
The Pharmacology of Cyclic Nucleotide-Gated Channels:
Emerging from the Darkness

R. Lane Brown1, Timothy Strassmaier2, James D. Brady1, and Jeffrey W. Karpen2,*

1Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA

2Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239,
USA

Abstract
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating
the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These
channels have been detected in many other tissues where their functions are largely unclear. The use
of gene knockouts and other methods have yielded some information, but there is a pressing need
for potent and specific pharmacological agents directed at CNG channels. To date there has been
very little systematic effort in this direction - most of what can be termed CNG channel pharmacology
arose from testing reagents known to target protein kinases or other ion channels, or by accident
when researchers were investigating other intracellular pathways that may regulate the activity of
CNG channels. Predictably, these studies have not produced selective agents. However, taking
advantage of emerging structural information and the increasing knowledge of the biophysical
properties of these channels, some promising compounds and strategies have begun to emerge. In
this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and
competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We
also discuss the potential of these compounds for treating certain forms of retinal degeneration.

INTRODUCTION
CNG channels play a key role in visual and olfactory signal transduction in retinal
photoreceptor cells and olfactory receptor neurons. In these sensory neurons, CNG channels
generate an electrical signal by responding to light- and odorant-induced changes in
intracellular levels of cyclic nucleotides [1-3]. In retinal rod photoreceptors, the level of cGMP
is relatively high in the dark, and the sustained entry of Na+ and Ca2+ ions through CNG
channels maintains the cell in a partially depolarized state. When the visual pigment rhodopsin
absorbs a photon, it becomes enzymatically active and catalyzes the exchange of GTP for bound
GDP on many molecules of the G-protein transducin (for reviews of phototransduction see
[4-16]). The GTP-bound form of transducin in turn activates a cGMP phosphodiesterase that
catalyzes the hydrolysis of cGMP. As a result, CNG channels in the plasma membrane close,
causing a membrane hyperpolarization that decreases the release of transmitter onto second
order cells of the retina [17,18]. Recovery of the dark state requires both shut-off of the
excitation pathway and synthesis of cGMP to reopen channels. The interruption of Ca2+ influx
through the channels is critical for the timing of recovery. Ca2+ continues to be extruded by a
light-independent Na+/Ca2+-K+ exchanger, which causes a decrease in intracellular Ca2+. This
stimulates the activation of guanylyl cyclase to resynthesize cGMP and the deactivation of
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rhodopsin by rhodopsin kinase. A similar pathway operates in cones, but each molecular
constituent differs somewhat from its rod counterpart. Cones are much less sensitive to light,
give briefer light responses, and adapt over a wider range of light intensities (see reviews cited
earlier).

In contrast, the signaling cascade in olfactory sensory neurons generates responses with
polarity opposite to those found in rods and cones. Stimulation of a diverse array of odorant
receptors triggers an increase in intracellular cAMP via activation of Golf and adenylyl cyclase
type III (reviewed in [19-23]). This rise in cAMP directly activates CNG channels leading to
a depolarizing influx of Na+ and Ca2+ ions. The olfactory response is further shaped by
activation of calcium-activated chloride channels. The olfactory response is terminated by
receptor phosphorylation, GTP hydrolysis by Golf, and reduction of CNG channel activity by
calcium-calmodulin feedback.

Significant activation of CNG channels requires the binding of three molecules of cGMP
[24-30]. Thus, these channels behave as molecular amplifiers, with large changes in activity
resulting from small changes in cyclic nucleotide concentration. The gating kinetics of the
channel are very rapid, and do not limit the response [31,32]. CNG channels have been
embraced by biophysicists as a paradigm for the study of ligand gating and protein allostery
[33-35]. They are well-suited for this purpose because they can be studied at the level of a
single protein molecule, but, unlike many other ion channels, they do not inactivate or
desensitize.

