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ABSTRACT The snowshoe hare and the Canadian lynx in
the boreal forests of North America show 9- to 11-year density
cycles. These are generally assumed to be linked to each other
because lynx are specialist predators on hares. Based on time
series data for hare and lynx, we show that the dominant
dimensional structure of the hare series appears to be three
whereas that of the lynx is two. The three-dimensional struc-
ture of the hare time series is hypothesized to be due to a
three-trophic level model in which the hare may be seen as
simultaneously regulated from below and above. The plant
species in the hare diet appear compensatory to one another,
and the predator species may, likewise, be seen as an inter-
nally compensatory guild. The lynx time series are, in con-
trast, consistent with a model of donor control in which their
populations are regulated from below by prey availability.
Thus our analysis suggests that the classic view of a symmetric
hare–lynx interaction is too simplistic. Specifically, we argue
that the classic food chain structure is inappropriate: the hare
is inf luenced by many predators other than the lynx, and the
lynx is primarily inf luenced by the snowshoe hare.

The cyclic changes in abundance of the snowshoe hare (Lepus
americanus Erxleben, 1777) and the Canadian lynx (Lynx
canadensis Kerr, 1792) are well known (1–4). These 9- to
11-year fluctuations are commonly discussed in ecology texts
(e.g., refs. 5 and 6) as examples of coupled predator–prey
cycles (7–13).
Even though the biodiversity of the boreal forest is low (14),

it is still a too complex ecosystem to be modeled intelligibly
(15). By focusing on those species directly connected with the
hare, a smaller and more tightly interlinked food web emerges
(Fig. 1A). This is even more so when focusing on the species
directly connected to the lynx (Fig. 2A).
To estimate the number of key interactions determining the

dynamics of the snowshoe hare and the lynx, we have analyzed
time series data on these species (Figs. 1B and 2B) and
interpreted the results on the basis of recent ecological data
[primarily from the Kluane Ecosystem Project (4, 16)]. The
main statistical result of our investigation is that the embed-
ding dimension for the lynx series is roughly two, whereas that
of the hare series is closer to three. We discuss these statistical
results from the point of view of ecological interactions: in
spite of the apparent complexity of the underlying food web,
the dynamics of the hare and the lynx seem to be rather simple
(low dimensional). On the basis of the documented pattern, we
propose two ecological models—one for the lynx and one for
the snowshoe hare.

The Data

The time series data derive from the compilation of fur records
on hares (17) and lynx (2) carried out by Charles Elton, Helen
Chitty, and others of the Canadian Snowshoe Rabbit Enquiry
(ref. 18; see also ref. 19). It was partly through this inquiry that
ecologists were convinced that the vertebrate cycles of the
boreal forest were not just an artifact of the trapping or
smoothing of random numbers (20).
The snowshoe hare data derive from the main drainage of

Hudson Bay, whereas the lynx data are from 10 different regions
across boreal Canada (the two hare series correspond regionwise
to the combined James Bay and Lakes lynx series; L13 in Table
1). Although benchmark data on the abundance of cyclic species,
they have some drawbacks. (i) The hare data presented by
MacLulich (17) as one time series are really two different sets of
data (1844–1904 represents fur records, whereas 1905–1935
derives from questionnaires; Fig. 1B); they thus ought to be
analyzed as two series. (ii) The data on the different regions of the
lynx are of variable lengths (extending between 1821 and 1939;
most end in 1934) and contain occasionalmissing values (formost
series, data are lacking for 1892–1896 and 1914). (iii) The regions
to which the lynx series refer vary somewhat in demarcation over
time (2). Among the lynx series, the one from northwestern
Canada (the MacKenzie River district adjacent to the area
studied in the Kluane Ecosystem Project (618N, 1388W)) is the
one most commonly quoted (L3 in Table 1).

