eq. (9) for a given configuration R of the tightly bound ions can
be decomposed as two parts: the Coulomb interactions uij between charges in the ith and the
jth (j≠i) tightly bound cells and uii between the tightly bound charges in the same (ith) cell,

(13)

(14)

where, as shown in Fig. 2(a), (i′,i″), and (j′, j″) denote the tightly bound ions in the ith and the
jth tightly bound cells, respectively. ze is the electric charge of the corresponding ion, r and ε
represent the distance and the effective dielectric constant for the electrostatic interaction
between the respective charges, and mi and mj are the occupancies of the tightly bound ions in
the ith and the jth cell, respectively.

We simplify the calculation for ΔGb by assuming

(15)

where the pairwise potential of mean force arises from the averaging over the possible
coordinates of the tightly bound ions in the respective cells:
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(16)

Here νi and νj denote the volumes of the respective tightly bound cells. In the evaluation of the
electrostatic integrals in Eq. (16), the excluded volume interactions between ions i and j are
rigorously accounted for. In fact, the excluded volume effect plays a significant role because
the steric conflict is quite severe between ions distributed in the neighboring tightly bound
cells.

We define two potentials of mean force: Φ1(m) for the intracell interactions uii, where m is the
occupancy of the tightly bound ions in the cell, and Φ2(i,j,mi,mj) for the intercell interaction
uij, where mi and mj are the occupancies of the tightly bound ions in the cells:

(17)

Φ1 and Φ2 can be precalculated and tabulated for different parameters. For a given mode M=
(m1,m2,…,mL), the sum of the potentials of mean force gives the free energy ΔGb:

(18)

The potential of mean force Φ2(i, j,1,1) for a DNA of length L=30 is plotted in Fig. 3. From
the figure, it is clear that the dominant interactions come from ions distributed in spatially
neighboring phosphate cells: |i−j|=1 for the nearest neighbors along the sequence, |i−j|=10 for
the spatial neighbors separated by an exact helical turn (=10-nt in sequence), and |i−j|=11 and
21 for phosphates (on separate strands) in the closest spatial proximity in the minor and major
grooves, respectively.

B. Excluded volume correlations between the tightly bound ions

The volume integral  in Eq. (11) provides a measure for the free accessible space of
the Nb tightly bound ions in the tightly bound region. Since an exact treatment for the full
excluded volume correlations between all the Nb tightly bound ions is intractable, we
decompose the Nb-ion correlation into pairwise correlations between ions in adjacent tightly
bound cells. This leads to a factorable excluded volume for the Nb ions,

(19)

where the excluded volume interferences between the ions in adjacent cells are accounted for
by the single ion volume integral νi=∫ dRi:

νb(0) if there exists no tightly bound counterion in the neighboring tightly bound cells;

νi=νb(1) if there exists a bound ion in one of the neighboring tightly bound cells;

νb(2) if there exist bound ions in both neighboring tightly bound cells.

Physically, the finite volume of the ions in the neighboring cells restrict the viable space of the
ion, causing νb(2)<νb(1)<νb(0). We apply Eq. (19) to the one-, two-, and three-ion systems in
Figs. 2(b)–2(d), and compute νb(n) (n=0,1,2) through the following equations for the three
model systems:

(20)
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(21)

(22)

Here the (multiple-ion) excluded volume interactions are fully considered when evaluating the
above integrals.

Because the geometry of the tightly bound regions are quite irregular, the multidimensional
integrations over the tightly bound region for Φ1 and Φ2 and for the free volume νb(n) are time
consuming. However, since the tightly bound region is mainly a thin layer on the surface of
the polyelectrolyte, we can approximate the tightly bound region as a uniform thin layer of
thickness δ. The thickness of the layer represents the maximum displacement of the tightly
bound ion away from the polyelectrolyte surface. Multivalent ions usually have a thicker layer
of the tightly bound region because ions are confined by a stronger electrostatic force. δ can
be obtained from the volume νb(0),

(23)

Where  is the mean distance to the center of the respective phosphate sphere [see Fig. 2
(b)] and Ω(0) is the solid angle of the surface of the tightly bound cell measured from the center
of the phosphate sphere. Since a tightly bound cell covers most of (or all of) the nucleotide
surface, we can take Ω(0) as the solid angle that covers the full surface of a nucleotide unit.

C. Free energy of the diffusively bound ions
The free energy ΔGd accounts for the electrostatic interactions between the diffusive ions and
between the diffusive ions and the tightly bound ions. We use the mean-field theory (PB) to
describe the diffusively bound ions and make the following approximation for ΔGd:

where the averaging is for both the spatial configuration R of the tightly bound ions and the
configuration r of the diffusive ions. The above approximation results in an additive sum for
ΔGd,

where ΔGs is the free energy of the diffusive ion solution, and ΔGint is the free energy for the
interaction between the diffusive and the tightly bound ions (and the fixed charges on the
polyelectrolyte backbone):

We make use of the mean-field results for ΔGint and ΔGs (Refs. 41 and 42) and have 1

(24)

where the first integral gives ΔGint and the enthalpic part of ΔGs, and the second integral gives
the entropic part of ΔGs. ψ(x) and ψ′(x) are the electrostatic potentials with and without the

Tan and Chen Page 8

J Chem Phys. Author manuscript; available in PMC 2008 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diffusive salt ions, respectively. ψ′(x) is introduced because ψ(x)−ψ′(x) gives the electrostatic
potential from the diffusive ions. α denotes the ion species, zαe is the charge of the ion,  is
the bulk ion concentration, and cα(x) is the local ion concentration determined from the
electrostatic potential ψ(x) [see Eq. (2)] and ψ(x) is obtained from PB [Eq. (3)].

