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Abstract
In this review, we summarize the computational methods for sampling the conformational space of
biomacromolecules. We discuss the methods applicable to find only lowest energy conformations
(global minimization of the potential-energy function) and to generate canonical ensembles
(canonical Monte Carlo method and canonical molecular dynamics method and their extensions).
Special attention is devoted to the use of coarse-grained models that enable simulations to be
enhanced by several orders of magnitude.

Introduction
Searching the conformational space of biological macro-molecules (in particular proteins), also
termed conformational sampling, is of fundamental interest because of the tight relationship
between accessible conformations and function. The primary interest here is its importance for
obtaining stable states, that is, structure, kinetic, and thermodynamic properties, and folding
pathways of biological macromolecules, for example, proteins. Early approaches to compute
protein structure involved global optimization of potential energy [1,2∙∙], but these were only
partially successful in special cases in which entropic effects were less important than enthalpy.
At room temperature, the entropic effect can favor a basin that does not contain the global
minimum of the potential energy, as illustrated in Figure 1.

The thermodynamically correct approach to conformational sampling should seek the basin
with the lowest free energy for the whole system [3∙∙,4], that is, the protein plus the surrounding
medium, usually water. Therefore, this article will first treat global optimization of a target
function, with most emphasis on the potential-energy function, and then will consider canonical
sampling and generalized-ensemble sampling. The focus of this review is on techniques that
facilitate simulations of structure and folding of real-size proteins and we, therefore, emphasize
the use of coarse-grained models; for treatment of systems at atomic detail and use of
experimental information in sampling, the reader is referred to recently published reviews
[5∙,6∙∙].

Global optimization of the potential-energy function and other target functions
In the protein-folding field, a variety of physics-based procedures for global optimization of
potential energy have been proposed. Details of many of them are described in references [1,
2∙∙]. These procedures fall into four categories:
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Deterministic methods—The deterministic methods include (i) a build-up procedure that
finds local minima of short fragments by exhaustive energy minimization, and then combines
these short fragments into longer ones, with minimization of the energies of the longer
fragments [1,2∙∙]; (ii) a self-consistent electrostatic field (SCEF) method that alters
conformation to achieve optimal alignment of each peptide-group dipole with respect to the
local electric field at that peptide group [1,2∙∙]; (iii) a self-consistent multitorsional field
(SCMTF) method that is based on the fact that the ground-state solution of the Schrödinger
equation provides information about the location of the global minimum of a potential function,
that is, the maximum of the square of the ground-state wave function is very often close to the
global minimum [1,2∙∙]; (iv) deformation methods in which the multi-dimensional energy
surface is smoothed, either by solving the diffusion equation (DEM) or by scaling the distance
variables (DSM) in the potential-energy function, to locate the global minimum [1,2∙∙].

Stochastic and hybrid methods—The stochastic and hybrid methods include (v) Monte
Carlo with minimization (MCM) whereby combinatorial optimization with Monte Carlo is
combined with energy minimization to find local minima; related approaches are basin hopping
[1,2∙∙], and αBB, a branch-and-bound method [7∙]; (vi) electrostatically driven Monte Carlo
(EDMC), which is a combination of SCEF and MCM, (vii) self-consistent basin-to-deformed
basin mapping (SCBDBM) that locates large regions of conformational space containing low-
energy minima by coupling them to some of the greatly reduced number of minima on a highly
deformed surface.

Genetic algorithms—Conformational space annealing (CSA) [8∙∙] is a frequently used
genetic type algorithm; it combines essential aspects of the build-up procedure and a genetic
algorithm and searches the whole conformational space in early stages, and then narrows the
search to smaller regions with low energy. CSA has been applied to find the lowest energy
structures of proteins [1,2∙∙] and to protein sequence alignment [9].

A hierarchical approach—Finally, a hierarchical approach is based on carrying out an
extensive coarse-grained search with the CSA method using a united-residue (UNRES) force
field. The set of families of low-energy UNRES conformations obtained with CSA is then
converted to an all-atom representation, and the search is continued with the EDMC method
[1,2∙∙,10]. Other coarse-grained approaches have been presented by Levitt [11], Koliński and
co-workers [12∙∙,13∙∙], Brown and Head-Gordon [14], and Izvekov and Voth [15].