The Structure of the Time Series

Statistical Modeling.Data were log-transformed to stabilize
the variance (25). This transformation is biologically suitable
due to the multiplicative nature of the population dynamics
process involving birth and death processes (26). The log-
transformed series {Xt} were scaled to have zero mean and
variance equal to one.
In our search for parsimonious models for the time series

under study, we start with a general model and simplify it as
far as statistically permissible. Throughout we rely on recent
developments in time series analysis (refs. 21, 23, 27–32; see
references therein for details).
We follow the long standing conjecture (24, 33–37) that the

transformed series may adequately be modeled in delay co-
ordinates as a general autoregressive model of order [or
dimension; sensu Royama (38)] d; that is, Xt 5 Fd(Xt21, Xt22,
. . . , Xt2d) 1 «t. We assume that {«t} is time- and state-
independent white noise (30). As suggested by Cheng and
Tong (27), the function Fd determining the laws of the
population dynamics can be estimated for a given choice of d
with minimal assumptions, using nonparametric regression.
Provided Fd is continuous, Cheng and Tong (28, 29) showed
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that the sample size requirement is exponential in d for
estimation of the functional form of Fd but is at most quadratic
in d for the estimation of the dimension. To find the appro-
priate dimension for the series (and their underlying process),
we employ cross-validation (39–42). That is, for each d con-
sidered (d 5 1, . . . , 4), we estimate Fd based on all but one
data point, which is subsequently predicted. This is repeated
for each data point. The sum of squared out-of-sample pre-
diction errors [the cross-validation (CV) value; a rough esti-
mate of the percentage noise is used as a measure of the model
suitability. The d corresponding to the autoregressive model
minimizing the CV value provide a consistent estimate of d,
under minimal assumptions (25–28). To estimate the functions
Fd, we employ two different nonparametric regression meth-
ods: (i) the Nadaraya–Watson kernel regression (21, 27, 28)
and (ii) a locally linear regression (31, 32, 43). We employ a
Gaussian product kernel for both. The consensus arising
(Table 1) is that the snowshoe hare may parsimoniously be
described by a model of dimension three (note that H2 appears
cleaner in terms of predictability, based on its CV value, than
H1), whereas the series for the lynx is more likely to be
governed by a process of dimension two.§ The advantage of
employing flexible models for Fd is that conclusions reached
are not biased by any parametric prejudices. The disadvantage
is that such general models have a high number of degrees of
freedom (ref. 44, chapter 3) causing loss in precision (high
statistical variance). These models may also be victims of the
curse of dimensionality (45). Indeed, the statistical uncertainty
associated with any estimate may be paramount when the

number of data points is relatively low. The high degree of
consistency across the different data sets (Table 1) is, however,
encouraging.
To increase precision we investigate the possibilities of

imposing some restrictive assumptions. One such simplifying
assumption involve assuming that there is no interaction, on
the logarithmic scale, between years (44, 46):

Xt 5 Fd~z! 5 fl~Xt21! 1 z z z 1 fduXt2d) 1 «t. [1]

On the basis of the test for additivity by Chen et al. (23), this
restrictive assumption appears permissible for 15 of 16 time
series (Table 1); the rejection level of the deviating series (L12)
is not far from the nominal 0.05 level. Additivity may, of
course, be an artifact of low power due to the small sample size.
However, the conclusion is biologically reasonable (see below)
and the sample size is, after, all not particularly low. Estimating
the optimal dimension by using CV of the additive model
(Table 1) yields conclusions consistent with the analyses based
on themore general models. Note, specifically that the additive
models are usually as good as the more complicated models for
prediction (see CV values in Table 1).
Since we have demonstrated approximate additivity, a linear

model (on the logarithmic scale) represents the next level of
simplification:

Xt 5 alXt21 1 a2Xt22 1 a3Xt23 1 z z z 1 adXt2d 1 «t. [2]

Two tests of nonlinearity were employed: (i) The nonparamet-
ric test by Hjellvik and Tjøstheim (21) and (ii) the Tukey
one-degree-of-freedom test by Tsay (22). The null hypothesis of
linearity is rejected in 5 of the 14 lynx series and is close to a
nominal 0.05 level for one of the hare series (H1). This (31% at
a nominal 0.05 level and 50% at a 0.1 level) is more than expected
under linearity (assuming the different series to be independent).

§Cheng and Tong (27) found order three for theMcKenzie River series
(L3; Table 1). However, the fit of order two and order three are very
similar in our analysis (Table 1) as well as in ref. 27. We are
nevertheless convinced by the convergence on dimension two when
all lynx series are seen together (Table 1).

FIG. 1. (A) Food web of the boreal forest ecosystem: the food web links directly influencing the hare population are highlighted [based upon
Boutin et al. (16), Krebs et al. (4), and C. J. KrebsyKluane team, unpublished results]. Only the major dietary items are shown. (B) Yearly hare
abundances (log-transformed and standardized; see text) for the main drainage of the Hudson Bay (17): 1844–1904 represents data on fur returns
and 1905–1935 represents data from trapper questionnaires.

