RESEARCH REPORT

Cancer is overtaking cardiovascular disease as the main driver of socioeconomic inequalities in mortality: New Zealand (1981–99)

J Fawcett, T Blakely

J Epidemiol Community Health 2007;**61**:59–66. doi: 10.1136/jech.2005.044016

Background: Relative socioeconomic disparities in cardiovascular mortality have increased in New Zealand, as in many Western countries in Northern Europe, the US and Australia during the late 20th century. However, substantial declines in cardiovascular mortality mean that its absolute contribution to overall

.....

mortality has decreased. **Research questions:** How did the absolute contribution of major causes of death to socioeconomic inequalities in New Zealand change during the 1980s and 90s?

Methods: Linked census-mortality cohorts were used to calculate the contribution of different causes of death to inequalities in mortality, measured with the slope index of inequality, by household income.

Results: Between 1981–4 and 1996–9, the contribution of cardiovascular disease (CVD) to total inequality declined from 55% to 28% among women, whereas at the same time the contribution of cancers increased from 14% to 37%. Among men, the contribution of CVD to total inequality peaked at 47% in 1986–9, then declined to 38% in 1996–9. The contribution of cancer increased from 19% to 26% in men.

Conclusion: CVD mortality has declined at all income levels and so too has the contribution of CVD to mortality inequalities. Concurrently, the contribution of cancer to inequalities in mortality by income has increased and, in women at least, is now greater than the contribution of CVD. It is hypothesised that a similar crossover is occurring in other populations where CVD mortality has declined, although socioeconomic differences in the distribution and effect of the obesity epidemic for CVD may ensure its continuing importance. Prevention efforts aimed at reducing socioeconomic inequalities in mortality will need to increasingly focus on socioeconomic inequalities in cancer mortality.

See end of article for authors' affiliations

Correspondence to: J Fawcett, Department of Public Health, Wellington School of Medicine and Health Sciences, University of Otago, PO Box 7343, Wellington, New Zealand; jackie.fawcett@wnmeds. ac.nz

Accepted 4 April 2006

nequalities in mortality between socioeconomic groups have increased in Northern Europe and the US in recent decades1-⁶—at least in relative terms. In many instances, cardiovascular disease (CVD) has been an important driver of these increasing relative inequalities in total mortality. In a combined study of six European countries, CVD accounted for about 50% of the increase in relative inequalities in total mortality, between 1981-5 and 1991-5.2 Increasing relative inequalities have arisen because CVD death rates, which have fallen dramatically in most of these countries, have shown a proportionally greater decrease among higher-ranked socioeconomic groups. The changing contribution of CVD to absolute inequalities in mortality has been less well documented. In Finland, CVD accounted for most (>80%) of the increase in the gap in male life expectancy between manual and non-manual occupational classes between 1970 and 1995; and for 45% of the increase among females.4

Levels of absolute and relative inequality are mathematically linked such that when average mortality falls, and absolute inequalities are constant, then relative inequalities must increase (appendix A). When varying trends in mortality for different causes are combined with changing levels of absolute and relative inequalities, we expect the contribution of different causes of death, to total inequalities to change. In particular, we expect that in New Zealand substantial falls (>50%) in cardiovascular mortality during the 1980s and 90s led to a declining contribution of CVDs to total absolute inequality, even in the presence of large increases in relative inequality. If our expectation is true, it has major implications for policies to reduce future inequalities in health—they must shift to considering other diseases as drivers of inequalities. Our study aimed to determine trends in the contribution of CVD and other major causes of death (eg, cancer) to inequalities in mortality by income in New Zealand during the 80s and 90s.

METHODS Data source

The New Zealand Census Mortality Study anonymously and probabilistically linked census records to mortality records for the 3 years subsequent to the 1981, 1986, 1991 and 1996 census to create four cohorts as described elsewhere.⁷⁻⁹ Linkage was restricted to census respondents aged <75 years on census night. For this paper, analyses were limited to respondents aged between 25 and 74 years on census night, who with 3 years follow-up attain ages up to 77 years. Approximately 75% of all deaths were linked back to a census record.

Analyses of the rate of linkage of mortality records showed that linkage varied according to age, sex, ethnicity, area level deprivation index, cause of death and rurality of residence. To adjust for incomplete linkage and differences in the linkage rates between sociodemographic strata, inverse probability weights were calculated for numerous strata on the basis of age, sex, area-based deprivation index, ethnicity, cause of death (mortality records) and rurality of residence. For example, if in the strata of Maori male decedents, aged 45–64 years, residing in moderately deprived small areas of New Zealand, 20 out of 30 were linked to a census record, each of the 20 linked records received a weight of 1.5 (= 30/20). These weights were applied to the linked census-mortality records, meaning that

Abbreviations: CVD, cardiovascular disease; SII, slope index of inequality

subsequent cohort analyses were corrected for any linkage bias. Details of the weighting process are described in detail elsewhere.¹⁰

Equivalised household income was calculated by summing the personal income of all household members, then adjusting for economies of scale according to household composition (number of adults and children) with the New Zealand-specific Jensen Equivalisation Scale.¹¹ A further adjustment was then made, using the consumer price index to adjust the 1981, 1986 and 1991 equivalised household incomes to 1996 dollars. Analyses were limited to respondents with complete information for household equivalised income; 20%, 16%, 16% and 19% of the four sequential cohorts were excluded from the analyses owing to missing data on income.

Table 1 gives the categorisation of cause of death by ICD9 (International Classification of Diseases, ninth revision) codes.