D. Electrostatic potential for the diffusive ions in the solution
For a zc:1 salt, the general PB in Eq. (3) for the diffusive ions has the following form:

(25)

Here φ=eψ/kBT is the reduced electrostatic potential in the diffusive solution and

 is the Debye-Hückel screening parameter. c0 is the bulk salt
concentration and NA is the Avagadro’s number. The charge density ρf of the fixed charges
includes the phosphate charges and the tightly bound ions. Using the aforementioned
approximation for the decoupling of the diffusive ion distribution and the tightly bound ion
configuration R, we fix the tightly bound ions in a tightly bound cell to the center of the
respective phosphate spheres. As a result, the ith tightly bound cell with mi tightly bound ions
would contribute a fixed charge of (mizαe−e) at the center of the phosphate sphere, where
zαe is the charge of a tightly bound ion. Though the coordinates of the tightly bound ions are
approximated as being fixed here, no such approximation is made in the calculations for the
tightly bound ions. In fact, the averaging over all the possible coordinates inside the tightly
bound region yields the potentials of mean force Φ1 and Φ2 and the free energy ΔGb for the
tightly bound ions.

Existing PB solvers23–29,43 have been successful in predicting the electrostatic interactions
for complex protein and nucleic acid structures. In the present study, based on the algorithms
used in the PB solvers,23,43–45 we develop a three-dimensional (3D) finite-difference
algorithm that is convenient to use for our present model. The algorithm of solving the nonlinear
PB is divided into two parts: the assignment of the physical quantities and the outer boundary
conditions onto the grid points, and the actual iterative process of solving PB.

We first assign the grid charges inside the tightly bound region by partitioning a charge onto
the eight nearest grid points, weighted by a trilinear function:43 (1−dx)(1−dy) × (1−dz), where
dx, dy, dz are the distances of the charge from the grid point in the x,y,z directions, respectively.
We then assign dielectric constants ε at the midpoints between grid points. We assign ε=2 inside
and ε=78 outside the polyelectrolyte molecule.23–25 We also assign the Debye-Hückel
parameter κ for each grid point. Specifically, we assign κ=0 inside the tightly bound region
because of the absence of the diffusive ions, and κ=κ0 for grid points in the diffusive ion region.
23 We use the screened Debye-Hückel potential as the boundary condition for the potential on
the outer boundary.43

To solve the nonlinear PB equation iteratively, we use a simple method proposed in Ref. 46.
If there is a good trial solution φa for the exact solution φ for PB, Δ φ (=φ− φa) would be a
small quantity. We substitute φ (=φa+Δφ) into PB equation and perform Taylor expansion
about the small quantity Δφ. Keeping only the linear terms of φ−φa in PB, we have the following
linearized PB:
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Starting from an initial trial φa, we can solve PB iteratively over all the grid points by applying
the above equation, until an appropriate convergence condition is satisfied. In this way, φ at
all grid points can be obtained. In our algorithm, the iteration is truncated at |φ−φa|≤10−4.

In addition, we employ the focusing operation23 in order to obtain the detailed electrostatic
field near the molecule. Specifically, we use the three-step focusing process.47 In the first run,
PB is solved on a large-scale grid. The size of the (cubic) cell of the first run relies on the salt
concentration used. Generally, we keep it larger than six times of the Debye length of salt
solution in order to properly account for the salt effects and to diminish the boundary effect.
In the second run, a smaller area near the polyelectrolyte is selected and PB is solved based on
a smaller grid. The outer boundary conditions of the second run are interpolated from the
potentials of the first run using trilinear interpolation. For the second and the third run, the sizes
of the cubic cells are kept at 102 and 51 Å, respectively, and the corresponding resolutions are
kept at 0.85 Å per grid and 0.425 Å per grid, respectively. The corresponding number of grid
points is 1213 for both the second and the third run. High resolution is used for the region near
the polyelectrolyte surface because the most important potential change occurs in that region.
To test our numerical algorithm, different resolutions are used, and the results are stable.

E. Effects of dielectric discontinuity
The dielectric discontinuity (low ε in DNA and high ε in solvent) is partially accounted for by
the effective dielectric constants for the charge-charge interactions [see Eqs. (13) and (14)].
Previous studies use a distance-dependent dielectric function to account for the dielectric
effects.48–54 Although the studies appeared to be successful, the treatments are physically
oversimplified for the molecules with arbitrary shapes.1,55 Physically, the charge-induced
reaction field of the low dielectric DNA molecule causes an increase in the phosphate-
counterion attraction,1,55 a repulsive force on the counterion due to its self-image, and an
increased (decreased) Coulomb forces between ions on the same (opposite) side of the DNA.
1,55–58 The former two effects are considered to play roles in the ion distribution,1 and the
third effect may not be significant because counterions tend to repel each other and inter-ion
distance are generally large,1 especially for hydrated ions. In this section, we examine the
dielectric effects for the specific grooved DNA model employed in the present study. We use
εsol=78 for the solvent and εDNA=2 for the DNA (including the cylindrical core, the neutral
and the phosphate sphere; see Fig. 1).

First, we calculated the effective dielectric constant ε pi-pj for the interactions between
phosphates at pi and pj: εp-p=εsolφ0/φ, where φ and φ 0 are the electric potential at pj due to a
charge at pi with and without the presence of the DNA (as a dielectric medium of εDNA=2) in
the solution. Figure 4 shows εpi-pj as a function of the angular distance between pi and pj. Our
results are in quantitative agreement with those obtained from all-atom calculations:58 for
different pi and pj, the effective dielectric constant is around the value of εsol=78. ε pi-pj can
be as low as about 70 if the two phosphates are located at the same side of DNA, and can be
as high as 100 when they are on the opposite sides, in which case the charge-charge interaction
is weak.

Second, we evaluated the change of self-energy ΔEs(r) of a test ion at r due to the ion-induced
reaction field of DNA,

(26)

where zce is the ion charge, and φi(r) and  are the electric potentials due to the presence
of the test charge at r, with and without the presence of the DNA (as a dielectric medium of
εDNA=2), respectively. Theoretically, the self-energy of point charge is infinity. In our
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numerical calculation, it is a large finite value in the finite-difference method. ΔEs(r) is given
by the difference of two large self-energies zce φi(r) and . The results of ΔEs(r) have
been tested to be quite stable against different grid sizes. Figures 5(a) and 5(b) show the results
for ΔEs for Na+ and Mg2+. It is clear that ΔEs is positive due to the interaction with the self-
image of the ion. ΔEs(r) in general obeys the following order: in the minor groove > in the
major groove>near the phosphates. Moreover, ΔEs(r) decays rapidly away from the DNA
surface, which agrees with the previous experimental results on a clay DNA model.1,55
Quantitatively, our ΔEs is slightly smaller than that measured in the experiment, which may
be attributed to the different dielectric DNA models used.1,55 Since ΔEs(r) is proportional to
the square of the valency, Mg2+ ions in general have larger ΔEs(r) value. On the other hand,
Mg2+ ions have larger excluded volume than Na+ ions because of the larger hydrated radius,
and thus Mg2+ ions are distributed further away from the DNA.