Ecology: Stenseth et al. Proc. Natl. Acad. Sci. USA 94 (1997) 5149



However, it is less than one may expect under extreme nonlin-
earity (see ref. 47). The estimates of d based on cross-validation
of the linear models are generally higher than that based on the
nonlinear models, as expected for nonlinear systems (48). Thus,
it appears that the hare series may be represented an additive
process on a logarithmic scale of order around three, while the
order for the lynx series is around two. The lynx is certainly a
nonlinear process (as previously concluded for series L3; see, for
example, refs. 24 and 49). The same seems to be the case for the
hare. Note, however, that the nonlinear function appear mono-
tonic and not highly curved (Fig. 3).
Despite significant nonlinearities, the monotoniety of the fi

functions justifies the linear autoregressive model (Eq. 2) as a
useful average of the state dependent (functional) autoregressive
coefficients of the dynamics, because these may be interpreted as
coefficients of statistical density dependence (13, 47, 51).
Both the log-linear and the log-additive model indicate nega-

tive direct density dependence for the hare (a1-1; see refs. 13 and
51) ranging from20.38 to20.05 with a mean of20.23. There is
essentially no dependency on the second lag (a2 ranging from0.06
to 0.11 with amean of 0.09), but a strong negative dependency on
the third lag is observed (a3 ranging from20.52 to20.24 with a
mean of 20.38) (Table 1 and Fig. 3A). The three-dimensional
structure of the hare system is consistent with earlier theoretical
arguments (17, 52, 53) and with experimental results (4). For the
lynx, the direct density dependency is positive (a1-1 ranging from
0.01 to 0.48 with a mean of 0.26); the lagged dependency is
strongly negative (a2 ranging from 20.84 to 20.27 with a mean
of 20.63) (Table 1 and Fig. 3B). The two-dimensional structure
for the lynx (L3) has been deduced in several earlier studies
including Moran’s (ref. 33; but see §).
All additive skeleton models (with «t [ 0 for all values of t)

shown in Table 1 give rise to dampened oscillations (as judged
by the Schur–Cohn stability criterion for linear difference
equations; refs. 54 and 55). Thus, we do not observe limit cycles

as reported by Tong (36) [based on the SETAR(2;2,2) model
for the L3 lynx series]. The dampened oscillations will, how-
ever, be sustained in the presence of environmental stochas-
ticity. The difference between limit cycles and weakly damp-

FIG. 3. The fi functions (as given by Eq. 1; i 5 1, . . . , d) for the
hare series (H2) with d 5 3 (A) and the lynx series (L10) with d 5 2
(B). See the main text for interpretation. All fi functions have been
smoothed by natural cubic splines with 2 degrees of freedom using the
backfitting algorithm implemented in the function generalized additive
models in S-PLUS (50). Estimated confidence intervals and residuals are
also shown.

FIG. 2. (A) Food web of the boreal forest ecosystem: the food web links directly influencing the lynx are highlighted (see Fig. 1). (B) Yearly
lynx abundances (log-transformed and standardized; see text) (2). Data for 1821–1891 represent fur returns from the North Central district (L10)
and for 1897–1938 represent fur returns from the combined James Bay and Lake Districts (L13) (which corresponds to the geographic location
of the hare series shown in Fig. 1B).
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ened cycles are, therefore, not so conspicuous in stochastic
systems (see, e.g., ref. 47).
Ecological Interpretations. Recent studies have shown that

the hares feed on a variety of food plants and are eaten by an
array of predators (Fig. 1A) (56–59). The lynx is a specialist on
hares but may utilize other prey species (Fig. 2A) (60, 61).
When prey are scarce some predators may act as top predators
on the lynx (62).
The present statistical results are consistent with the three-

level trophic model for the hare (4, 56, 58). Other models
involving spatial structure or age–structure are also possible.
Due to recent field experiments and observations (e.g., ref. 4),
we emphasis the trophic hypothesis as the more plausible
scenario. In contrast to the more complex regulation of the
hare, the lynx dynamics are thought to be food-driven (60,
63–65). Thus, the classic view of the lynx–hare cycle as a simple
and symmetric predator–prey interaction seems to be an
oversimplification (refs. 13 and 64; see also below).
Because several food species are eaten by the hare and the hare