Age and ethnicity standardised mortality by income was calculated with the 1991–4 cohort as the standard. Ethnicity, being both a determinant of socioeconomic position and independently associated with mortality, confounds the association of education and mortality.^{12 13} To illustrate trends in total mortality by income level, income was grouped into five levels by dividing the 1986–9 cohort into quintiles of house-hold-equivalised income and then applying these income cutpoints to all four cohorts.

The slope index of inequality (SII) was used to summarise inequality in absolute terms across the entire population. The SII, a regression-based measure of the total association of the socioeconomic factor of interest with health or mortality in the study population, is the absolute difference in mortality between the 0th and 100th centiles of the income variable in the population under investigation. The SII for the component causes of total mortality sum to the total SII for all causes combined. The proportional contribution is therefore the SII for each cause divided by the overall SII. The change in contribution is assessed as the percentage contribution of each cause to total SII in 1996–9 minus the percentage contribution of that cause to the total SII in 1981–4.

To calculate the SII, the income variable was rank transformed to have a value in the range from 0 (least advantaged) to 1 (most advantaged).¹⁴ For example, where income groups, ranked from lowest to highest, comprise five equal-sized quintiles of the study population, the socioeconomic variable is transformed to have the values 0.1, 0.3, 0.5, 0.7 and 0.9. In a large sample, this is equivalent to a modified ridit score.¹⁵ The

Table 1	Categorisation of cause of death by International	
Classificat	ion of Diseases, ninth revision (ICD 9)codes	

Cause of death	ICD9 codes
Cardiovascular disease	393–459
Ischaemic heart disease	410-414
Stroke	430–438
Other cardiovascular	393-409, 415-429, 439-459
Respiratory diseases	470-478, 490-519
Cancer	140-209
Luna cancer	162
Colorectal cancer	153–154
Breast cancer	174
Prostate cancer	195
Other cancers	140-152, 155-161, 163-173, 175-
	194, 196–209
All other causes	001-139, 208-392, 460-469, 480-
	489, 520-999
Unintentional injury	E800-E949
Suicide	E950-959, E980-989
Other causes	001-139, 208-392, 460-469, 480-
	489, 520-799, E960-979, E990-999

SII was calculated by weighted least squares regression of the mortality for each quintile of income on the rank-transformed socio-economic variable, using the proc REG procedure in SAS. Weights were the person-time in each income category.

Ethical approval for the New Zealand Census-Mortality Study was granted by the Wellington Ethics Committee.

RESULTS

The four cohorts comprised between 3.5 million person-years in 1981 and 5 million person-years in 1996, with approximately 30 000 deaths during each period (table 2).

Standardised mortality rates by income level

Figure 1 shows total mortalityby income level. Two patterns are evident: firstly, lower income is associated with higher levels of mortality in all four periods and secondly, mortality declined over time for all income levels. The absolute level of mortality decline between 1981–4 and 1996–9 was slightly higher at high income levels for women but similar at all levels of income for men; for women mortality declined by 152, 164, 164, 164 and 196 per 100 000 years and for men mortality declined by 344, 327, 329, 296 and 351 per 100 000 years in the five income groups, ordered from lowest to highest.

Trends in mortality by cause of death

Table 3 shows trends in mortality by causes of death, and changes in mortality between 1981–4 and 1996–9. Between 1981–4 and 1996–9 total mortality decreased by 26% (from 636 to 471 per 100 000 years) for women and by 30% (from 1057 to 739 per 100 000 years) for men. Declines in mortality were recorded for most causes; however, the decline was most pronounced for CVD, where the rates halved in both women and men. Mortality declined for most causes of death, although marked increases were seen for lung cancer (+41%) among women and for suicide among men (+41%).

Trends in the absolute inequality

Table 4 shows the total SII, the SII by cause of death and the contribution of each cause to the total SII. For both men and women the total SII was higher in the 1990s than in the 1980s. For women, the SII increased from 247 in 1981–4 to 327 in 1996–9. The corresponding increase for men was from 554 to 616.

Trends in the contribution of causes of death to total inequality in mortality

Table 4 also shows the percentage contribution of each cause to the total SII and the change in the percentage contribution to total inequality between 1981–4 and 1996. In all time periods, CVDs, especially ischaemic heart disease and stroke, were important contributors to overall inequality. However, the contribution of CVD to the overall SII fell from 55% to 28% for women and from 42% to 38% for men. Stratifying by age, the decline in the importance of CVD was limited to the 60–77-year-age group (results not shown).

In contrast with CVD, both the SII for cancer and the contribution of cancer to the total SII increased from 14% to 37% for women and from 19% to 26% for men. For women, the increase was due to the increased contribution of all cancers: the contribution of lung cancer increased from 6% to 11%; breast cancer from 1% to 5%; colorectal cancer from 1% to 3%; and other cancers combined from 12% to 17%. By 1996–9, the contribution of all cancers combined is greater than the contribution of CVD in women.

For men, as with women, no particular cancer stands out as driving the increase in the contribution of all cancers to the total SII. Unlike in women, the contribution of lung cancer

