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Uncertainty analysis is a method, established in engineering and policy analysis but relatively new to
epidemiology, for the quantitative assessment of biases in the results of epidemiological studies. Each
uncertainty analysis is situation specific, but usually involves four main steps: (1) specify the target parameter
of interest and an equation for its estimator; (2) specify the equation for random and bias effects on the
estimator; (3) specify prior probability distributions for the bias parameters; and (4) use Monte-Carlo or
analytic techniques to propagate the uncertainty about the bias parameters through the equation, to obtain
an approximate posterior probability distribution for the parameter of interest. A basic example is
presented illustrating uncertainty analyses for four proportions estimated from a survey of the epidemiological
literature.

E
pidemiologists use methods for interpreting the impact of
bias sources (systematic errors) on study results that range
from ignoring biases, to evaluating biases qualitatively, to

evaluating biases quantitatively. Uncertainty analysis is a
family of methods, established in engineering and policy
analysis1 2 but relatively new to epidemiology, for quantitatively
assessing systematic errors and other sources of uncertainty in
study results.3–9 In the form we consider here, an uncertainty
analysis quantifies the impact on estimates of parameters that
govern the degree of bias in the estimates, by sampling values
for these parameters from prior probability distributions. Other
names for this approach include Monte-Carlo uncertainty
analysis, Monte-Carlo risk analysis and Monte-Carlo sensitivity
analysis.

Each uncertainty analysis is situation specific, although the
following four steps are common. First, specify the target
parameter of interest and an equation for its conventional
estimator. Second, specify an equation (or system of equations)
that describes how the observed data are generated from the
population of interest, including in the equation bias para-
meters that determine the degree of systematic error in the
observations; this step is known as bias modelling.8 9

Combining this equation with the equation for the estimator
yields an equation for removing biases from the estimator. The
values of the bias parameters are usually unknown; thus, as a
third step, we specify prior probability distributions for the
values of the bias parameters. These prior distributions describe
the investigator’s judgements or bets about the magnitude of
the bias parameters before seeing the data.10 These judgements
should be based on careful consideration of how systematic
errors might have occurred during the process of the study. The
distributions are then used in a fourth step, in which we
repeatedly sample from the prior distributions to produce
adjusted estimates of the target parameter. This repeated-
sampling (Monte-Carlo) step propagates uncertainties about
the bias parameters (as expressed in the prior distributions for
the bias parameters) through the estimating equations. An
uncertainty analysis results in a distribution of estimates for the
target parameter that accounts for the investigator’s judge-
ments about the likely magnitude of systematic errors, as well
as for uncertainty about random errors.

An approach more basic than ours is sensitivity analysis.9 11 A
standard sensitivity analysis is non-probabilistic; it examines

results obtained from a relatively small number of fixed values
for each bias parameter. The result from a sensitivity analysis is
thus a set of estimates that have been adjusted for bias under
the fixed values for the bias parameters. The uncertainty
analysis we describe here replaces these fixed values with many
values drawn from a prior probability distribution, to represent
more flexibly our uncertainty about the exact size of the bias
parameter. It has been called Monte-Carlo sensitivity analysis
to reflect the fact that it is equivalent to sensitivity analysis
based on random draws from the prior distribution.4 8

A potentially more accurate approach is Bayesian uncertainty
analysis.2 4 8 12 13 This approach also uses prior distributions
such as those we describe here. Instead of sampling from these
distributions and using the sampled values to adjust the data or
the estimates, however, Bayesian analysis updates the distribu-
tions based on the data, using Bayes’ theorem, and samples the
parameters from these updated (posterior) distributions. The
result is a posterior probability distribution for the parameters
of interest. Bayesian analysis has the advantage of being able to
incorporate prior distributions for parameters other than bias
parameters, including a prior distribution for the target
parameter. Nonetheless, if these other prior distributions are
not included in the Bayesian analysis, it often tends to give
results similar to Monte-Carlo uncertainty analysis,4 8 12 and so
we do not discuss it further here.