itself is eaten by many predators (Fig. 1B), the deduced three-
dimensional structure of the time series lead us to hypothesize
that the food species act as a group from the hare’s point of view
and that the predators act as another group; if not, we might
expect higher dimensionality. There is evidence from the Kluane
Ecosystem Project that the predator community is strongly
affected by intraguild predation, particularly as hares decline in
abundance (62). Additional circumstantial evidence for this hy-
pothesized compensation exists: Until about 1980, lynx were
extensively trapped in northern Canada, but this predator re-
moval has had no reported gross effect on the hare cycle (C.J.K.,
unpublishedobservations).During the 1986–1994 hare cycle, lynx
were a major predator at Kluane. During this same period,
northern goshawk numbers at Kluane were below normal (66).
Finally, on Anticosti Island in the St. Lawrence River, there are
no lynx present, yet the hare cycle persists (3). Both red fox and
great-horned owls are particularly abundant on Anticosti Island
and appear to compensate for the absence of lynx (2, 3). Keith
(ref. 3, p. 115) documents cases of the extermination of lynx in
southern Canada with continued hare cycles.
The vegetation appears to segregate into palatable and non-

palatable species for the hare (56, 57). Among the palatable
species (primarily Betula glandulosa, Salix glauca, and Picea
glauca), the hare has a mixed diet (66). Preferred foods are
typically reduced during the peak of the hare cycle, whereas less
preferred (but still palatable) species remain common (59). The
impact of hares on their food plants is transient (58) and the
recovery of the preferred food plants is substantial even before
the decline is complete. At Kluane essentially no effect on the
herbaceous vegetation of excluding hares from a 4-ha plot for 8
years has been found (R. Turkington, personal communication).
Snowshoe hares constitute a major part of the lynx’s diet. Lynx

may themselves be eaten by several top predators (Fig. 1A; refs.
60 and 65 and M. O’Donoghue, personal communication). Stud-
ies in North America suggest, however, the hare to be the one
major factor influencing the population dynamics of the lynx (60,
63, 67–69). The statistical models for the time series support the
view of the dynamics of the lynx as a hare–lynx interaction.
Through our analyses we have simplified the bewildering

complexity portrayed in Figs. 1A and 2A: If we are to study the
dynamics of the lynx, we need to focus on the hare—in addition
to studying the lynx. If we are to study the dynamics of the
snowshoe hare, we need to focus on the guild of predators as
a unit and the vegetation as a unit—in addition to the hare. The
analyses have further documented detailed patterns of statis-
tical density-dependence (Figs. 1B and 2B and Table 1). A
viable hypothesis for the dynamics should be able to account
for these patterns as well as for the dimensionality. In the
following section, we suggest two simple mathematical models
for trophic interactions within the boreal ecosystem. We
investigate which constraints are required on the ecological

interactions to generate the observed patterns of statistical
density dependence. The detailed dynamic behavior of these
models are deemed outside the scope of this report.

Two Ecological Models

A Vegetation–Hare Predator Model. Let Ht be the abun-
dance of hares at time t, Vt be the abundance of the vegetation
at time t, and Pt be the abundance of predators at time t; notice
that Pt does not consist of lynx only but the combination of a
variety of predators preying upon the hare. The functions Fh,
Fv, and Fp describe per capita ecological interactions such that

Vt11 5 VtFv~Vp, Hp, «v!, [3a]

Ht115HtFh~Vp,Hp, Pp, «h!, [3b]

Pt11 5 PtFp~Hp, Pp, «p!, [3c]

where «v, «h, and «p represent stochastic influences. There is no
general agreement about the impact of hares on edible vegetation
(see also above): Wolff (56) and Keith (57) have measured
stronger impacts on vegetation at the peak of the cycle than
measured in the Kluane Ecosystem Project (R. Turkington,
unpublished results). However, rapid vegetation recovery after
the cyclic peak have been observed in all studies (56–58). The
effect of the hare on the vegetation seems by and large negligible,
thus allowing us to assume ­Fvy­h ' 0 (h 5 ln H). The total
predator community is strongly affected by the hare cycle, and the
abundance of all the major hare predators—lynx, coyote, great-
horned owl, and northern goshawk—follow the hare cycle closely
(58, 70), suggesting ­Fpy­h. 0 and ­Fhy­p, 0 (where p5 ln P).
Approximating the F functions in Eq. 3 by the first terms in