	Period			
	1981–4	1986-9	1991–4	1996-9
Women	1 953 768	2 234 071	2 421 580	2 572 537
Person-years				
Men	1 856 059	2 131 286	2 290 262	2 428 016
Person-years				
Cause of death*	Deaths (n)†			
Women	12 195	13 500	12 822	11 679
All causes				
CVD	5 262	5 334	4 521	3 312
IHD	3 198	3 354	2 661	1 812
Stroke	1 299	1 113	1 038	714
Other CVD	765	867	822	786
Respiratory	600	840	828	843
All cancers	4 317	5 076	5 388	5 505
lung cancer	525	744	864	963
Colorectal cancer	753	861	822	765
Breast cancer	975	1 110	1 113	1 146
Other concers	2 064	2 361	2 589	2 631
Injup/suicide/other	573	609	546	522
Injury	360	381	324	288
Suicido	108	108	102	200
Other causes	15	30	30	207
Mon	10 311	20 808	10 405	18 051
	17 511	20 070	17 075	10 001
CVD	0 702	0 813	8 487	6 912
	7 02	7 013	6 407	1 930
Stroko	1 21 4	1 254	1 110	4 037 937
Other CVD	1 302	1 338	1 3//	1 266
Posniraton (1 200	1 214	1 054	1 090
	5 187	6 066	6 435	6 270
	1 417	1 770	1 474	1 521
Coloradal cancor	709	015	1 074	1 022
	254	71J 404	559	541
	2 410	400	2 1 47	2 154
	2 410	2 000	3 14/	2 750
injury/suicide/other	3 132	3 705	3/1/	3/30
nijury Sulatala	921	1 029	730	002
Suicide	423	585	03/	/41

Table 2 Total person-years and number of deaths in each cohort from 1981–4 to 1996–9 by

CVD, cardiovascular diseases; ICD9, International Classification of Diseases ninth revision; IHD, ischaemic heart disease. *Table 1 shows the categorisation of cause of death by ICD9 codes

+Counts are weighted number of deaths, randomly rounded to multiples of three in accordance with Statistics New Zealand protocol.

peaked in 1986–9 in men, but remained fairly stable thereafter. The contribution of colorectal and other cancers also increased over time. Prostate cancer was important at older ages only (results not shown).

Respiratory diseases (mainly chronic obstructive pulmonary disease) were important contributors to overall inequality, comprising around 10-12% in most periods.

Injury and suicide were less important contributors to total inequality in the total age group. However, analyses by age (results not shown) show that for young men (25-44 years), the contribution of injury was substantial but decreased from 42% to 21% between 1981–4 and 1996–9. At the same time, the contribution of suicide increased from 4% to 21% of the SII for 25-44-year-old men.

DISCUSSION

Summary of main findings

CVD remains an important contributor to inequalities in mortality by income level for both women and men, despite substantial declines in CVD mortality at all levels of income. A substantial decline was observed in the importance of CVD for total inequality among women; however, the decline was less pronounced among men.

The contribution of cancer to inequalities in all-cause mortality increased over time. By 1996-9, cancer contributed more to the overall income gradient in mortality in women than

CVD. Lung cancer mortality was a factor in this increase, but other cancers were also important. Among men, the contribution of lung cancer to inequalities was relatively constant.

Strengths and limitations

The study covers the entire New Zealand population over a period of major restructuring of economic and social institutions. The inclusion of the full population aged 25-74 years on census night maximises the power of the study and generalisability of the analyses. The fact that each of the cohort has the same design increases the internal validity of comparisons over time—even if there are weaknesses intrinsic to the study design that are the same for all four cohorts (eg, only 3 years of followup, possible loss of income before census night owing to poor health), they are the same for all four cohorts. Nevertheless, death is a relatively rare outcome, especially at young ages, and so analyses of some subpopulations still encounter problems of insufficient statistical power.

We were unable to link all eligible mortality records to a census record. To overcome this incomplete linkage, we assigned weights that were inversely proportional to the probability of decedents from that sociodemographic strata being linked. This should remove most, if not all, systematic linkage bias that might otherwise affect cohort analyses.

Between 16% and 20% of cohort members were excluded from the analyses because of missing income data. These

Figure 1 Total mortality */100 000 years, by level of incomet, for each cohort from 1981-4 to 1996-9.

missing data introduce the potential for bias in the SII if the relationship between income and mortality is different for those included in the analyses compared with those excluded from the analyses. Furthermore, if the size and direction of any bias vary by time period, the estimation of trends in inequality may be biased. Sensitivity analyses showed that the increase in all-cause inequality in mortality may be overestimated somewhat for women, but is slightly underestimated for men (details available from the authors). However, the observed selection bias will probably not affect the observed changes in the contribution of causes of death to inequalities.

Studies in Europe show that socioeconomic inequalities in mortality are still substantial at age \geq 75 years, and that overall CVD was the largest contributor to inequalities for this age group.¹⁶ Unfortunately, deaths for people \geq 75 years on census night were not linked to census data in the New Zealand Census Mortality Study, precluding parallel analyses.

Comparisons with international studies

Many studies^{3 6 17–24} either report changing inequalities in total and cause-specific mortality or the contributions of causes of death to inequalities at one point in time. However, few studies

www.jech.com

have determined trends in the contribution of causes of death to absolute socioeconomic inequalities in mortality. Martikainen *et al*⁴ compared the contribution of the different causes of death to changes in life expectancy in Finland for manual and non-manual occupational classes between 1971 and 1995. CVD accounted for most (>80%) of the increase in the gap in life expectancy for men and approximately 45% for women. Cancers contributed about 16% for men and 25% for women. Suicide and alcohol-related causes also contributed to widening inequalities. We are not aware of any other studies that have explicitly identified cancer as a major driver of increasing socioeconomic inequalities in mortality over time.