Third, we computed the change of the interaction energy ΔEp(r) between a (test) ion and the
phosphates in the phosphate-induced reaction field of DNA,

(27)

where φp(r) and  are the potentials at r due to the phosphate charges on DNA of εDNA=2
and εDNA=εsol =78, respectively. Figures 5(c) and 5(d) show the ΔEp(r) for the Na+ and
Mg2+ ions. ΔEp(r) is negative due to the (negative) image charges of the phosphates. The
strength of the attractive ΔEp(r) obeys the following order: in the minor groove>near the
phosphates>in the major groove. This is because an ion in the minor groove can be much closer
to the phosphate charges than one in the major groove.

Because ΔEs(r) is positive (repulsive) while ΔEp(r) is negative (attractive), ΔEs(r) and
ΔEp(r) can compensate and cancel each other. We plot the net effect ΔE(r)=ΔEs(r)+ΔEp(r) in
Figs. 5(e) and 5(f). The figures show that inside the major groove, ΔE(r) is positive and
contributes a destabilizing free energy to the ion binding. Moreover, for both Na+ and Mg2+

ions, ΔE(r)<0 near the phosphates, which means that the reaction field is stabilizing for ion
binding near the phosphates. For Na+ ions, ΔE(r) is small [see Fig. 5(e)]. For Mg2+ ions, ΔE
(r) is larger than that for the Na+ ion in the major groove. In the minor groove and near the
phosphates, ΔE(r) is small too. For example, at a radial distance of 10.2 Å in the minor groove
(minimum accessible distance for a hydrated Mg2+ in the minor groove), ΔE(r) is −0.1kBT for
Na+ and 0.3kBT for Mg2

+. For a larger radial distance, ΔE(r) of Mg2+ becomes negative too.
For example, at radial distance 14 Å, ΔE is about −0.15kBT. The different behavior between
Na+ and Mg2+ ions comes from their different valencies. Since,  and ΔEp(r)∞zc,
ΔEs(r) is dominant for multivalent zc ions (larger zc) near DNA surface (e.g., deep in grooves),
and ΔEp(r) becomes important when ions are away from the deep groove positions. For both
Na+ and Mg2+ ions, ΔE(r) is small as compared with the Coulombic energy. Therefore, the
effect of dielectric discontinuity due to DNA on ions’ distribution does not appear to be
significant.59,60 Furthermore, previous studies suggested that the dielectric constant of nucleic
acids (and protein) might be much larger than 2,61–64 and consequently the effects of dielectric
discontinuity become even smaller. Therefore, in the present study, for simplicity, we neglect
the effects (the reaction field) arising from the dielectric discontinuity.

As a caveat, we note that the reaction field is nonadditive, thus the above decomposition for
the contributions from different charges is a simplification for a complex problem. A major
approximation in the above test charge calculation is to neglect the effect from the ion cloud
surrounding the DNA and the interactions between the ion cloud and the DNA (and the
phosphates). With such an approximation, ΔEs(r) and ΔEp(r) can be solved from the linear
Poisson equation (rather than the nonlinear PB), and they are additive. As a result, ΔEs(r)

Tan and Chen Page 11

J Chem Phys. Author manuscript; available in PMC 2008 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



+ΔEp(r) can give the total energy from the DNA reaction field. However, rigorously speaking,
the energy of the reaction field is nonadditive, and the different components of the reaction
field and the self-energy are inherently coupled due to the ion-DNA and ion-ion interactions.
Therefore, the results given above can only provide a crude estimation for the self-energy (and
the reaction field energy). Nevertheless, the ΔEs(r) and ΔEp(r) may provide some insights in
the effects of DNA dielectric discontinuity.

V. DYNAMICS OF THE TIGHTLY BOUND IONS AND THE ION-BINDING
MODES
A. Monte Carlo simulation

Since MC simulation is independent of the analytical statistical mechanical theory, it can
provide a test and validation for the statistical mechanical theory. In addition, we can employ
MC simulations to obtain the kinetic information for the tightly bound ions. We use the grooved
model for the polyelectrolyte structure, and use hard spheres for ions with charges placed at
the centers of the spheres. We use a cell model by placing the polyelectrolyte at the center of
a cubic cell and placing ions in the cell and in the neighboring image cells.30,65–67 We also
impose charge neutrality for the system, so the net charge of the simulation cell is zero. The
size of the cubic cell is always kept six times larger than the Debye length of the solution to
diminish the boundary effect. The numbers of different ions in the simulation depend on the
cell size, salt concentration, and polyelectrolyte length. The concentration of polyelectrolyte
is assumed to be very dilute so that interactions between different polyelectrolytes can be
ignored. In the simulation, we keep the polyelectrolyte fixed and allow the ions to move. The
aqueous solvent is modeled as continuous medium with dielectric constant 78.

The electrostatic energy for a given ion distribution of the system is evaluated as the sum of
the Coulombic interactions65,66

where i denotes ions in the cell, j(≠i) denotes ions in the cell and in the image cells, l denotes
the phosphate groups, and zie,zje, and zle are the charges of the respective ions and the phosphate
groups. The first double summation accounts for the interactions between ions in the cell and
all other ions (in the cell and the adjacent image cells). The second double summation accounts
for the interactions between ions in the cell and the phosphate charges on the polyelectrolyte
backbone. Following the simulational algorithm,66 we consider only the nearest adjacent
image cells.

For each Monte Carlo move of the ions, we compute the energy change ΔE of the system, and
the probability exp (−ΔE/kBT) for the particular move to be accepted. The ions are simulated
to move with the acceptable probabilities. Such process of stochastic move continues until the
system reaches thermal equilibrium from which the equilibrium distribution of the ions can be
obtained.