a Taylor expansion in log-transformed abundances, we may,
under minimal additional assumptions, write the log-linear
model in delay coordinates (see Eq. 2):

ht 5 alht21 1 a2ht22 1 a3ht23 1 «t, [4]

wherea1,a2, anda3 are statistical parameters thatmay be written
as functionals of the ecological system portrayed by Eq. 3.¶
Interpreting the statistical results on the basis of Eqs. 3 and 4, the
observed patterns of direct and delayed density dependence (a1
. 0, a2 ' 0, and a3 , 0) may be shown to be highly plausible:
given internal regulation through intraguild predation within the
predator guild, (­Fpy­p# 0), the condition a3 , 0 is satisfied by
assuming fairly weak self-regulation in both the vegetation and
the hare population (­Fvy­v and ­Fhy­h are slightly negative, as
documented in refs. 71–74). If ­Fpy­p is too negative, the relation
a1 . 0 is violated: our statistical results, thus, introduces restric-
tions on the strength of the intraguild predator interaction—it
must be strong, but not too strong. The relation a2' 0 is fulfilled
under a wide range of interaction strengths.
AHare–LynxModel. LetH9t be the abundance of hares (with

the possible inclusion of other herbivores preyed upon by the
lynx; H9t may be different from Ht used in the hare model) at
time t and let Lt the abundance of lynx at time t. The functions
Gh and Gl describe the ecological interactions such that

H9t11 5 H9tGh~H9pLp«h!, [5a]

Lt11 5 LtGl~H9pLp«l!. [5b]

Lynx occupy discrete territories during most of the hare cycle
(63, 65, 67, 68) and only at the low phase (when hares are

¶In the general case, the parameters of Eq. 4 may be given as follows:
a1 5 3 1 ­Fvy­v 1 ­Fhy­h 1 ­Fpy­p, a2 5 23 2 2z­Fvy­v 2
2z­Fhy­h 2 ­Fvy­v­Fhy­h 1 ­Fvy­hz­Fhy­v 2 2z­Fpy­p 2 ­Fvy
­v­Fpy­p 2 ­Fhy­hz­Fpy­p 1 ­Fhy­pz­Fpy­h, and a3 5 (1 1
­Fvy­v)z(1 1 ­Fhy­h)z(1 1 ­Fpy­p) 2 (1 1 ­Fvy­v)z­Fhy­pz­Fpy­h
2 (1 1 ­Fpy­p)z­Fvy­hz­Fhy­v.
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scarce) does the territorial system break down as many lynx go
nomadic. A few lynx individuals survive the low phase by
diversifying their diet with red squirrels and rodents. Hares
represent the main food, however, even in the low phase (refs.
65, 67, and 68; M. O’Donoghue, personal communication; B.
Slough, personal communication).
Approximating the G functions in Eq. 5 by the first terms in

a Taylor expansion in log-transformed abundances, we may
write: lt 5 b1lt21 1 b2lt22 1 «t, where b1 and b2 are statistical
parameters that may be written as functionals of the ecological
system portrayed by Eq. 5.**
Due to the tight trophic interactions between the lynx and

the hare (i.e., ­Ghy­l , 0 and ­Gly­h . 0), the empirical
patterns of statistical density dependence seen in the parsi-
monious time series model for the lynx (Table 1; b1 . 0 and
b2 , 0), are easily fulfilled in the predator–prey system if
self-regulation within both the lynx and the hare populations
are not too strong (the hare model requiring similar weak
self-regulation in the hare).

Conclusion

Despite the complexity of the boreal food web, the realized
dynamics of the snowshoe hare and the Canadian lynx are found
to be of low dimension. We have furthermore found an asym-
metry in the way the lynx and the hare are positioned within the
ecosystem:The snowshoehare appear to be regulated frombelow
and above (by a variety of predators including the lynx). The lynx,
in contrast, seems to be regulated only from below, and primarily
by the hare. Thus, from the hare’s point of view, the food chain
is a vegetation–hare–predator chain, whereas from the lynx point
of view, the hare–lynx interaction dominates. The snowshoe hare
certainly plays an interesting role in the ecological theatre of the
Canadian boreal forest ecosystem.

**The parameters in the autoregressive model for the lynx are given
as follows: b1 5 2 1 ­Ghy­h 1 ­Gly­l and b2 5 ­Ghy­lz­Gly­h 2
(1 1 ­Gly­l)z(1 1 ­Ghy­h).
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