Interpretation and policy implications

There are four non-mutually exclusive explanations for the growing contribution of cancer to inequalities in health that we will comment on. Firstly, as stated in the Introduction (and demonstrated in appendix A), an ongoing decline in CVD mortality in the whole population means that at some point its absolute contribution to overall inequalities in mortality must also decline. The decline in cardiovascular mortality during the 1980s and early 1990s has been attributed equally to both

	Mortality*	Chango in mortality			
Cause of death†	1981–4	1986–9	1991–4	1996–9	1981–4 to 1996–99 (%
Women					
All causes	636 (622 to 650)	600 (587 to 612)	533 (522 to 544)	471 (461 to 481)	-26
CVD	283 (274 to 293)	241 (233 to 249)	193 (187 to 200)	137 (132 to 143)	-52
IHD	169 (162 to 176)	151 (144 to 157)	114 (109 to 119)	76 (72 to 80)	-55
Stroke	72 (67 to 77)	51 (47 to 55)	45 (42 to 48)	29 (27 to 32)	-60
Other CVD	42 (29 to 55)	39 (29 to 50)	34 (25 to 43)	32 (25 to 39)	-24
Respiratory	31 (28 to 34)	38 (34 to 41)	35 (32 to 37)	35 (32 to 38)	13
All cancers	216 (208 to 223)	218 (211 to 225)	218 (211 to 224)	218 (211 to 224)	1
Luna cancer	27 (24 to 29)	32 (29 to 35)	35 (32 to 37)	38 (35 to 40)	41
Colorectal cancer	37 (34 to 41)	37 (34 to 39)	34 (31 to 36)	31 (28 to 33)	-16
Breast cancer	47 (44 to 51)	48 (44 to 51)	44 (41 to 47)	43 (40 to 46)	-9
Other cancers	104 (95 to 114)	102 (94 to 111)	105 (97 to 113)	106 (98 to 114)	2
Iniury/suicide/other	106 (87 to 125)	103 (87 to 119)	88 (73 to 102)	81 (68 to 94)	-24
Iniury	19 (16 to 22)	17 (15 to 20)	14(12 to 15)	12(10 to 14)	-37
Suicide	10 (8 to 11)	9 (7 to 11)	8 (7 to 9)	8 (7 to 9)	-20
Other causes	78 (58 to 97)	77 (60 to 93)	66 (51 to 81)	61 (48 to 74)	-22
Men					
All causes	1057 (1038 to 1075)	974 (958 to 990)	853 (839 to 867)	739 (726 to 751)	-30
CVD	530 (517 to 543)	455 (445 to 466)	366 (357 to 375)	283 (275 to 290)	-47
IHD	384 (373 to 395)	332(323 to 341)	259 (251 to 266)	196(190 to 202)	-49
Stroke	74 (69 to 79)	60(56 to 64)	49 (46 to 52)	35 (33 to 38)	-53
Other CVD	73 (55 to 90)	63 (48 to 78)	59 (46 to 71)	51 (41 to 62)	-30
Respiratory	72 (67 to 77)	64 (60 to 68)	47 (44 to 50)	45(42 to 48)	-38
All cancers	279 (270 to 288)	277 (269 to 285)	275 (268 to 283)	255 (248 to 263)	-9
lung concer	86 (81 to 91)	81 (77 to 86)	72 (68 to 76)	61(58 to 65)	-29
Colorectal cancer	42 (38 to 45)	41(38 to 44)	44(41 to 47)	42(39 to 45)	1
Prostate cancer	21 (18 to 23)	23 (21 to 25)	25 (23 to 28)	24(22 to 26)	14
Other concers	131(120 to 142)	131(121 to 141)	134(125 to 144)	128(120 to 137)	-2
Injury/suicide/other	175(150 to 200)	178 (157 to 199)	165 (146 to 184)	155 (139 to 172)	-11
Injury	51 (47 to 56)	50 (46 to 54)	42 (39 to 46)	38 (34 to 41)	-25
Suicide	23(20 to 26)	28 (25 to 31)	29 (26 to 32)	32(28 to 35)	41
Other causes	101 (75 to 126)	100(79 to 122)	93 (74 to 113)	86 (69 to 103)	-15

Table 3 Standardised mortality /100 000 person-years (95% CI) for each cohort from 1981-4 to 1996-9, by cause of death and

Age and ethnicity standardised mortality/100 000 years.

†Table 1 shows the categorisation of cause of death by ICD9 codes.

declines in the prevalence of risk factors and improved treatment of primary disease.25 In particular, declines in smoking rates, cholesterol levels and population blood pressure account for most of the reduction due to risk factors, whereas improved treatments for acute myocardial infarction, secondary ischaemic heart disease prevention, hypertension, heart failure and angina contributed to about half the decline in mortality. However, it is a moot point how much cardiovascular mortality will continue to decline in light of a growing rate of obesity in New Zealand with its potential CVD burden. Among women, at least, there is also clear evidence that the increase in obesity has been disproportionately greater for lower socioeconomic groups, who already have a higher incidence of ischaemic heart disease.26

Secondly, death rates for some cancers are increasing. Hence, the importance of some cancers for overall mortality and, subsequently, for total inequalities has increased. Lung cancer among women is the primary example in this study of increasing death rates having a role in the increased importance of cancer for inequalities.

Thirdly, aetiological risk factors for cancer may be becoming more socially patterned. The most obvious example is tobacco smoking, and, indeed, it is making an increasing contribution to socioeconomic inequalities in mortality over the 1980s and 1990s in New Zealand.27 The differences between women and men at the stage of the smoking epidemic are likely to be important for explaining trends in the contribution of lung cancer to total absolute inequalities. The trends in lung cancer reflect trends in smoking prevalence 20 years earlier. The results in this study show substantial increases in lung cancer

mortality for women, whereas the mortality for men decreases after peaking in 1986–9. Results published elsewhere^{22 27} show that lung cancer mortality for women was increasing only for those with low incomes, whereas for men the decrease in mortality occurred only for those with higher income.