The present article provides a teaching example of Monte-
Carlo uncertainty analysis, using a simple problem of estimat-
ing four proportions from a survey of the epidemiological
literature.

METHODS
Survey example
We conducted a literature survey to determine how epidemiol-
ogists assess exposure-measurement error (EME) in study
results.14 We randomly sampled 57 articles from Epidemiology
(2001), American Journal of Epidemiology (2001) and International
Journal of Epidemiology (December 2000–October 2001). Each
article was reviewed by one of us (AMJ) for (1) acknowl-
edgement of the possibility of error in measuring any of the

Abbreviations: CL, confidence limit; EME, exposure-measurement error;
FN, false negative; FP, false positive
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study exposures and (2) qualitative or quantitative evaluations
of the impact of EME on the study results.

Of the 57 articles that were examined, 35 articles (61%, 95%
confidence interval (CI) 49, 74) acknowledged EME. Eighteen
of these 35 articles (32%, 95% CI 20, 44) mentioned EME but
said nothing about the impact of EME on the study results;
another 16 articles (28%, 95% CI 16, 40) qualitatively described
the effect EME could have had on the study results. One study
(2%, 95% CI 0, 9) quantified the impact of EME on the study
results by using a sensitivity analysis.

We present the results of our uncertainty analyses, which
quantitatively examined the bias in our survey results that
could have been caused by errors in classifying the articles. The
goal of our analyses was to obtain interval estimates for the
actual proportions that accounted for both systematic error
(due to the possibility that our classification of the articles was
imperfect) and random-sampling error (due to the fact that we
randomly sampled 57 articles from a much larger set of articles
that met our inclusion criteria).

Step 1: defining the target parameters and their
estimators
For the purpose of this illustration, we will define the target
parameters as the proportions of articles in the surveyed
journals and time period that

(1) mentioned anything about EME for their study exposures
(category 1, acknowledge EME),

(2) mentioned EME but said nothing about the impact of EME
on study results (category 2, no impact of EME),

(3) qualitatively evaluated the effect of EME on study results
(category 3, qualitative), or

(4) quantified the impact of EME on study results (category 4,
quantitative).

We denote these four proportions by Pi, where i = 1, …, 4
denotes one of the above categories. Because we sampled 57
articles, the conventional estimator for each of these four
proportions (ie, the estimator obtained by assuming no bias) is
given by

       

Step 2: defining the data-generation process
For the random-error component, we assumed that the number
of sampled articles falling into category i followed a binomial
distribution with probability Pi and total trials equal to 57 (thus
neglecting any finite-population correction, which would have
slightly narrowed the CIs). For the systematic component of
error, the number of articles classified as falling into a category
is equal to the true number in that category minus false
positives (FPs, those that were not in the category but
mistakenly placed there) plus false negatives (FNs, those that
were in the category but mistakenly left out). That is

In this context, FPi and FNi are the bias parameters. We
are not certain that our classification procedure was perfect;
we therefore did not want to assume that the number of
FPs was always zero, nor that the number of FNs was always
zero.

We incorporated equation (2) into expression (1) to get the
following four equations (one each for i = 1, 2, 3, 4) to estimate

the proportions while adjusting for possible classification
errors:

Step 3: specifying prior distributions
For the classification errors that we believe could have occurred
(table 1), we are somewhat uncertain about the actual numbers of
misclassified articles. We specified prior distributions for these
classification errors (table 1), which describe our assumptions
about the likelihood and magnitude of these errors. Standard
probability distributions did not adequately model our uncer-
tainty. Instead, we specified our priors as discrete distributions,
customised to match our beliefs and background information. We
think it plausible that our examination of the surveyed articles
resulted in little misclassification. Therefore, for each prior
distribution we assigned a high probability to having zero articles
misclassified.