Over the years, the approaches, based on global optimization of potential energy, have
facilitated the development and evolution of physics-based methods to compute three-
dimensional structures of native proteins and the pathways leading to them. They also serve
as components of the more extensive procedures, including introduction of entropic effects,
discussed in the remaining sections of this article.

Canonical sampling—The goal of this approach is to obtain a set of low-energy
conformations of the system under study distributed according to the Boltzmann law, that is,
P(Xi) ~ exp(−E(Xi)/kT) where P(Xi) is the probability of occurrence of the conformation
described by the variables Xi, E(Xi) is the energy of this conformation, k is the Boltzmann
constant and T is the absolute temperature. Two approaches can be considered as prototypes
of canonical sampling: the Monte Carlo (MC) method of Metropolis [16∙∙] and the molecular
dynamics (MD) method [17∙∙]. Both methods provide not only canonical ensembles but also
trajectories of conformational changes.

The basic MC algorithm can be summarized as follows: perturb the current conformation at
random, compute the energy of the new conformation and, if the energy is lower than the energy
of the old conformation, replace the old conformation with the new one; if not, accept the new
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conformation with probability exp(−ΔE/kT), where ΔE is the difference between the energy
of the new and the old conformation. The process is iterated until the ensemble averages
converge. The ensemble averages are updated every given number of steps. Thus, the MC
approach requires only energy evaluation but its efficiency is hampered by small steps that
must be taken to achieve a sufficient acceptance rate.

Several methods have been developed to speed up Monte Carlo search. Koliński and co-
workers [12∙∙,13∙∙,18] dis-cretized the conformational space of polypeptide chains in a coarse-
grained representation to a high-resolution lattice, and designed a set of efficient moves, many
of them being collective moves of virtual bonds. Use of a lattice enabled them to pre-compute
and store many energy contributions to save time. In connection with knowledge-based
information, their model of polypeptide chains and search algorithm were applied successfully
to protein-structure prediction [13∙∙] and to study folding pathways [18]. Recently,
Shakhnovich and co-workers [19] designed a knowledge-based move set to carry out all-atom
off-lattice simulations of protein folding with their statistical potential. In the high-directional
Monte Carlo (HDMC) method [20], the sampling scheme estimates the shape of an energy
hypersurface as a covariance tensor to generate variable Monte Carlo steps. The force-bias
[21] and hybrid [22] Monte Carlo methods bias a MC step towards the direction of the forces
or one determined by an MD step. With these extensions, the efficiency of the MC approach
in terms of the convergence of ensemble averages becomes comparable to [23] or higher
[24] than that of canonical MD.

In the MD approach, Newton's or Lagrange's equations of motion are solved by numerical
integration, which provides much higher efficiency of a single step compared to canonical MC,
but involves the expense of computing the energy gradient. Because solving equations of
motion in their original form keeps the total energy and not the temperature, or temperature
and pressure, constant, thermostat, or thermostat and barostat terms must be included. Details
of MC and MD algorithms can be found in the excellent book by Frenkel and Smit [17∙∙] and
in a recent review [25].

Given the potential-energy function, the efficiency of MD depends primarily on the length of
the time step in the numerical-integration algorithm, which is 1 fs for all-atom representations
with all covalent bonds unconstrained, and 2 fs for those with bonds constrained; this is orders
of magnitude smaller than the biological time scale. Nevertheless, ab initio folding of the villin
headpiece, a 36-residue protein, in explicit water has been studied by Duan and Kollman
[26∙∙]. Extension of the time step can be achieved by reducing the set of variables, for example,
to the torsional angles only [27,28∙], although such an approach introduces additional
computational cost because of the appearance of a non-diagonal inertia tensor and non-inertial
forces [6∙∙]. Treating the solvent at the mean-field level reduces computational time and
accelerates movement along the trajectory; such an approach enables one to study ab initio
folding of small proteins [29∙]. Use of coarse-grained models of polypep-tide chains provides
a 4000-fold increase of efficiency compared to all-atom simulations with explicit solvent and,
consequently, ab initio studies of protein folding in real time [3∙∙]. It must be noted, however,
that the introduction of coarse-graining or even implicit solvent results in distortion of the time
scale of simulations because the fast degrees of freedom are averaged out [3∙∙].