Increasing inequalities in colorectal cancer, breast cancer and prostate cancer²⁷ point to changing distributions in other factors. One example is that of dietary risk factors and body weight (risk factors for prostate²⁸ and colorectal^{29 30} cancers, at least), which have moved to more carcinogenic profiles overall in the population, but particularly so among lower socioeconomic groups.26

The increased contribution of breast cancer to overall inequalities occurs in the context of declining overall mortality but increases in inequality. The results presented here suggest a reversal of the income gradient in mortality for breast cancer whereby death rates were higher in high-income groups in the early 1980s. This change in the socioeoconomic gradient follows a similar direction to trends observed elsewhere, 31-35 and has been related to declines in fertility and later childbearing as lower socioeconomic groups adopt the patterns of their more advantaged compatriots. More recently, inequalities in access to screening and early detection may also be a factor in the inequalities trends.36 37

Fourthly, the increasing socioeconomic inequalities in detection and treatment of diagnosed cancer is also a contributing factor. Victora³⁸ hypothesised that more rapid and extensive uptake of public health programmes (eg, screening programmes) and interventions (eg, novel cancer treatments) by socioeconomic groups will lead to increasing

Total SII (95% CI) 247 (184–310) SII (Percentage cc 135 (55) 97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)) 260 (229-290) ontribution to all co 118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	314 (260-369) acuses SII) (%) 133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 6 (2) 57 (18)	327 (275–380) 93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	Change in % contribution 1 SII‡ (%) -20 +5 -11 +2 +24 +10 +2 +6 +6 0 -1 +3 -2
Total SII (95% CI) 247 (184–310) SII (Percentage co 135 (55) 97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)) 260 (229-290) ontribution to all co 118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	314 (260-369) auses SII) (%) 133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	327 (275-380) 93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	Change in % contribution 1 SII‡ (%) -20 +5 -11 +2 +24 +10 +2 +6 +6 0 -1 +3 -2
247 (184–310) SII (Percentage co 135 (55) 97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	260 (229-290) ontribution to all co 118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	314 (260-369) auses SIII (%) 133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	327 (275-380) 93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	Change in % contribution t SII‡ (%) -20 +5 -11 +2 +24 +10 +2 +6 0 -1 +3 -2
(184-310) SII (Percentage co 135 (55) 97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	(229-290) ontribution to all co 118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	(260-369) auses SII) (%) 133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	(275–380) 93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	contribution 1 SII‡ (%) -20 -20 +5 -11 +2 +24 +10 +2 +6 +6 0 -1 +3 -2
SII (Percentage of 135 (55) 97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	ontribution to all co 118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	auses SII) (%) 133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 57 (18)	93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	SII‡ (%) -20 -20 +5 -11 +2 +24 +10 +2 +6 +6 0 -1 +3 -2
$\begin{array}{c} 135 (55) \\ 97 (39) \\ -4 (-2) \\ 42 (17) \\ 22 (9) \\ 34 (14) \\ 5 (2) \\ 2 (1) \\ -2 (-1) \\ 29 (12) \\ 56 (23) \\ 9 (4) \\ -3 (-1) \\ 50 (20) \end{array}$	118 (45) 77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	133 (42) 86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	93 (28) 62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	$\begin{array}{c} -20 \\ -20 \\ +5 \\ -11 \\ +2 \\ +24 \\ +10 \\ +2 \\ +6 \\ +6 \\ 0 \\ -1 \\ +3 \\ -2 \end{array}$
97 (39) -4 (-2) 42 (17) 22 (9) 34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	77 (30) 24 (9) 17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	86 (27) 15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 6 (2) 57 (18)	62 (19) 11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	-20 +5 -11 +2 +24 +10 +2 +6 +6 0 -1 +3 -2
$\begin{array}{c} -4 (-2) \\ 42 (17) \\ 22 (9) \\ 34 (14) \\ 5 (2) \\ 2 (1) \\ -2 (-1) \\ 29 (12) \\ 56 (23) \\ 9 (4) \\ -3 (-1) \\ 50 (20) \end{array}$	$\begin{array}{c} 24 (9) \\ 17 (7) \\ 27 (10) \\ 53 (20) \\ 19 (7) \\ 2 (1) \\ 6 (2) \\ 26 (10) \\ 62 (24) \\ -2 (-1) \\ 3 (1) \\ 61 (23) \end{array}$	15 (5) 32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	11 (3) 20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 8 (2) 59 (18)	+5 -11 +2 +24 +10 +2 +6 +6 +6 0 -1 +3 -2
$\begin{array}{c} 42 (17) \\ 22 (9) \\ 34 (14) \\ 5 (2) \\ 2 (1) \\ -2 (-1) \\ 29 (12) \\ 56 (23) \\ 9 (4) \\ -3 (-1) \\ 50 (20) \end{array}$	17 (7) 27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	32 (10) 42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	20 (6) 37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 8 (2) 59 (18)	-11 +2 +24 +10 +2 +6 +6 +6 0 -1 +3 -2
22 (9) 34 (14) 5 (2) 2 (1) -2(-1) 29 (12) 56 (23) 9 (4) -3(-1) 50 (20)	27 (10) 53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	42 (13) 70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	37 (11) 122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+2 +24 +10 +2 +6 +6 +6 0 -1 +3 -2
34 (14) 5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	53 (20) 19 (7) 2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	70 (22) 27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	122 (37) 40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+24 +10 +2 +6 +6 0 -1 +3 -2
5 (2) 2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	$\begin{array}{c} 19 \ (7) \\ 2 \ (1) \\ 6 \ (2) \\ 26 \ (10) \\ 62 \ (24) \\ -2 \ (-1) \\ 3 \ (1) \\ 61 \ (23) \end{array}$	27 (9) 6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	40 (12) 9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+10 +2 +6 +6 0 -1 +3 -2
2 (1) -2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	2 (1) 6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	6 (2) -4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	9 (3) 16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+2 +6 +6 0 -1 +3 -2
-2 (-1) 29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	6 (2) 26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	-4 (1) 41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	16 (5) 57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+6 +6 0 -1 +3 -2
29 (12) 56 (23) 9 (4) -3 (-1) 50 (20)	26 (10) 62 (24) -2 (-1) 3 (1) 61 (23)	41 (13) 69 (22) 6 (2) 6 (2) 57 (18)	57 (17) 75 (23) 8 (2) 8 (2) 59 (18)	+6 0 -1 +3 -2
56 (23) 9 (4) -3 (-1) 50 (20)	62 (24) -2 (-1) 3 (1) 61 (23)	69 (22) 6 (2) 6 (2) 57 (18)	75 (23) 8 (2) 8 (2) 59 (18)	0 -1 +3 -2
9 (4) -3 (-1) 50 (20)	-2 (-1) 3 (1) 61 (23)	6 (2) 6 (2) 57 (18)	8 (2) 8 (2) 59 (18)	-1 +3 -2
-3 (-1) 50 (20)	3 (1) 61 (23)	6 (2) 57 (18)	8 (2) 59 (18)	+3 -2
50 (20)	61 (23)	57 (18)	59 (18)	-2
	01 (23)	37 (10)	37 (10)	2
Total SII (95% CI))			
554 (391 to	540 (400 to	632 (591 to	616 (491 to	Change in %
716)	679)	673)	741)	contribution
SII (Percentage co	ontribution to all c	auses SII) (%)		SII‡ (%)
231 (42)	255 (47)	273 (43)	237 (38)	-3
126 (23)	181 (34)	189 (30)	161 (26)	+3
58 (10)	33 (6)	39 (6)	38 (6)	-4
47 (8)	41 (8)	45 (7)	38 (6)	-2
68 (12)	69 (13)	62 (10)	72 (12)	-1
106 (19)	107 (20)	149 (24)	163 (26)	+7
48 (9)	79 (15)	60 (9)	73 (12)	+3
9 (2)	3 (1)	16 (3)	23 (4)	+2
6 (1)	-4 (1)	12 (2)	5 (1)	0
43 (8)	29 (5)	61 (10)	62 (10)	+2
149 (27)	109 (20)	148 (23)	144 (23)	-4
30 (5)	18 (3)	40 (6)	24 (4)	-2
12 (2)	18 (3)	23 (4)	26 (4)	+2
107 (19)	73 (14)	85 (13)	94 (15)	-4
	716) SII (Percentage c 231 (42) 126 (23) 58 (10) 47 (8) 68 (12) 106 (19) 48 (9) 9 (2) 6 (1) 43 (8) 149 (27) 30 (5) 12 (2) 107 (19)	716) 679) SII (Percentage contribution to all c 231 (42) 255 (47) 126 (23) 181 (34) 58 (10) 33 (6) 47 (8) 41 (8) 68 (12) 69 (13) 106 (19) 107 (20) 48 (9) 79 (15) 9 (2) 3 (1) 6 (1) -4 (1) 43 (8) 29 (5) 149 (27) 109 (20) 30 (5) 18 (3) 12 (2) 18 (3) 107 (19) 73 (14)	$\begin{array}{ccccccc} 716) & 679 & 673 \\ 511 (Percentage contribution to all causes SII) (%) \\ 231 (42) & 255 (47) & 273 (43) \\ 231 (42) & 255 (47) & 273 (43) \\ 126 (23) & 181 (34) & 189 (30) \\ 58 (10) & 33 (6) & 39 (6) \\ 47 (8) & 41 (8) & 45 (7) \\ 68 (12) & 69 (13) & 62 (10) \\ 106 (19) & 107 (20) & 149 (24) \\ 48 (9) & 79 (15) & 60 (9) \\ 9 (2) & 3 (1) & 16 (3) \\ 6 (1) & -4 (1) & 12 (2) \\ 43 (8) & 29 (5) & 61 (10) \\ 149 (27) & 109 (20) & 148 (23) \\ 30 (5) & 18 (3) & 40 (6) \\ 12 (2) & 18 (3) & 23 (4) \\ 107 (19) & 73 (14) & 85 (13) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 Table 4
 The absolute and percentage contribution* of causes of death to the total SII for each cohort from 1981–84 to 1996–99, by sex