We assumed that no more than three articles could have been
classified incorrectly as ignoring EME (error FN1; table 1); we
thought that our careful reading of the articles would make a
larger number highly unlikely. Given this constraint, we further
assumed only one article that truly acknowledged EME with no
qualitative evaluation could have been misclassified as ignoring
EME (error FN2); we thought it would have been difficult for us
to miss a statement of error in physical measurements or a
limitation about exposure measurement. Finally, we thought it
difficult to incorrectly classify articles with qualitative state-
ments about the impact of EME on study results either as not
qualitatively evaluating EME (errors FP2 and FN3B) or as not
acknowledging EME (error FN3A; table 1), although unclear
wording in an article might have caused these errors.

We judged the following types of classification errors to be
extremely unlikely and, therefore, assumed in our analysis that
they did not occur:

(a) an article that said nothing about EME was incorrectly
classified as saying something about EME, or qualitatively
or quantitatively evaluating the impact of EME on study
results;

(b) an article that mentioned EME, but did not evaluate the
impact of EME on study results was incorrectly classified
as qualitatively or quantitatively evaluating the impact of
EME on study results;

(c) an article that qualitatively evaluated the impact of EME
on study results was incorrectly classified as quantitatively
evaluating the impact of EME on study results; and

(d) an article that quantitatively evaluated the impact of EME
on study results was incorrectly classified into any other
category.

We believe errors (a), (b) and (c) to be unlikely because they
could have occurred only if we imagined reading a statement
that was not there. Error (d) is unlikely as the discussion of a
quantitative evaluation would take up at least several sentences
in a manuscript, or most likely even more space. Note that
omitting a bias parameter assigns a prior probability of one to
the null value for that parameter.

Assumptions a–d lead to the following modifications of the
estimating equations (3) for the four target parameters:
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Step 4: Monte-Carlo uncertainty analysis
The software package Crystal Ball (version 2000.2) was used to
draw samples from the distributions given in table 1.15 Each of
the four analyses was simulated separately and was based on
100 000 resamplings from these distributions.

To account for random-sampling error in our results (due to
the fact that we randomly sampled 57 articles from a very large
set of articles that would meet the inclusion criteria), we added
a bootstrap step to each of the Monte-Carlo trials. The bootstrap
step was implemented on each simulation trial by generating
one binomial (57, P) random variate, where P is the corrected
proportion for that Monte-Carlo trial, and by replacing the
corrected number of articles with the binomial random
variate.16 To complete the bootstrap step, we corrected our
estimator to reduce its variance by subtracting off excess random
error. Thus, the analysis for each of the four proportions generated
a distribution of 100 000 proportions accounting for classification
error (based on our priors about the magnitude of classification
errors) and random-sampling error.

We took the lower 2.5 and upper 97.5 percentiles of the total
simulation distribution as defining our 95% simulation interval for
the proportion. As mentioned earlier, in some circumstances the
interval between these limits approximates a 95% Bayesian
posterior probability interval—that is, we would bet 95% that the
true proportion of the sampled population falls within the interval.8

When this approximation holds, the interval is also known as a 95%
certainty interval or 95% credibility interval, and can be said to
fairly represent the certainty that we should have about the true
proportion in light of our data and our prior distributions.

RESULTS
Table 2 presents the conventional point estimates (which are
the observed proportions P̂1, P̂2 and P̂3) and 95% CIs for the

actual proportions of articles published in categories 1, 2 and 3,
alongside the simulation medians and 95% simulation intervals
for comparison (fig 1).

Our prior assumption that at most three articles were
misclassified per group limited the amount of systematic error.
There is a very small difference between P̂1 and the median of
the simulation distribution. For P̂2 and P̂3, there is no
discernible difference between the conventional estimates and
corresponding simulation medians. Similarly, there was little
difference between the 95% confidence and simulation inter-
vals. Therefore, with our priors, sampling error is the largest
contributor to total uncertainty.