To validate our MC simulation method, we run MC simulations for three different DNA lengths
L=20, 40, and 80 in both the 1:1 (NaCl) and 2:1 (MgCl2) salt solutions at ionic strength
0.022M, and compare the ion distribution with that obtained from the simulations in Ref. 68
for infinitely long DNA. In order to make direct comparisons, we use the same set of parameters
as those used in Ref. 68: ε=78, and ion radius=2.1 and 3 Å for counterions and coions,
respectively. The comparison with Ref. 68 shows that the predicted distribution for the
fractional excess charge Qtot(R) for large L is indeed very close to the known result for infinitely
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long chain. Here the fractional excess charge per nucleotide Qtot(R) is defined as the net charge
per nucleotide within radial distance R around the polyelectrolyte. In fact, the result for L=80
is already very close to the infinite-length results, which confirms the previous finding that the
counter-ion concentration near the middle of oligomer for L≥40 closely approaches that of the
infinite-length polyelectrolyte.66

B. Dynamics of the tightly bound ions
All-atom molecular dynamics69,70 and Brownian dynamics71 simulations show that (i) the
majority of bound counterions keep hydrated,72,73 (ii) most ions are not bound to specific
sites, (iii) the mobility of bound counterions is less than ions in bulk solvent,74 and (iv) the
diffusion of the bound counterions in the grooves is local.71 For the present groove model of
DNA, we use Monte Carlo simulation to investigate the ensemble averaged statistical
properties as well the single ion trajectory for a bound ion.

We first compute the mean residence time averaged over all the ions in the region immediately
surrounding the polyelectrolyte: the mean time τp(δ) for a tightly bound ion to stay within a
distance of rc+δ (rc=ion radius) from the surface of the respective phosphate group and time
τ⊥(δ) for a tightly bound ion to stay within a radial distance of rc+δ from the polyelectrolyte
surface. Physically, τp is a result of the radial motion as well as the motion parallel to the
polyelectrolyte surface. Clearly τp(δ)<τ⊥(δ) for any δ. Figures 6(a) and 6(b) show the Monte
Carlo results for τ⊥ and τp for different bulk salt concentration c0 and different δ. Mg2+ has
longer residence time than Na+, because Mg2+ is electrostatically more strongly attracted to
the anionic polyelectrolyte.

As the ion concentration c0 is increased, more ions are bound. The increase in the number of
the bound ions causes several notable changes in the dynamic properties of the bound ions,
which are follows.

i. A larger number of the tightly bound ions would provide more effective charge
neutralization of the polyelectrolyte and hence a weaker radial electrostatic field
around the polyelectrolyte. As a result, the radial motion of the ion becomes less
restricted, causing shorter radial residence time τ⊥.

ii. A larger number of the bound ions means increased Coulombic and excluded volume
repulsion between the bound ions. The increased inter-ion repulsion would suppress
and restrict the parallel motion of the tightly bound ions, causing a reduction in the
displacement parallel to the polyelectrolyte surface. Indeed, as shown in Figs. 6(c)–
6(f), higher ion concentrations correspond to smaller axial displacement Δz.

iii. As the parallel motion “shrinks,” the difference between τ⊥ and τp(<τ⊥) decreases. In
the limiting case when there is no parallel motion, τ⊥ becomes equal to τp. In fact, the
Brownian dynamics simulation71 for infinite long polyelectrolyte estimated that τp/
τ⊥~1/8 for salt free solution (with monovalent ions added to neutralize the system).
Our MC simulation for a finite length polyelectrolyte L=24 gives that τp/τ⊥ decreases
from 1/1.2 to about 1/2 as [Na+] decreases from 0.1M to 0.001M. Here, we choose
δ=3 Å when evaluating τ⊥ and τp. As [Na+] decreases and L increases, τp/τ⊥ is
expected to approach the value predicted from the Brownian dynamics simulation.

We also track the trajectories for single bound counterions. We find that, for ions inside the
bound region, the parallel diffusion is localized to the nearest neighbor or the next nearest
neighbor tightly bound cells. The result agrees with a previous study.71 Moreover, as shown
in Figs. 6(c)–6(f), higher c0 results in more mobile ions outside the bound region, because of
the stronger charge neutralization on the polyelectrolyte and thus a weaker electric field nearby.
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This effect is more pronounced for multivalent ions because of the stronger charge
neutralization.

C. Equilibration kinetics of the binding modes
Different binding modes (=configurations of the tightly bound ions) result in different electric
fields around the polyelectrolyte, causing different distribution of the diffusive ions. We would
like to understand the kinetics for the coupling between the diffusive ions and the binding
modes.

A change in the binding mode can arise either from the radial diffusion, causing the binding
or dissociation of an ion, or from the parallel diffusion (hopping) across the different tightly
bound cells, which conserves Nb. The radial diffusion changes the total number of the tightly
bound ions Nb and the parallel diffusion conserves Nb. Ion diffusion around DNA has been
investigated using all-atom simulation74 and from continuous-medium simulation.71 It was
found that D⊥≤D||≤ D0 for the diffusion coefficients D⊥ and D|| for the bound counterions in
the radial (⊥) and parallel (||) directions and for the ions in the bulk D0 solvent.71,74 D⊥ and
D|| increase and approach D0 with the increase of radial distance from the DNA surface.
Moreover, different types of counterions can have very different diffusion coefficients, for
example, Li+ diffuses much slower than Na+ near the DNA surface,70 though they both are
monovalent ions. Furthermore, the diffusion near DNA is dependent on the geometry as well
as the charge distribution on the polyelectrolyte. In general, D⊥≪D0 due to the electrostatic
attraction from the phosphate groups, and D||, depending on the ion and the polyelectrolyte
structure, could be comparable to D0 or D⊥.