Native CNG channels are composed of different combinations and splice variants of six pore-
forming subunits, including both α (CNGA1-4) and β (CNGB1 & 3) subunits. Although many
of the α subunits can be functionally expressed as homomultimers, co-expression of the β
subunits is known to confer distinct functional properties, in terms of ion permeation, ligand
sensitivity, gating mechanisms, and regulation. Cloning, functional expression, and
biochemical experiments have demonstrated that rod channels are composed of two types of
subunits: CNGA1 and CNGB1 [36-45]. Recent evidence suggests that the stoichiometry of the
native rod photoreceptor channel is 3 CNGA1 to 1 CNGB1 [46-48]. The CNG channel in cone
photoreceptors is composed of CNGA3 and CNGB3; in an intriguing twist compared to rod
channels, functional evidence suggests that the stoichiometry of the cone channel is 2:2 [49].
The native olfactory channel contains three subunit types, including CNGA2, CNGA4, and
CNGB1.3, in a ratio of 2:1:1 [50-54]. Although they are relatively insensitive to membrane
potential, CNG channels belong to the superfamily of voltage-gated channels, and both A and
B subunits contain six transmembrane helices (S1-S6) and a pore (P) region between S5 and
S6 [55,56]. Each subunit contains a single cGMP-binding site near its cytoplasmic C-terminus
[57,58]. Like voltage-gated potassium channels, evidence indicates that CNG channels
function as tetramers [27,28,30,59-62].

CNG channels are permeable to monovalent and divalent cations, including Na+, K+, Ca2+,
and Mg2+ [33]. Ca2+ and, to a lesser degree, Mg2+ occupy the pore a high percentage of the
time under physiological conditions, which significantly lowers the single channel conductance
[24,25]. The relatively tight binding of Ca2+ to the pore results in the channel showing some
selectivity for Ca2+ over other cations [63], and the permeation mechanism bears a qualitative
resemblance to that of voltage-gated Ca2+ channels. Homomeric CNG channels are the most
similar to Ca2+ channels, because they also have a ring of glutamates that coordinate Ca2+ at
the equivalent pore position [64,65]. At somewhat higher than normal extracellular Ca2+ levels,
CNG channels become “pure” Ca2+ channels, albeit with lower throughput rates for Ca2+ than
typical voltage-gated Ca2+ channels [63,66]. These observations illustrate two quantitative
differences: first, the affinity and selectivity of CNG channels for Ca2+ is not as high [65,67],
and second, the charge repulsion that creates high Ca2+ flux in voltage-gated Ca2+ channels is
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much less prominent (or perhaps nonexistent) in CNG channels. Native, heteromeric channels
bind Ca2+ less well than homomeric channels [67] because the B subunits contain a glycine at
the equivalent position. Although they carry a more mixed cationic current, native channels
are still selective for Ca2+: 15% of the dark current in rods is carried by Ca2+ [68], even though
the concentration of extracellular Ca2+ is about 1% of the Na+ concentration.

As is true for most eukaryotic ion channels, the three-dimensional structure of CNG channels
is not yet known. The pore is thought to be similar in structure to that of other P-loop-containing
channels. The seminal work of MacKinnon and colleagues in determining the structure of the
bacterial K+ channel KcsA [69-71] has given ion channel researchers a template for
understanding pores from this large family. On the other hand, there are substantial differences
in permeation and gating between CNG channels and K+ channels, and thus the analogies go
only so far. In addition to the different cations that pass through CNG channels, there is
evidence that the main gate for ions is in the outer selectivity filter [72-76], rather than at the
intracellular entrance to the pore where the gate in K+ channels is found [77-80]. (This region
does widen during opening of CNG channels, but the orifice is too large to limit the flow of
ions even in the closed channel [76].) Some guidance to the structure of the cyclic nucleotide
binding region comes from the recent x-ray crystal structure of the C-terminal fragment of
HCN2 [62], a eukaryotic hyperpolarization-activated, cyclic nucleotide-modulated channel.
HCN channels are responsible for neuronal and cardiac pacemaker activity. They are primarily
voltage-gated, but gating is modulated by the binding of cyclic nucleotides. The C-terminal
fragment contains the cytoplasmic cyclic nucleotide binding domain (CNBD) and the C-linker
that connects the binding region to the pore. The fragments assemble as tetramers with a four-
fold axis of rotational symmetry. The CNBD consists of an eight-stranded antiparallel β roll
flanked by α helices. Cyclic nucleotides interact with the β-roll and the C-terminal α-helix.
Based on sequence similarity, CNG channels are likely to have the same basic topology in the
binding region. However, much remains to be learned, not only about static structure, but also
about the sequence of events that underlie channel gating.