DISCUSSION
We recommend using quantitative methods such as uncertainty
analysis to evaluate the effect of systematic error on study
results whenever policy decisions are to be based on the results.
p Values and 95% CIs provide a sense of the potential impact of

Table 1 Descriptions of the prior probability distributions used for possible classification errors

Error Description of error

Number of
articles
misclassified

Probability
of number
misclassified

FN1 Number of articles that acknowledged EME, but were misclassified as
ignoring EME

0 0.600
1 0.300
2 0.075
3 0.025

FN2 Number of articles that acknowledged EME and did not evaluate its
impact on study results, but were misclassified as ignoring EME

0 0.700
1 0.300

FP2 Number of articles that qualitatively evaluated the impact of EME on
study results, but were misclassified as acknowledging
EME with no evaluation

0 0.800
1 0.150
2 0.050

FN3A Number of articles that qualitatively evaluated the impact of EME on
study results, but were misclassified as ignoring EME

0 0.700
1 0.250
2 0.050

FN3B Same as FP2

EME, exposure-measurement error; FN, false negative; FP, false positive.

Figure 1 Frequency distribution representing the uncertainty in the
proportion of articles that said something about exposure-measurement
error by the type of evaluation.
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random error on estimates. Nonetheless, the justification for
the assumptions used to compute p values and 95% CIs is not
always clear,8 17 and they do not account for the impact of
uncontrolled systematic errors on estimates. Here we have
illustrated an uncertainty analysis for each of four proportions
by using a basic example involving one form of systematic
error: misclassification. This example is much simpler than
evaluating an effect measure in an epidemiological study. We
think that it is valuable to start with a very simple case study of
one source of systematic error, free of causal-inference
concerns. One may then approach the more complex effect-
estimation examples that have appeared in the literature.2–8 12 13

Perhaps the simplest of these uncertainty-analysis examples
involves a single standardised mortality ratio and a single
systematic error (confounding), which we would recommend
as a second teaching example.12

An uncertainty analysis uses prior probability distributions
for the bias parameters. When many bias parameters are
present, there will be a very large number of possible parameter
combinations, making simple sensitivity analysis impractical or
misleading. Use of prior probability distributions allow one to
summarise over parameter combinations based on explicit
judgements about the likely sizes of the parameters. The final
simulation distribution for the target parameter is derived from
the usual random error model and the assumed prior
distributions for the bias parameters. Histograms illustrate
how the distribution changes when one changes assumptions
and prior distributions for the bias parameters.

As seen above, the most difficult step is specifying the prior
distributions. Possible sources of information for the priors
include eliciting expert opinion (purely subjective priors),
gathering estimates from external (prior) validity and reliability
studies or a combination of these sources. If no prior study data
are available, the entire prior distribution will depend on the
investigator’s judgement. By contrast, when using a standar-
dised instrument, reliability or validity data may be available
from previous studies, and that data can be used to estimate the
bias parameters (eg, false negative and false positive probabil-
ities). Nonetheless, when previous data are available, their
relevance to the current study will be a matter of judgement.
Even if the data come from the current study (as in validation
sampling), those data may be subject to considerable systematic
error, such as selection bias, and an uncertainty analysis of
these sources of bias may be warranted.

Investigators will rarely have identical priors, for they will
have differing opinions about the likely sizes of bias parameters
and the relevance of previous data to the current study. Thus,
the results of each investigator’s uncertainty analysis could
conflict. This is no different from the usual disputes over study
results; the advantage of uncertainty analysis, however, is that
it enables one to pinpoint the major sources of conflict.

Performing sensitivity analyses can help epidemiologists
explore the potential impact of systematic errors on their effect
estimates. By incorporating prior distributions for the bias
parameters into their analyses, epidemiologists can further
study the impact of judgements about the sizes of these

parameters. By varying these distributions to match different
beliefs, they may also discover which (if any) conclusions are
warranted in light of current beliefs about these parameters,
even if there is conflict among those beliefs.
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