Non-Boltzmann and generalized-ensemble sampling—Because empirical force
fields usually produce rough energy landscapes, canonical MC and MD often become trapped
at low temperatures and, moreover, sample higher energy regions poorly. A variety of
approaches have been developed to overcome energy barriers and to provide sufficient
sampling. In the umbrella-sampling method [30∙], a set of restraints is imposed on selected
variables or groups of variables [reaction coordinate(s)] to enhance sampling in selected
regions of conformational space, and the weighted-histogram analysis method (WHAM) [31]

Liwo et al. Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is applied to remove the contribution from the biasing potential. This approach was applied to
construct energy landscapes of proteins [32∙] and to generate decoy sets for optimizing protein
force fields [4,33]. In the simulated-annealing (SA) technique [34], simulations start at a high
temperature, which is gradually decreased until reaching the desired value. The performance
of the method depends very much on the cooling schedule.

One of the most effective sampling methods is the replica-exchange method (REM) [35∙,36∙],
in which n replica systems, each being a canonical ensemble, and each at a different
temperature, are simulated by using MC or MD. At given intervals, exchanges of temperatures
are attempted between neighboring replicas; each exchange is accepted or rejected by the
Metropolis criterion. Appropriate choice of the temperature distribution is a crucial issue
[37∙]. A recently developed adaptive feedback-optimized algorithm [37∙] minimizes the round-
trip times between the lowest and highest temperatures. In complex cases, in which there are
subtle bottlenecks in the probability of exchange of conformations, the round-trip time is likely
to characterize the overall efficiency of parallel tempering better than that obtained with the
average acceptance probability.

Instead of, or in addition to temperatures, restraints [38,39∙] or Hamiltonians [39∙,40∙] are
exchanged between replicas. The multiplexing variant of REM (MREM) [41∙,42∙] enhances
sampling by multiplexing the replicas with a number of independent MC or MD runs at each
temperature.

Exchanging temperatures between replicas greatly enhances the chance of a trapped
conformation to overcome kinetic barriers and, therefore, accelerates the convergence of
ensemble averages. However, trajectory information is lost in the process. The REM and
MREM methods have been applied extensively in studying protein free-energy landscapes and
finding low-energy conformations of proteins both in the all-atom [39∙,43,44] and coarse-
grained approaches [4].

Multicanonical algorithms are another class of methods, in which energy is replaced in the
Metropolis criterion by the logarithm of the density of states (the microcanonical entropy)
[45∙∙]. A simulation is converged when all energies are sampled with the same frequency;
therefore, this method is well suited to overcome energy barriers. Once the density of states is
obtained, all ensemble averages can be computed. The multicanonical methods have been
applied to peptides and proteins both at the all-atom [46∙,47∙] and coarse-grained [42∙] level,
both in connection with MC and MD and to study protein folding with lattice models [48].
Two methods that combine replica exchange and a multicanonical algorithm, one by using
replica exchange to generate the initial density of states (the REMUCA algorithm) and, the
second one, by performing a replica-exchange simulation with a small number of replicas, each
covering a different region of the energy space (the MUCAREM algorithm) [47∙], respectively,
have been introduced recently. We recently [42∙] implemented the MUCA, REMUCA, and
MUCAREM algorithm to our coarse-grained UNRES force field and found that they do not
offer significant advantage over the MREM method, while involving the computation of the
gradient of the density of states that has to be evaluated numerically and is unstable particularly
in low-energy regions where the density of states is low.

A technique termed locally enhanced sampling (LES) [49,50] was designed to tackle problems,
such as ligand binding [49], ligand diffusion or loop optimization in proteins [50], where the
conformation of only a small part of the system must be explored thoroughly, while the
conformation of the rest of the system stays almost intact. In this method, multiple copies of
the smaller part are generated and create a mean field acting on the bulk of the system.
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Conclusions and outlook
Techniques to sample conformational space, both to find the low-energy conformations and
to compute canonical ensembles and ensemble averages underwent enormous progress since
the seminal work of Metropolis and co-workers [16∙∙]. The genetic algorithms such as the CSA
method [8∙∙] are currently definitely the most efficient in finding the global minimum of the
potential-energy function, while algorithms based on the replica-exchange approach [35∙,36∙]
are the most effective to obtain canonical ensembles. All these algorithms are ideal targets for
parallelization and have benefited enormously from the advent of distributed computing.
Additional acceleration of computations is achieved by introducing the hierarchical
(multiscale) approach, in which the bulk of the computations is carried out at the coarse-grained
level. Such an approach can soon provide the possibility of reaching the millisecond time scale
[3∙∙]. The crucial factor here is the development of physics-based coarsegrained potentials that
could reproduce the structure and thermodynamics of macromolecules [4].