Preequilibrium case—If D||~D0 and D⊥≪D0, the mode change due to the parallel diffusion
is much faster than that due to the radial diffusion. This would cause the modes with the same
total number Nb of the tightly bound ions to preequilibrate through the fast parallel diffusion
before conversion into a mode of different Nb. As a result, the diffusive ions in the solution
would “see” an approximately preequilibrated ensemble of modes with the same Nb and a
preequilibrated distribution of the tightly bound ions {m ̄1,m ̄2, …,m ̄L}:

(28)

where the sums are for all the modes with Nb tightly bound ions. In this case, we need to solve
PB and the free energy ΔGd of the diffusive ions for each Nb, not for each mode. Note that for
an L-mer polyelectrolyte, there are 2L+1 possible Nb values (Nb=0,1,2,…,2L). Because 2L+1
≪the number of the binding modes, the preequilibration results in a great reduction in the
computational time.

Non-preequilibrium case—If D||≪D0 and D⊥≪D0, since the mode conversion is much
slower than the relaxation of the diffusive ions in solution, preequilibration does not occur. As
a result, the calculation of ΔGd requires to solve the PB for each tightly bound mode separately.
Given the large number of the modes, this is a formidable computational problem. To
circumvent the problem, we use the following two approaches.

i. We first make the preequilibrium assumption, and compute the mode probability
pM [see Eq. (28)] for each mode M. We then regard the modes of large pM as the
“important” modes, and recompute ΔGd (and ZM and pM) rigorously without the
preequilibration assumption for the important modes. In our calculation, we choose
pM>10−3 as the criteria for the important modes. The approach is validated because
different cutoff values (around 10−3) result in consistent thermodynamic results.
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ii. We note that, as shown in Fig. 7, for a given Nb, there exists an overall correlation
between ΔGd and ΔGb. In general, modes of low ΔGb have high ΔGd, vice versa. This
is because the tightly bound ions in the low ΔGb modes tend to be uniformly
partitioned among the different tightly bound cells so that they can maximally avoid
each other to lower the electrostatic potential energy. Such “dispersed” charge
distribution gives a weaker electric field around the polyelectrolyte and thus a higher
ΔGd as compared with an aggregated charge distribution. The relationship between
ΔGd and ΔGb provides a simple way to obtain ΔGd from ΔGb without solving the PB
equation.

To obtain the functional relationship between ΔGd and ΔGb for a given Nb, we select the modes
with the maximum, minimum, and intermediate values of ΔGb, and calculate ΔGd for the three
modes by solving the PB for each mode. We then construct a spline function by fitting the three
data points. This simplified treatment significantly reduces the computational time, because
we only need to solve PB for three times for each Nb. Our tests for short polyelectrolytes show
that the algorithm can give very good estimates for the free energy ΔGd (except for small
fluctuations); see Fig. 7.

The actual dynamic properties of the ions may lie closer to either of the above preequilibrium
and non-preequilibrium cases. We consider both cases in this work. We present the results for
the preequilibration case, followed by a separate section to discuss the differences between the
two cases. Therefore, in the following sections, we assume preequilibration except in the
section where non-preequilibration is explicitly stated.

VI. ION DISTRIBUTION AND THE ELECTROSTATIC FREE ENERGY
To validate our PB solver, we first calculate the electrostatic potential around an charged
cylinder of infinite length, and compare the results with the known results obtained in previous
studies.24,75,76 We use the two-step dielectric model (ε=2 and 78 inside and outside the
polyelectrolyte, respectively). We employ the periodic boundary condition to model the
infinitely long polyelectrolyte cylinder.24 The comparison shows that, the electric potentials
given by our PB solver are in good accord with the previous results.

A. Quantitative characterization of the tightly bound layer
From Eqs. (20) and (23), we can obtain the volume νb(0) of the tightly bound region and the
mean thickness δ of tightly bound layer. Table I gives the values of δ for DNA with different
length L in the Na+ and Mg2+ solutions of different concentration. δ for [Mg2+] solution is
much larger than that in [Na+] solution. This is because Mg2+ ions have much stronger inter-
ion correlations than the Na+ ions and thus have a larger tightly bound region. Moreover, δ
increases as the bulk ion concentration increases, because higher bulk salt concentration leads
to a higher bound ion concentration and thus stronger correlation for bound ions. We can also
compute the free volume νb(1) and νb(2) from Eqs. (21) and (22).

B. Electrostatic free energy ΔGel

Figure 8 shows the electrostatic free energy ΔGel [see Eq. (12)] as a function of the bulk salt
concentration c0 for the Na+ and Mg2+ solutions. As a comparison, we also show the results
from a pure Poisson-Boltzmann calculation (without considering the tightly bound ions) for
low bulk salt concentrations, for which PB can give an accurate description for the system in
a Na+ solution.77 In the pure Poisson-Boltzmann calculation, in order to account for the ion
size, we have added an excluded volume (charge-free) layer on the polyelectrolyte surface.
78,79 The thickness of the charge-free layer is equal to the ion radius rc. We find that both our
theory and PB predict that ΔGel decreases as c0 increases. This is because higher salt
concentration causes stronger electrostatic screening and stronger charge neutralization for the
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polyelectrolyte, and consequently lowers the electrostatic repulsion between the
polyelectrolyte charges.

As shown in Fig. 8, ΔGel predicted from our theory for a Na+ solution is very close to that
predicted from PB. For a Mg2+ solution, however, our theory predicts a lower free energy
ΔGel than PB. This is because the correlated distribution of the tightly bound ions can have
lower energies than the mean-field configuration. Moreover, ΔGel for a Mg2+ solution is much
lower than that of a Na+ salt solution, because of the much stronger attraction between Mg2+

and the phosphate groups.

C. Ion radial distribution
The mean net charge Qb of the tightly bound ions per nucleotide unit and the total charge of
the diffusively bound ions Qd(R) per nucleotide unit can be calculated from the following
equations:

(29)

where the sum over α is for all the ion species, and  and  are
the mean number of the tightly bound counterions and the mean diffusive ion concentration
averaged over all the possible binding modes.

We compute the total bound charge Qtot(R) within a cylindrical region of radius R. Since a
binding mode only specifies the number (not the spatial distribution) of the tightly bound ions
in each tightly bound cell, the model cannot give the continuous R dependence of Qb. Thus we
cannot obtain a continuous R dependence of Qtot(R). We define a stepwise R dependence of
Qtot(R),

(30)

where the step function is defined as θ(x)=0 for x<0 and θ(x)=1 for x≥0, and R*=8.9Å+2.1Å
+δ+ rc (rc =counterion radius) is the outermost radial distance on the contour of the tightly
bound region (simplified as a thin layer of thickness δ); see Fig. 1.