Percentage contribution of each cause to total SII in 1996–9 minus the percentage contribution of that cause to the total SII in 1981–4.

relative inequalities in health. Less advantaged groups would only catch up with high socioeconomic groups after the high socioeconomic groups had secured the maximum possible benefit from the new knowledge and initiatives. Applying this "inverse care" law to cancer, slow but steady improvements in cancer prevention knowledge, services and treatments are a plausible explanation for increasing inequalities in cancer mortality. There is some emerging evidence of differential survival from cancer, adjusted for stage, by ethnic group in New Zealand^{8 39} and, to a lesser extent, by socioeconomic group.⁴⁰ From a policy perspective, these results point to the need to be aware of, monitor, understand and act on existing and emerging socioeconomic inequalities in cancer. In New Zealand, the recently developed Cancer Control Strategy has as its second purpose to "reduce inequalities in the impact of cancer".41 Furthermore, policies that promote equal access to interventions and technologies that improve cancer survival have the potential to reduce the overall cancer mortality.

CONCLUSION

CVD mortality has declined at all income levels and so too has the contribution of CVD to mortality inequalities. Concurrently, the contribution of cancer to inequalities in mortality by income has increased and, for women at least, is now greater than the contribution of CVD. We hypothesise that a similar crossover is occurring in other populations in which CVD mortality has declined, although socioeconomic differences in the distribution and effect of the obesity epidemic for CVD may ensure its continuing importance. Prevention efforts aimed at reducing socioeconomic inequalities in mortality need to increasingly focus on socioeconomic inequalities in cancer mortality.