Acknowledgements
This work is supported by grants from the National Institutes of Health (GM-14312), the National Science Foundation
(MCB05-41633), and the Fogarty Foundation (TW7193). This research is conducted by using the resources of (a) our
880-processor Beowulf cluster at the Baker Laboratory of Chemistry and Chemical Biology, Cornell University, (b)
the National Science Foundation Terascale Computing System at the Pittsburgh Supercomputer Center, (c) the John
von Neumann Institute for Computing at the Central Institute for Applied Mathematics, Forschungszentrum Juelich,
Germany, (d) the Beowulf cluster at the Department of Computer Science, Cornell University, (e) the resources of the
Center for Computation and Technology at Louisiana State University, which is supported by funding from the
Louisiana legislature, (f) our 45-processor Beowulf cluster at the Faculty of Chemistry, University of Gdańsk, (g) the
Informatics Center of the Metropolitan Academic Network (IC MAN) in Gdańsk, and (h) the Interdisciplinary Center
of Mathematical and Computer Modeling (ICM) at the University of Warsaw.

References and recommended reading
Papers of particular interest, published within the annual period of review, have been
highlighted as:

∙ of special interest

∙∙ of outstanding interest

1. Scheraga HA, Lee J, Pillardy J, Ye Y-J, Liwo A, Ripoll D. Surmounting the multiple-minima problem
in protein folding. J Glob Optimiz 1999;15:235–260.

2. Wales DJ, Scheraga HA. Global optimization of clusters, crystals, and biomolecules. Science
1999;285:1366–1372.of outstanding interestA comprehensive review of global-optimization methods
applied to find the lowest energy structures of clusters, molecular crystals, as well as polypeptides,
proteins, and other biological molecules.

3. Liwo A, Khalili M, Scheraga HA. Molecular dynamics with the united-residue (UNRES) model of
polypeptide chains; test of the approach on model proteins. Proc Natl Acad Sci USA 2005;102:2362–
2367. [PubMed: 15677316]of outstanding interestThe paper describes the first mesoscopic ab initio
MD of globular proteins using a coarse-grained potential not engineered for a particular sequence. It
demonstrates that globular proteins with a size of more than 70 amino-acid residues can be folded
from the unfolded conformation in a few hours on a single processor.

4. Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, Scheraga HA. Modification
and optimization of the united-residue (UNRES) potential energy function for canonical simulations.
I. Temperature dependence of the effective energy function and tests of the optimization method with
single training proteins. J Phys Chem B 2007;111:260–285. [PubMed: 17201450]

5. Lei H, Duan Y. Improved sampling methods for molecular simulation. Curr Opin Struct Biol
2007;17:187–191. [PubMed: 17382533]of special interestA recent comprehensive review of
conformational search algorithms.

Liwo et al. Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Christen M, van Gunsteren WF. On searching in, sampling of, and dynamically moving through
conformational space of biomolecular systems: a review. J Comput Chem 2008;29:157–166.
[PubMed: 17570138]of outstanding interestThe paper presents a thorough guide of algorithms for
searching conformational space; it classifies the algorithms according to the objectives (obtaining just
low-energyconformations or ensembles) and algorithm type.

7. Androulakis IP, Maranas CD, Floudas CA. αBB: a global optimization method for general constrained
nonconvex problems. J Glob Optimiz 1995;11:337–363.of special interestThe paper describes the
branch-and-bound global optimization method in which the problem of global optimization of a
nonconvex function is tackled by replacing nonconvex terms with customized tight convex lower
bound functions, successive subdivision of the original region, and the subsequent solution of a series
of nonlinear convex minimization problems.

8. Lee J, Scheraga HA, Rackovsky S. New optimization method for conformational energy calculations
on polypeptides: conformational space annealing. J Comput Chem 1997;18:1222–1232.of outstanding
interestThe paper describes the conformational space annealing method, which combines elements of
the build-up method, Monte Carlo with minimization, and a genetic algorithm. The search is started
from a sparse set of randomly generated and then energy-minimized conformations, which is
subsequently narrowed down to low-energy regions. The method outperforms previous approaches
such as the Monte Carlo with minimization and electrostatically driven Monte Carlo methods.