In Fig. 9, we test the theory predictions against the MC simulation. For Na+ solutions, both
our theory and the PB can make accurate predictions for Qtot(R). For Mg2+ solutions, however,
our theory makes better predictions than PB. Because PB ignores the low energy correlated
configurations of the tightly bound ions and thus under-estimates the bound ion charge.80,81

D. Tightly bound counterions
In Fig. 10(a), we plot the charge Qb of the tightly bound ions as a function of the bulk salt
concentration c0 for both the Na+ and Mg2+ solutions. We find that our theory generally gives
quite accurate predictions (as tested against the MC simulation results) over a wide range of
c0. As c0 increases, the entropic cost for ion binding decreases. Consequently, the binding of
the tightly bound ions becomes more favorable, resulting in more tightly bound ions and hence
a larger ions are more Qb. Moreover, because Mg2+ strongly attracted to the polyelectrolyte
than Na+ ions, Qb for Mg2+ is much larger than that for Na+. In fact, for a Na+ solution, the
electrostatic correlation is weak and only very few ions are tightly bound.

From Fig. 10(a), we note that Qb exceeds unity at high Mg2+ concentrations. This means that
negatively charged DNA molecule is “overneutralized” by Mg2+ ions. We note that such
overcharging34,82 or charge inversion83 phenomena cannot be predicted by the mean field
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theories. In fact, the overcharging may be related to the attraction between two like-charged
macroions.84

E. Total bound ions and comparisons with the counterion condensation theory
The tightly bound counterions in our theory are different from the “bound counterions” or
“condensed counterions” defined in the CC theory.22 The bound ions in PB or CC include
both the tightly bound ions and the diffusively bound ions defined in our theory. Therefore,
the total charge of the condensed ions in the CC theory corresponds to the total charge of all
the ions within a properly defined bound radius Rb>R*:

Various methods have been used to define Rb.75,82,85–87 Here we define Rb through the

following equation:87 , where  is the total charge of the
counterions within a radial distance R.  can be computed in the same way as Qtot(R)
from Eqs. (29) and (30), except that the sum for ion species α in Eq. (29) is for the counterions
only. The number of bound ions from the definition agrees with that of CC theory for infinite-
length cylinder polyelectrolyte.87

For an infinite-length DNA, CC predicts that the condensed counterions have total charge of
0.76e per nucleotide for Na+ and 0.88e per nucleotide for Mg2+.22 For an L-mer DNA (finite-
length) in a 1:1 salt solution, a modified CC theory88 gives that, the total condensed counterion
charge is equal to (1−1/ξ) for L≥λD/b and (1−ξcri/ξ) for L≪λD/b. Here ξcri=ln(λD/b)/ln(L),
ξ=lB/b is the Manning parameter, λD is the Debye length and b=1.7 Å is the longitudinal spacing
of the charges on the polyelectrolyte backbone.

We use MC simulation to obtain the radial distribution function , from which the bound
radius Qtot Rb is calculated. In Fig. 10(b), we plot Qtot(Rb) predicted from the MC simulation,
from the present theory, and from the CC theory for infinite- and finite-length polyelectrolytes.
Figure 10(b) shows that Qtot(Rb) from our theory is in good agreement with that from the MC
simulation. For a finite-length polyelectrolyte, our theory and the CC theory predict
qualitatively the same c0 dependence for the bound ions. Moreover, as we expected, higher the
c0 gives larger bound charge Qtot(Rb). For c0≤0.01M, the CC theory overestimates the bound
ion charges Qtot(Rb) because the CC results used here are for line charge polyelectrolyte, and
the line charge can enhance the counterion condensation.

F. Dependence of the polyelectrolyte length
Figure 11(a) shows the charge Qb of tightly bound ions as a function of the DNA length L.
From the figure, we find that for a broad range of the polyelectrolyte length L, Qb predicted
from the present theory is in good agreement with that given by the MC simulation. Moreover,
as we expected, the longer the length L, the stronger the electrostatic field near the
polyelectrolyte surface, and thus the more counterions (i.e., the larger Qb) trapped on the
polyelectrolyte surface.

Plotted in Fig. 11(b) is the L dependence of the total charge Qtot(Rb) for the bound counterions.
The figure shows that the results for Qtot(Rb) from the present theory are in accord with the
results from the MC simulation. Furthermore, the present theory and the CC theory give the
same qualitative L dependence of Qtot(Rb). As L increases, our predicted Qtot(Rb)
monotonically approaches the CC result for an infinitely long DNA.
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VII. STATISTICAL THERMODYNAMICS IN THE NON-PREEQUILIBRATION
CASE

The results presented above are based on the preequilibrium assumption: different binding
modes of the same number Nb of the tightly bound ions can quickly preequilibrate, so the
diffusive ion distribution is determined by the preequilibrated charge distribution of the tightly
bound ions. However, if the dynamics of the bound ions is slow so that the preequilibration
cannot occur, the diffusive ions would “see” discrete binding modes (rather than the averaged
preequilibrium distribution). As a result, we should consider the diffusive ion distribution (and
the free energy ΔGd) for each individual mode separately.

For a given mode M, the preequilibrium and non-preequilibrium cases have the same free
energy ΔGb for the tightly bound ions. The difference between the two cases arises from the
different ΔGd for the diffusive ions. In the preequilibrium case, ΔGd is based on an ensemble
of modes (with the same number Nb of the tightly bound ions), while in the non-preequilibrium
case, ΔGd is based on each individual mode. However, as shown in Fig. 7, for a given Nb, the
majority of the modes are distributed within a narrow range of ΔGd, which means ΔGd for an
individual mode is not very different from that for the equilibrium ensemble of all the modes.
Therefore, the preequilibrium and non-preequilibrium cases have similar thermodynamic
properties.