What is already known

- Socioeconomic inequalities in adult mortality exist for many causes of death in most countries.
- In relative terms, socioeconomic inequalities increased in many countries in the later part of the 20th century.
- In Northern Europe, much of the increase in relative inequalities was accounted for by increasing inequalities for cardiovascular disease.
- Cardiovascular mortality has declined substantially through much of Europe, the US and Australasia since the 1970s.

What this paper adds

- This paper illustrates trends in absolute inequalities in mortality by cause of death and shows the changing importance of different causes of death for total absolute inequalities. As cardiovascular disease becomes a less common cause of death, its contribution to overall income inequalities is declining in the New Zealand population aged 25-77 years.
- Instead, cancer is emerging as the major driver of inequalities in mortality in the New Zealand population aged 25-77 years.

Policy implications

 To effectively deal with socioeconomic inequalities in mortality in New Zealand, effective interventions are required to understand and reduce cancer inequalities.

ACKNOWLEDGEMENTS

The New Zealand Census Mortality Study is conducted in collaboration with Statistics New Zealand and within the confines of the Statistics Act 1975.

Authors' affiliations

J Fawcett, T Blakely, Department of Public Health, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New 7ealand

Funding: The New Zealand Census Mortality Study is funded by the Health Research Council of New Zealand and cofunded by the Ministry of Health. These funders had no role in the drafting of this paper.

Competing interests: None.

The New Zealand Census Mortality Study is a study of the relationship between social factors and mortality in New Zealand, and is based on the integration of anonymised population census data from Statistics New Zealand with mortality data from the New Zealand Health Information Service

The project was approved by Statistics New Zealand as a Data Laboratory project under the Microdata Access Protocols in 1997. The datasets created by the integration process are covered by the Statistics Act and can be used for statistical purposes only. Only approved researchers who have signed Statistics New Zealand's declaration of secrecy can access the integrated data in the Data Laboratory. For further information about confidentiality matters in regard to this study, please contact Statistics New Zealand.

REFERENCES

- Borrell C, Regidor E, Arias LC, et al. Inequalities in mortality according to educational level in two large southern European cities. Int J Epidemio 1999:28:58-63
- 2 Mackenbach JP, Bos V, Andersen O, et al. Widening socioeconomic inequalities in mortality in six western European countries (Comment). Int J Epidemiol 2003;32:830-7
- 3 Marang-van de Mheen PJ, Davey Smith G, Hart CL, et al. Socioeconomic differentials in mortality among men within Great Britain: time trends and contributory causes. J Epidemiol Commun Health 1998;**52**:214–8.
- 4 Martikainen P, Valkonen T, Martelin T. Change in male and female life expectancy by social class: decomposition by age and cause of death in Finland 1971–95. J Épidemiol Commun Health 2001;55:494–9.
- Regidor E, Gutierrez-Fisac JL, Rodriguez C. Increased socioeconomic differences in mortality in eight Spanish provinces. Soc Sci Med 1995;41:801–7.
 Valkonen T, Martikainen JMP, et al. Changes in socioeconomic inequalities in
- mortality during an economic boom and recession among middle aged men and omen in Finland. *Eur J Public Health* 2000;**10**:274–80.
- Blakely TA, Woodward A, Salmond C. Anonymous linkage of New Zealand mortality and census data. *Aust N Z J Public Health* 2000;**24**:92–5. 7
- 8 Hill S, Atkinson J, Blakely TA. Record linkage of 1981, 1986, 1991, 1996 census records to mortality records. NZCMS Technical Report No 3. http:// www.Wnmeds.Ac.Nz/Nzcms-Info.Html) Wellington: Department of Public

Health, Wellington School of Medicine and Health Sciences, University of Otago, 2002