9. Joo K, Lee J, Lee S, Seo J-H, Lee SJ, Lee J. High Accuracy Template Based Modeling by Global
Optimization. Proteins 2007;69(Suppl 8):83–89. [PubMed: 17894332]

10. Ołdziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, Arnautova YA,
Jagielska A, Makowski M, et al. Physics-based protein-structure prediction using a hierarchical
protocol based on the UNRES force field–test with CASP5 and CASP6 targets. Proc Natl Acad Sci
USA 2005;102:7547–7552. [PubMed: 15894609]

11. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding.
J Mol Biol 1976;104:59–107. [PubMed: 957439]

12. Koliński A, Godzik A, Skolnick J. A general method for the prediction of the three-dimensional
structure and folding pathway of globular proteins: application to designed helical proteins. J Chem
Phys 1993;98:7420–7433.of outstanding interestThe paper describes the first successful coarse-
grained approach for protein-folding simulations without prior knowledge of the experimental
structure. The conformations are discretized to a high-resolution lattice, and a Monte Carlo search is
carried out using specially designed virtual-bond moves. The potential-energy function is a sum of
components derived from protein crystal structures by using the Boltzmann principle.

13. Skolnick J, Koliński A, Ortiz AR. MONSSTER: a method for folding globular proteins with a small
number of distance constraints. J Mol Biol 1997;265:217–241. [PubMed: 9020984]of outstanding
interestThe paper describes a protein-structure prediction protocol with the use of a conformational
search and potentials described in reference [12∙∙] and restraints from knowledge-based information.

14. Brown S, Head-Gordon T. Intermediates and the folding of proteins L and G. Protein Sci
2004;13:958–970. [PubMed: 15044729]

15. Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys Chem
B 2005;109:2469–2473. [PubMed: 16851243]

16. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations
by fast computing machines. J Chem Phys 1953;21:1087–1092.of outstanding interestThis is the
seminal work that has set the foundations of molecularsimulation methods. It introduces for the first
time the Markov-chain scheme to compute ensemble averages in dense systems. The scheme is
illustrated with the example of a two-dimensional rigid-sphere system obeying periodic boundary
conditions.

17. Frenkel, D.; Smit, B. Understanding Molecular Simulation. From Algorithms to Applications. San
Diego: Academic Press; 2002. of outstanding interestAn excellent textbook of molecular dynamics
and Monte Carlo algorithms applied in molecular simulations.

18. Kmiecik S, Koliński A. Folding pathway of the B1 domain of protein G explored by a multiscale
modeling. Biophys J 2008;94:726–736. [PubMed: 17890394]

19. Chen WW, Yang JS, Shakhnovich EI. A knowledge-based move set for protein folding. Proteins:
Struct Funct Bioinform 2007;66:682–688.

Liwo et al. Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



20. Shin JK, Yu JY, Jhon MS. Acceleration of convergence-rates by high directional Monte-Carlo
sampling procedure. J Chem Phys 1992;97:9283–9290.

21. Kidera A. Smart Monte Carlo simulation of a globular protein. Int J Quantum Chem 1999;75:207–
214.

22. Izaquirre JA, Hampton SS. Shadow hybrid Monte Carlo: an efficient propagator in phase space of
macromolecules. J Comp Phys 2004;200:581–604.

23. Yamashita H, Endo S, Wako H, Kidera A. Sampling efficiency of molecular dynamics and Monte
Carlo method in protein simulation. Chem Phys Lett 2001;342:382–386.

24. Ulmschneider JP, Ulmschneider MB, Di Nola A. Monte Carlo vs molecular dynamics for all-atom
polypeptide folding simulations. J Phys Chem B 2007;110:16733–16742. [PubMed: 16913813]

25. Scheraga HA, Khalili M, Liwo A. Protein-folding dynamics: overview of molecular simulation
techniques. Annu Rev Phys Chem 2007;58:57–83. [PubMed: 17034338]

26. Duan V, Kollman PA. Pathways to a protein folding intermediate observed in a 1-microsecond
simulation in aqueous solution. Science 1998;282:740–744. [PubMed: 9784131]of outstanding
interestThe paper describes the first large-scale MD simulation of a small protein in explicit water
starting from an arbitrary structure, which resulted in the appearance of some native-like structures.