In addition, for modes with proper occupancy of the tightly bound ions, since the tightly bound
ions involve much stronger electrostatic interactions than the diffusive ions, we have |ΔGb|
≫|ΔGd|. As a result, the main behavior of the mode probability pM∞e−(ΔGb+ΔGd)/kBT [see Eqs.
(8) and (11)] and the thermodynamic properties are dominated by ΔGb. Therefore, the
preequilibrium and non-preequilibrium cases, which have the same free energy ΔGb for the
tightly bound ions for any given mode M, would have very similar thermodynamic properties.

Indeed, we find that for both the Na+ and the Mg2+ solutions of low salt concentration, the
theory gives very close results for ΔGel, Qtot(R), and the c0 dependence of Qb and Qtot(Rb) for
the two cases (results not shown).

However, for high salt concentrations, especially for multivalent ion solutions, due to the strong
ionpolyelectrolyte interaction, ΔGd would sensitively depend on the charge distribution
(=mode) of the tightly bound ions, causing the pronounced differences between the
preequilibrium and non-preequilibrium cases. For example, at [Mg2+]=1M, Qb and ΔGel are
equal to 1.4 and −19.1kBT, respectively, for the preequilibration case, and equal to 1.3 and
−21.8kBT, respectively, for the non-preequilibration case.

In addition, even though the preequilibrium and the non-preequilibrium cases can have quite
similar average statistical thermodynamic properties, they can have different distributions for
the tightly bound ions . Figure 12 shows the distribution of the tightly bound
ions. For the preequilibration case, in a [Na+] solution or a dilute [Mg2+] solution, the tightly
bound counterions tend to reside in the middle portion of the polyelectrolyte. This is because
the middle portion has the strongest electric field and is thus the most favorable binding region
for the counterions. For Mg2+ of higher concentrations, the counterions tend to bind to the two
ends of the polyelectrolyte, because in this case there would be a large number of the tightly
bound Mg2+ ions, and the significant inter-ion repulsion makes the end positions more
favorable for ion binding.

The distributions of the tightly bound ions in the non-preequilibrium case are more uniform
than the preequilibrium case, due to the following reason. Consider all the modes with the same
number of the tightly bound ions Nb. The free energy ΔGb for the tightly bound ions is large
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and varies sharply for different modes. Therefore, for the preequilibrium case, we expect that
, which is determined by ΔGb only [see Eq. (28)], would have a bumpy distribution for

different i’s. For the non-preequilibrium case, however,  is determined by ΔGb+ΔGd through
the mode probability distribution pM∞e−(ΔGb+ΔGd)/kBT. Because ΔGd tends to compensate the
change of ΔGb (see Fig. 7), pM is less bumpy, and the distribution for the tightly bound ions
is expected to be more smooth.

As the polyelectrolyte length L increases, the tightly bound ions tend to be more uniformly
distributed for both the preequilibrium and the non-preequilibrium cases.

VIII. CONCLUSION AND DISCUSSIONS
According to the inter-ion correlations, we can unambiguously distinguish two types of bound
counterions around a polyelectrolyte: the (strongly correlated) tightly bound ions and the
(weakly correlated) diffusively bound ions. For the tightly bound ions, we consider the discrete
properties of the ions and the full electrostatic correlations and fluctuations, while for the
diffusively bound ions, we use the mean-field fluid model to describe the ion distribution. The
theory predicts all the important properties of the ion distributions, the number of the bound
ions, and the electrostatic free energies. The predicted results quantitatively agree with those
from the MC simulations. For multivalent ions, which have strong correlation effects, the
theory makes improved predictions than the mean-field theory, which neglects the inter-ion
correlations. The present form of the theory is based on a semi-realistic model for the
polyelectrolyte structure. It can be directly used to predict the statistical thermodynamics,
including the correlated distributions of the tightly bound ions, the most stable binding modes,
and the electrostatic free energies, for rigid double-helical polyelectrolytes. Further
development of the theory would enable the treatment for more complex polyelectrolyte
structures and for multipolyelectrolytes complexes.

The present theory differs from the previous models (e.g., the counterion condensation theory)
in several aspects. The theory is based on a more realistic structural representation for the
polyelectrolyte, rather than a simple cylindrical or line-charge model. Moreover, the tightly
bound ions in our theory are different from the condensed ions in the counterion condensation
theory. In fact, the condensed ions in the counterion condensation theory contain both the
tightly bound ions and the diffusively bound ions in our theory. Also, we consider the discrete
distributions and the full correlated Coulomb interactions for the tightly bound ions. Unlike
the counterion condensation theory, which assumes the uniform averaged charge
neutralization, the present theory can treat fluctuations in the bound ion distribution. In
addition, the present theory accounts for the direct Coulomb interactions between the tightly
bound ions and the phosphate charges on the polyelectrolyte. The present theory allows the
tightly bound ions in a given binding mode, to move around within the respective tightly bound
cells, i.e., in the minor and major grooves and in the space around the phosphate groups. The
averaging over all the possible positions of the tightly bounds ions within the respective tightly
bound cell gives the potentials of mean force in the model.