65

- Blakely TA. Socio-economic factors and mortality among 25–64 year olds: the New Zealand censusmortality study [PhD dissertation]. Wellington: University of 9
- Otago, 2001.
 Fawcett JM, Blakely TA, Atkinson J. Weighting the 81, 86, 91 & 96 census-mortality cohorts to adjust for linkage bias. NZCMS technical Report No 5. Wellington: Department of Public Health, Wellington School of Medicine and Health Sciences, 2002.
- Jensen J. Income equivalences and the estimation of family expenditure on children. Wellington: Department of Social Welfare, 1988 (unpublished)).
- 2 Ajwani S, Blakely TA, Robson B, et al, eds. Decades of disparity: ethnic mortality trends in New Zealand 1980–1999. Wellington: Ministry of Health and University of Otago, 2003.
- 13 Blakely TA, Tobias M, Robson B, et al. Widening ethnic mortality disparities in New Zealand, 1981-99. Soc Sci Med 2005;61:2233-51.
- 14 Mackenbach JP, Kunst AE. Measuring the magnitude of socio-economic inequalities in health: an overview of available measures illustrated with two examples from Europe. Soc Sci Med 1997;44:757-71
- Bross IDJ. How to use ridit analysis. *Biometrics* 1958;14:18–38.
 Huisman M, Kunst AE, Bopp M, et al. Educational inequalities in cause-specific mortality in middle-aged and older men and women in eight western European populations. Lancet 2005;365:493-500.
- 17 Avendano M, Kunst AE, van Lenthe F, et al. Trends in socioeconomic disparities in stroke mortality in six European countries between 1981–1985 and 1991– 1995. Am J Epidemiol 2005;161:52–61.
- 18 Blakely T, Wilson N. The contribution of smoking to inequalities in mortality by education varies over time and by sex: two national cohort studies, 1981–84 and 1996–99. Int J Epidemiol 2005;**34**:1054–62.
- 19 Leinsalu M, Vagero D, Kunst AE. Estonia 1989-2000: enormous increase in mortality differences by education. Int J Epidemiol 2003;32:1081-7
- Diordany dimensional production in a problem of 2000, 32, 1001 Y and a construct and construct and construction in the second second
- Schalick LM, Hadden WC, Pamuk E, et al. The widening gap in death rates among income groups in the United States from 1967 to 1986. Int J Health Serv 2000;30:13–26. 21
- 22 Shaw C, Blakely T, Sarfati D, et al. Varying evolution of the New Zealand lung cancer epidemic by ethnicity and socioeconomic position (1981–1999). NZMedJ 2005;118:15
- 23 Wong MD, Shapiro MF, Boscardin WJ, et al. Contribution of major diseases to disparities in mortality. N Engl J Med 2002;347:1585–92
- 24 leclerc A, Chastang JF, Menvielle G, et al. Socioeconomic inequalities in premature mortality in France: have they widened in recent decades. Soc Sci Med 2006;62:2035–45.
- 25 Capewell S, Beaglehole R, Seddon M, et al. Explanation for the decline in coronary heart disease mortality rates in Auckland, New Zealand, between 1982 and 1993. Circulation 2000;102:1511-16.
- 26 Ministry of Health. Tracking the obesity epidemic: New Zealand 1977–2003. Wellington: Ministry of Health, 2004.
- 27 Blakely TA, Fawcett JM, Atkinson J, et al. Decades of disparity li: socio-economic Jakey TA, Takcer JW, Akrison J, et al. Devades of asport yill solar economic mortality trends in New Zealand. 1981–1999. Public Health Intelligence Occassional Bulletin No 24. Wellington: Ministry of Health, 2004.
 Chan JM, Gann PH, Giovannucci EL. Role of diet in prostate cancer development and progression. J Clin Oncol 2005;23:8152–60.
 Kushi L, Giovannucci E. Dietary fat and cancer. Am J Med 2002;113(Suppl DN 67 70.
- 9B):63Ś–70
- 30 Shike M. Diet and lifestyle in the prevention of colorectal cancer: an overview. Am J Med 1999;106:11S-15, in discussion 50S-51S.
- 31 Pukkala E, Weiderpass E. Time trends in socio-economic differences in incidence rates of cancers of the breast and female genital organs (Finland, 1971-1995). Int J Cancer 1999;81:56-61.
- 32 Le Marchand L, Yoshizawa N, Kolonel LN, et al. Time trends in characteristics at diagnosis and subsequent survival for Caucasian, Japanese and Hawaiian women with breast cancer in Hawaii. *J Chronic Dis* 1987;40:1099–110.
- Wagener DK, Schatzkin A. Temporal trends in the socioeconomic gradient for breast cancer mortality among US women. Am J Public Health 1994;84:1003-6.
- 34 Martikainen P, Valkonen T. Diminishing educational differences in breast cance mortality among Finnish women: a register-based 25-year follow-up. *Am J Public* Health 2000;**90**:277–80.
- Krieger N, Chan JT, Waterman PD, et al. Race/ethnicity and changing US socioeconomic gradients in breast cancer incidence: California and Massachusetts, 1978–2002 (United States). Cancer Causes Control 2006;17:217-23.
- Hermon C, Beral V. Breast cancer mortality rates are levelling off or beginning to 36 decline in many Western countries: analysis of time trends, age-cohort and ageeriod models of breast cancer mortality in 20 countries. Br J Cancer 1996:**73**:955-60.
- Althuis M, Dozier J, Anderson W, et al. Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol 2005;34:405–12.
 Victora CG, Vaughan JP, Barros FC, et al. Explaining trends in inequities: evidence from Brazilian child health studies. Lancet 2000;356:1093–8.
- Jeffreys M, Stevanovic MD, Tobias M, et al. Ethnic inequalities in cancer survival in New Zealand: linkage study. *Am J Public Health* 2005;**95**:834–37. 40 **Pearce N**, Jeffreys M, Brewer N. Socioeconomic inequalities in cancer survival in
- New Zealand. Australasian Epidemiol Association Annual Conference, 2005.
- Newscastle, Australia: Australiasian Epidemiologist, 2005.
 Ministry of Health. The New Zealand cancer control strategy. Wellington: Ministry of Health and the New Zealand Cancer Control Trust, 2003.

APPENDIX A

When the slope index of inequality (SII) is calculated by weighted-least squares regression of the death rates on the rank transformed income variable, as described in the Methods, the average mortality (λ) is the rate for the mid-point of the population (ie, $x = \frac{1}{2}$). Thus

$$\lambda = \alpha + \frac{1}{2}\beta$$
$$SII = \beta$$
$$RII = (\alpha + \beta)/\alpha$$

Hence by substitution of equations 2 and 3 into equation 1

$$\lambda = SII/(RII-1)+SII/2$$

Thus, if the average death rate falls, the ratio of SII to relative index of inequality (RII) must also fall, which can only be achieved by either a decrease in SII (absolute inequality), or an increase in the RII, or both. Alternatively, if average mortality is constant, then increases in RII will be accompanied by increases in SII.

bmjupdates+

bmjupdates+ is a unique and free alerting service, designed to keep you up to date with the medical literature that is truly important to your practice.

bmjupdates+ will alert you to important new research and will provide you with the best new evidence concerning important advances in health care, tailored to your medical interests and time demands.

Where does the information come from?

bmjupdates+ applies an expert critical appraisal filter to over 100 top medical journals A panel of over 2000 physicians find the few 'must read' studies for each area of clinical interest

Sign up to receive your tailored email alerts, searching access and more...

www.bmjupdates.com