27. Gibson KD, Scheraga HA. Variable step molecular-dynamics: an exploratory technique for peptides
with fixed geometry. J Comput Chem 1990;11:468–497.

28. Chen JH, Im W, Brooks CL. Application of torsion angle molecular dynamics for efficient sampling
of protein conformations. J Comput Chem 2005;26:1565–1578. [PubMed: 16145655]of special
interestThe paper introduces dynamics in torsional angles, which reduces the number of degrees of
freedom, and also corrections to the parent Cartesian-coordinate force field necessary to recover the
potential surface and incorporate implicit bond and angle flexibility. With this approach, an increase
of several fold in conformational sampling efficiency can be achieved reliably compared to Cartesian
molecular dynamics.

29. Jang S, Kim E, Shin S, Pak Y. Ab initio folding of helix bundle proteins using molecular dynamics
simulations. J Am Chem Soc 2003;125:14841–14846. [PubMed: 14640661]of special interestThe
paper describes large-scale ab initio folding simulations of two small proteins: the villin headpiece
(36 amino-acid residues) and the N-terminal fragment of the B-domain of staphylococcal protein A
(46 residues) using AMBER with the GB implicit-solvent model. For both proteins, stable native
structures were obtained, starting from arbitrary conformations.

30. Torrie GM, Valleau JP. Non-physical sampling distribution in Monte Carlo free-energy estimation–
umbrella sampling. J Comput Phys 1977;23:187–199.of special interestThe paper introduces the
umbrella-sampling method by using weights that bias Monte Carlo simulations to sample all
conformational space regions of interest with nearly uniform probability.

31. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram analysis
method for free-energy calculations on biomolecules. I. The method. J Comput Chem 1992;13:1011–
1021.

32. Boczko EM, Brooks CL III. First-principles calculation of the folding free energy of a 3-helix bundle
protein. Science 1995;269:393–396. [PubMed: 7618103]of special interestThe paper describes a
study of the free-energy landscape of the Nterminal fragment of the B-domain of staphylococcal
protein A by umbrella-sampling MD simulations with explicit solvent.

33. Koretke KK, Luthey-Schulten Z, Wolynes PG. Self-consistently optimized energy functions for
protein structure prediction by molecular dynamics. Proc Natl Acad Sci USA 1998;95:2932–2937.
[PubMed: 9501193]

34. Chou KC, Carlacci L. Simulated annealing approach to the study of protein structures. Protein Eng
1991;4:661–667. [PubMed: 1946323]

35. Hansmann UHE. Parallel tempering algorithm for conformational studies of biological molecules.
Chem Phys Lett 1997;281:140–150.of special interestThe paper describes the application of the
replica-exchange (parallel tempering) method to sample the conformational space of peptides and
proteins by the Monte Carlo method, with the pentapeptide [Met5]enkephalin as an example. The
replica-exchange method has performed much better than the canonical Monte Carlo method, because
it enables the system to overcome barriers in the rough energy landscape.

Liwo et al. Page 7

Curr Opin Struct Biol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



36. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys
Lett 1999;314:141–151.of special interestThe paper describes the replica-exchange molecular
dynamics algorithm and a test of its effectiveness on the pentapeptide [Met5]enkephalin.

37. Trebst S, Troyer M, Hansmann UHE. Optimized parallel tempering simulations of proteins. J Chem
Phys 2006;124:174903. [PubMed: 16689600]of special interestThe paper describes a scheme for
choosing the optimal distribution of temperatures in replica-exchange simulations based on
maximizing the rate of round-trips between the lowest and the highest temperature replicas.

38. Gront D, Koliński A, Hansmann UHE. Protein structure prediction by tempering spatial constraints.
J Comput Aided Mol Des 2005;19:603–608. [PubMed: 16267688]

39. Sugita Y, Kitao A, Okamoto Y. Multidimensional replicaexchange method for free-energy
calculations. J Chem Phys 2000;113:6042–6051.of special interestThe paper describes the extension
of the umbrella-sampling version of the replica-exchange method, in which not only temperatures
but also restraints are exchanged between replicas.

