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Association of learning disabilities and attention-deficit disorder
with concurrent levels of persistent organic pollutants

I
n this issue of Journal of Epidemiology &
Community Health, Lee et al1 (see page
591) demonstrate an association of

both learning disabilities (LD) and atten-
tion-deficit disorder (ADD) with concur-
rent serum levels of persistent organic
pollutants (POPs) among 12–15-year-old
participants in the National Health and
Nutrition Examination Survey (NHANES
1999–2000). For example, among children
with detectable versus non-detectable
levels of heptachlorodibenzo-p-dioxin
(HPCDD), the adjusted prevalence odds
ratios (95% CI) for LD and ADD were 2.08
(1.17 to 3.68) and 3.41 (1.08 to 10.8),
respectively. This is perhaps the first
published study to describe a potential
POP-associated increased risk of LD or
ADD. Previous studies have primarily
assessed continuous cognitive or beha-
vioural measures among generally healthy
populations. LD and ADD are clinical end
points that have obvious public health
impacts in terms of childhood (and adult)
morbidity as well as educational, medical
and social costs of supporting individuals
with these diagnoses.2 If confirmed, Lee et
al’s findings could make a substantial
contribution to the identification of poten-
tially remediable risk factors for these
increasingly common disorders.3 4

However, the strength of the associa-
tions observed in Lee et al’s study are
surprising. Previous epidemiological find-
ings generally support a modest associa-
tion of early-life exposure to some POPs
(eg, polychlorinated biphenyls (PCBs))
with poorer attention,5 6 impulse con-
trol,7 8 memory and learning skills,6 9 10

and school achievement.11 Furthermore,
the Lee et al analysis had a small sample
size (278 NHANES children had
available exposure and outcome data)
including only 44 cases of LD and 26
cases of ADD; used dichotomised expo-
sure measures (levels were categorised as
detectable vs non-detectable); measured
exposure concurrently (whereas in
most previous epidemiological analyses
early-life exposures to POPs have been

most predictive of later developmental or
behavioural ability)12; and relied on self-
reported diagnoses of LD and ADD, out-
come measures that potentially involve
considerable, presumably non-differential
measurement error. All these circum-
stances should mitigate against the sta-
tistically significant, relatively large effect
estimates that they report.

This apparent paradox suggests either
that the observed association reflects a
substantial underlying relationship or
that chance or study design limitations
are at issue. The possible study design
issues highlight a key challenge in the
assessment of environmental risk factors
for adverse neurocognitive development
in childhood—that is, the relative
merits of assessing clinically defined
abnormalities versus continuous, largely
normative outcomes. In general, the latter
approach has been more common, per-
haps because of the availability of well-
validated continuous outcome measures
and their advantages in power and
sensitivity. Furthermore, although assess-
ment of clinically defined, discrete out-
comes has undeniable public health
relevance, it is important not to under-
estimate the implications for population
health of the neurobehavioural deficits
often noted in association with exposures
to environmental toxicants where contin-
uous outcomes are used.13 We know that
small changes in the mean value of
health indicators such as serum choles-
terol level, blood pressure or body mass
index can signal substantial changes in
the prevalence of clinically evident dis-
ease within a population.14 Similarly, the
mean changes noted in continuously
distributed measures of neurobehaviour,
although of uncertain significance with
regard to an individual’s well-being, can,
depending on the shape of the dose–effect
relationship, indicate increases in disease
occurrence in the population, such as
those identified by Lee et al.15

The study of clinically defined abnorm-
alities of child development is difficult for