Further development of the model should include the desolvation effect for the dehydrated
bound ions, and the more detailed spatial distribution of the tightly bound ions within the tightly
bound cells. Nevertheless, the present theory is a first step toward a more realistic model to
include the atomic details. The combination of the rigorous statistical mechanical treatment
for the correlations and fluctuations and the semirealistic structural models for the ions and the
polyelectrolyte has enabled predictions beyond the mean-field models, especially for
multivalent ions of which the correlation effects can be important.
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FIG. 1.
(a) The B-DNA grooved primitive model (Ref. 34). In our theory, the region around DNA
molecule is divided into two parts: (i) the tightly bound region, where counterions are trapped
by the strong electrostatic field and are strongly correlated; (ii) the diffusively bound region
(outside the dotted lines), where ions are diffusive and can be described by the Poisson-
Boltzmann theory. The boundary between the two regions is determined by Fig. 1(c). (b) The
cross section of the B-DNA grooved model shows the position of cylindrical core, intermediate
neutral sphere, and phosphate sphere. (c) The tightly bound regions around a B-DNA of length
L=40 in Na+ (left) and Mg2+ (right) solutions at bulk concentration c0=0.1M. The red spheres
represent the phosphate groups and the green dots represent the points on the boundaries of
the tightly bound regions.
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FIG. 2.
Illustration of (a) the electrostatic and (b)–(d) the excluded volume interactions between
charges in the tightly bound region. Empty circles represent phosphate groups and the shaded
circles represent the tightly bound ions.
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FIG. 3.
The pairwise potential of mean force Φ2(i, j,1,1) (in kBT) between two phosphate cells (i and
j) with a Mg2+ ion in each cell [see Eqs.(16) and (17)], for a DNA oligomer of length L=30 in
a 0.01M [Mg2+] solution. The phosphates 1≤i, j≤15 reside in strand 1 and 16≤i, j≤30 in the
other strand of DNA.
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FIG. 4.
The effective dielectric constant εp-p for the electrostatic interactions between two phosphates
in B-DNA as functions of the angular separation with respect to the helical axis. ⋄ denotes
εp-p between two phosphates on the same strand, and + represents εp-p between phosphates on
the different strands.
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FIG. 5.
The two-dimensional contours in a plane perpendicular to the B-DNA helix for the energy
change (in kBT) due to dielectric discontinuity (ε=2 in DNA and ε=78 in solvent): the change
of self-energy ΔEs for Na+ (a) and Mg2+ (b) ions; the change of the interaction from phosphates
ΔEp for Na+ (c) and Mg2+ (d) ions; and the total change of energy ΔE (=ΔEs + ΔEp) for Na+

(e) and Mg2+ (f) ions. The central blank spaces are the inaccessible volumes for the hydrated
ions (DNA helix plus a excluded volume layer with one ion radius).
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FIG. 6.
(a,b) The mean residence time τp (bottom two lines) for a counterion to stay within a distance
of rc +δ (rc=counterion radius) from the surface of the respective phosphate group, and the
mean residence time τ⊥ (upper two lines) for a counterion to stay within a radial distance of
rc+δ from the polyelectrolyte surface. Solution conditions are (a) Na+ and (b) Mg2+, with salt
concentrations c0=0.001M (solid lines) and 0.1M (dashed lines). Both τ⊥ and τp are scaled as
number of Monte Carlo steps. (c–f) Three characteristic distances of counterions (in unit of
angstrom): the distance Δp of tightly bound counterions from the respective phosphate sphere
centers (black lines); the distance Δz in the axis direction (gray lines); and the radial distance
Δr of counterions from DNA axis (light gray lines). (c) [Na+]=0.001M; (d) [Na+]=0.1M; (e)
[Mg2+]=0.001M; (f) [Mg2+]=0.1M. The counterions, which reside in the layer with thickness
δ=2 Å, are tracked in the simulations, and the tracking process is performed after the system
reaches thermal equilibrium.
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FIG. 7.
The correlation between free energy ΔGd and ΔGb for the different number of the tightly bound
ions Nb. The zigzag (gray) lines represent the results from the Poisson-Boltzmann equation for
each individual tightly bound mode (nonequilibration case). The spline (black) lines are from
the three-point fitting. Here, L=12 and [Mg2+]=0.01M.
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FIG. 8.
Electrostatic free energy of B-DNA oligomer with length L=24 in Na+ (upper two lines) and
Mg2+ (bottom two lines) salt solutions at room temperature. Solid lines, from the present model;
dotted lines, from Poisson-Boltzmann equation.
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FIG. 9.
The spatial distribution of the total charge (per nucleotide) Qtot(R) within a cylindrical region
of radius R around the a B-DNA helix of length L=24 in (a) [Na+] and (b) [Mg2+] solutions at
room temperature. c0 =0.1M, 0.01M, and 0.001M from top to bottom. Dashed lines, Monte
Carlo simulations; dotted lines, Poisson Boltzmann equation; solid lines, the present model.
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FIG. 10.
(a) The salt concentration dependence of the charge Qb of the tightly bound counterions (per
nucleotide) for a B-DNA oligomer of length L=24 in [Mg2+] (upper line) and in [Na+] (bottom
line) solutions. Lines, from the present model; symbols, from the Monte Carlo simulation. (b)
The salt concentration dependence of the total charge Qtot(Rb) of the bound ions per nucleotide
for a B-DNA oligomer of length L=24 in [Mg2+] (upper lines) and [Na+] (bottom lines)
solutions. Solid lines, from the present model; dotted lines, from the counterion condensation
theory for an infinite-length DNA in [Mg2+] (upper line) and in [Na+] (bottom line) (Ref.
22); dashed line, from the counterion condensation theory for an oligomer in monovalent ionic
solution (Ref. 88); symbols, from the Monte Carlo simulation.
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FIG. 11.
(a) The polyelectrolyte length L dependence of the charge Qb of the tightly bound counterions
per nucleotide in [Mg2+] (upper line) and [Na+] (bottom line) solutions at bulk salt
concentration 0.01M. Solid lines, from the present model; symbols, from the Monte Carlo
simulation. (b) The polyelectrolyte length L dependence of the total charge Qtot(Rb) of the
bound ions per nucleotide for a B-DNA oligomer in [Mg2+] (upper two lines) and [Na+] (bottom
two lines) solutions at bulk salt concentration 0.01M. Solid lines, from the present model;
dotted lines, from the counterion condensation theory for the DNA of infinite length in [Na+]
(bottom line) and [Mg2+] (upper line) solutions (Ref. 22); dashed line, from the counterion
condensation theory for ionic oligomer in monovalent ionic solution (Ref. 88); symbols, from
the Monte Carlo simulation.
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FIG. 12.
Distribution of the tightly bound counterions along a B-DNA oligomers of length L=24 in
[Mg2+] solutions with different salt concentrations c0. mi is the number of the tightly bound
ions within ith (i = 1,2,…,L) tightly bound cell and zce is the charge of the counterion. From
top to bottom: c0=1M, 0.3M, 0.1M, and 0.01M, respectively. Solid lines are for the
preequilibration case and the dashed lines are for the non-preequilibration case. The phosphates
(the tightly bound cells) are labeled according to their z coordinates along the DNA axis [see
Eq. (1)].
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