40. Liu P, Huang XH, Zhou RH, Berne BJ. Hydrophobic aided replica exchange: an efficient algorithm
for protein folding in explicit solvent. J Phys Chem B 2006;110:19018–19022. [PubMed: 16986898]
of special interestThe paper describes a modification of the replica-exchange method for MD
simulations with explicit solvent to incorporate replicas with attenuated protein–water interactions,
which mimics the interaction with chaperone.

41. Rhee YM, Pande VS. Multiplexed-replica exchange molecular dynamics method for protein folding
simulation. Biophys J 2003;84:775–786. [PubMed: 12547762]of special interestThe paper reports
the extension of the replica-exchange method by running a number of replicas instead of one at each
temperature, which enhances the performance of the algorithm on massively parallel computers.

42. Nanias M, Czaplewski C, Scheraga HA. Replica exchange and multicanonical algorithms with the
coarse-grained unitedresidue (UNRES) force field. J Chem Theor Comput 2006;2:513–528.of special
interestThe paper describes an extensive study of replica-exchange and multicanonical MC and MD
algorithms applied to the coarse-grained UNRES force field using three proteins: decaalanine, the
N-terminal part of the Bdomain of staphylococcal protein A (46 residues), and 1E0G (48 residues)
as examples. The replica-exchange method appears to be most stable for 1E0G that possesses the
roughest energy landscape of the three proteins.

43. Paschek D, Garcia AE. Reversible temperature and pressure denaturation of a protein fragment: A
replica exchange molecular dynamics simulation study. Phys Rev Lett 2004;93:238105. [PubMed:
15601210]

44. Yang JS, Chen WW, Skolnick J, Shakhnovich EI. All-atom ab initio folding of a diverse set of proteins.
Structure 2007;15:53–63. [PubMed: 17223532]

45. Berg BA, Neuhaus T. Multicanonical ensemble–a new approach to simulate 1st order phase-
transitions. Phys Rev Lett 1992;68:9–12. [PubMed: 10045099]of outstanding interestThe paper
describes the application of a multicanonical algorithm, in which the acceptance criterion is related
to the density of states instead of the Boltzmann factor, to a 2D 10-state Potts model on a lattice. The
algorithm has an approximately 100-fold faster convergence rate compared to an isothermal run.

46. Mitsutake A, Sugita Y, Okamoto Y. Generalized-ensemble algorithms for molecular simulations of
biopolymers. Biopolymers 2001;60:96–123. [PubMed: 11455545]of special interestThe paper
describes the application of the multicanonical algorithm as well as replica-exchange sampling and
simulated tempering to peptide systems.

47. Mitsutake A, Sugita Y, Okamoto Y. Replica-exchange multicanonical and multicanonical replica-
exchange Monte Carlo simulations of peptides. I. Formulation and benchmark test. J Chem Phys
2003;118:6664–6675.of special interestThe paper introduces two new algorithms for sampling the
conformational space of peptides and proteins, which combine multicanonical sampling with the
replica-exchange method.

48. Hao M-H, Scheraga HA. Theory of two-state cooperative folding of proteins. Acc Chem Res
1998;31:433–440.

49. Czerminski R, Elber R. Computational studies of ligand diffusion in globins. 1. Leghemoglobin.
Proteins: Struct Funct Genet 1991;10:70–80. [PubMed: 2062829]

50. Hornak V, Simmerling C. Generation of accurate protein loop conformations through low-barrier
molecular dynamics. Proteins: Struct Funct Genet 2003;51:577–590. [PubMed: 12784217]

Liwo et al. Page 8

Curr Opin Struct Biol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Illustration of the importance of the entropic effect for the probability of occurrence of a
particular family of structures. The energy surface shown in the picture contains a narrow
minimum (left), which is the global minimum, and a broad basin of minima (right). The
horizontal line is the approximate boundary of the accessibility of the regions of conformational
space belonging to these two basins, DE being the thermal energy at absolute temperature T,
g the number of degrees of freedom, and R the universal gas constant. The area closed by the
energy curve and the corresponding horizontal line is related to the entropy of each basin.
Consequently, at sufficiently high temperature, the free energy of conformations that belong
to the right basin will be significantly lower than that of the global-minimum region and these
conformations will, therefore, be more probable than those corresponding to the global
minimum of the potential energy.
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