a number of reasons. Case definitions of
learning or behavioural disorders that are
appropriate for epidemiological analysis
are difficult to establish16; the necessary
clinical assessment process tends to be
variable, complex and resource intensive.
Diagnoses such as LD and ADD are, by
definition, syndromal and therefore lack
confirmatory laboratory testing. For
example, in Lee et al’s study, it is
impossible to establish that diagnostic
criteria were applied similarly across
individuals. Although these disorders are
increasingly common, they are relatively
rare in the epidemiological sense. Among
school-aged children, approximately 5%
attending public schools have an LD3 and
3–12% have ADD.17 18 A standard case–
control study of these outcomes would be
limited by cross-sectional exposure
assessment, a potential source of expo-
sure misclassification particularly for
POPs, where early-life exposures have
typically been the most adverse. There is
also the theoretical possibility of reverse
causality—that is, current exposure could
be influenced by a child’s behaviour—
although this is less likely for POPs than
for other neurotoxicants for which beha-
vioural disorders can be related to expo-
sure risk, such as lead.19 Lee et al’s
analysis addressed reversed causality via
possible disease-related changes in diet or
body mass index, but found no differ-
ences between children with and without
an LD or ADD, suggesting that these
factors did not confound the exposure
measure. In addition, serum POP mea-
sures are expensive. By using NHANES, a
large population-based sample for whom
exposure and outcome data were readily
available, Lee et al at least theoretically
avoided some of these limitations.
However, large serum volume require-
ments and the high analytical costs of
POPs, in particular, still precluded direct
exposure measures for a large population
of children in NHANES.

The particular POPs implicated as risk
factors in this analysis—HPCDD, OCDD
and HPCDF—are typically present at very
low (parts per trillion) serum concentra-
tions. Serum levels of these analytes in
the general population are at least several
orders of magnitude lower than levels of
common PCB congeners, for example.
The study assessed POPs for which at
least 20% of children had serum levels
greater than the limit of detection. The
NHANES 1999–2000 analytical methods
had good sensitivity for detecting diox-
ins, furans and coplanar PCBs, but the
limits of detection for more prevalent
POPs, such as PCB congeners 138, 153
and 180, were high.20 Thus, these more
common exposures were not available
for study.
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In addition, HPCDD, OCDD and HPCDF
are associated with dioxin-like activity.
Although experimental models support a
potential role for dioxins in learning and
behavioural disorders,21 epidemiological
studies on the developmental toxicities
of these compounds are limited, in part,
because they are typically present at such
low levels.12 For PCBs, it has been
postulated that the non-dioxin-like con-
geners may be more deleterious to neu-
rocognitive functions than those with
dioxin-like properties.22 23 Lee et al’s find-
ings support the possibility that aryl
hydrocarbon receptor-mediated mechan-
isms are more potent determinants of
cognitive and behavioural development
than has been previously recognised.
However, in the absence of measures of
non-dioxin-like PCBs, moderate correla-
tions among dioxin- and non-dioxin-like
PCBs, dioxins and furans preclude
mechanistic inferences.12 24

Perhaps the most important issue for
this study is that the validity of self-
reported diagnoses of LD or ADD is
unclear. Unexpected findings such as
the relatively low male predominance of
ADD (58%), the high prevalence of LD
(16%) and the absence of any relationship
of either study outcome with blood lead
levels among a larger sample of 2246
children suggest potential limitations in
the data. A male:female ratio of up to 4:1
has been described for ADD17; the much
lower sex distribution found by Lee et al
suggests potential selection bias and/or
limitations in self-reported diagnosis.
Similarly, a significant relationship of
lead with ADD has been described in
another NHANES (1999–2002) analysis,
although the case definition included
the use of medication.25 Lack of corro-
boration with the 1999–2000 subset of
data is surprising; further exploration of
this apparent discrepancy would be of
interest.

Additional limitations need to be con-
sidered before any steadfast conclusions
are drawn. With complex, multifactorial
outcomes such as LD and ADD, there is
the potential for substantial confounding;
however, somewhat limited covariates
were available for the analysis. For
example, there are regional differences
in the diagnosis of LD and ADD, and
exposure to POPs in the US population.
Reportedly, the NHANES design cannot
accommodate stratification by region.20

Despite the many strengths of the
NHANES data, including the availability

of exposure biomarkers and clinically
relevant abnormalities as outcome mea-
sures, the study’s conclusions are con-
strained by a small number of disease
cases, the self-reported case definition,
cross-sectional exposure assessment, a
limited set of detectable POPs and binary
exposure data. Still, these provocative
findings underscore the need for efficient,
valid and sensitive methodologies for
studying the potential role of xenobiotics
in disorders of child development. Most
importantly, these findings support the
need for further studies on environmental
risk factors for LD and ADD with better
outcomes and covariate specifications
and, as the authors acknowledge, better
assessment of exposures including a
prospective design. Tempered by its
design limitations, this study is an excit-
ing first step in elucidating the potential
role of prevalent POPs in the aetiology of
increasingly common and costly develop-
mental disorders of childhood.
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