CNG channels may be regulated by several physiologically-relevant signaling pathways.
Olfactory desensitization is mediated in part by direct binding of calcium-calmodulin to the
olfactory CNG channel, which causes a dramatic reduction in the channel’s apparent sensitivity
to cAMP. Both the rod and cone CNG channel isoforms are also regulated by calcium-
calmodulin, although the effect is less dramatic. The effects of calcium-calmodulin on olfactory
and retinal CNG channels are reviewed in [81]. Several other modulators have dramatic effects
on channel activation, but their relevance in vivo has yet to be definitively established.
Transition metal divalent cations, such as Zn2+ and Ni2+, are known to enhance activation of
the rod CNG channel, and inhibit activation of the olfactory isoform [72,82-84].
Phosphorylation at tyrosine and/or serine residues is known to alter the apparent cyclic
nucleotide affinity of the rod and olfactory CNG channels [85-87]. In addition, experiments
using the tyrosine-kinase inhibitor genistein, suggest that the rod channel may also be regulated
by direct interaction with a tyrosine kinase [88]. Recently, lipid modulators have been shown
to regulate the activity of CNG channels. Activation of rod CNG channels is dramatically
reduced by application of diacylglycerol analogs and all-trans-retinal [89,90], while activation
of olfactory CNG channels is inhibited by cholesterol depletion [91] and application of
phosphatidylinositol-3,4,5-trisphosphate (PIP3) [92]. Finally, modification of C460 by nitric
oxide has been reported to activate homomeric channels composed of CNGA2, independently
of cyclic nucleotides [93]. Despite the plethora of natural compounds that modulate the activity
of CNG channels, this review will focus on modulation of CNG channel function by non-
natural pharmacological agents; for consideration of physiological regulation of CNG channel
function, the reader is directed to several recent reviews on this topic [33,81,86,94].
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CNG channels may have functions in the retina in addition to their key role in
phototransduction. CNG channels have been found to modulate transmitter release at the cone-
bipolar cell synapse [95]. Perhaps Ca2+ entry through these channels can regulate transmitter
release in a mostly voltage-independent fashion at other synapses as well. In this vein, CNG
channels may be involved in mediating the presynaptic effects of nitric oxide [96]. Elsewhere
in the retina, CNG channels have been reported in a subset of bipolar cells and ganglion cells
[97-102]. However, the function, even the presence, of CNG channels in these cells has been
difficult to firmly establish and remains controversial [103].

Although we know something about the molecular functions of CNG channels, how they
participate in the physiology of non-sensory tissues remains almost purely speculative. In the
brain, there is evidence that CNG channels are responsible for the prolonged depolarization of
hippocampal CA1 neurons following muscarinic receptor activation [104], and the induction
of hippocampal LTP following low-frequency, theta-burst stimulation was reduced in mice in
which CNGA2 was genetically ablated [105]. CNG channels have been detected in many other
tissues, including heart, kidney, testis, liver, lung, skeletal muscle, adrenal gland, pancreas,
and colon [33,35]. There is intriguing evidence that CNG channels play a part in resistance to
colon cancer mediated by bacterial enterotoxins, suggesting possible treatments that would
target CNG channels [106].

Until recently there has been very little systematic effort to develop potent and specific
pharmacological agents directed at CNG channels.Most of what can loosely be termed CNG
channel pharmacology came from testing reagents known to target protein kinases or other ion
channels, or by accident (retrospectively termed serendipity) when researchers were
investigating other intracellular pathways that might regulate CNG channels. Predictably, these
studies have not produced selective agents. The use of gene knockout technology in mice has
helped to define some of the purposes of CNG channels, but the foregoing discussion clearly
points to a need for specific pharmacological agents.

CYCLIC NUCLEOTIDE DERIVATIVES – ACTIVATORS AND COMPETITIVE
INHIBITORS

Modifications of the cyclic nucleotide can alter affinity, gating efficacy, and membrane
permeability. However, achieving selectivity for CNG channels is a major challenge as cyclic
nucleotide-dependent protein kinases are sensitive to much lower concentrations of the natural
cyclic nucleotides. Moreover, the effects of cyclic nucleotide analogues on other targets such
as cyclic nucleotide phosphodiesterases (PDEs), Epac, a cAMP-sensitive guanine nucleotide
exchange factor, and hyperpolarization-activated, cyclic nucleotide-modulated (HCN)
channels need to be evaluated. The latter two classes are relatively recent discoveries and thus
have received considerably less attention as cyclic nucleotide binding proteins. While hundreds
of cyclic nucleotide analogues have been synthesized over the past four decades (see [107],
where many of the synthetic methods were worked out), few systematic studies of their effects
on CNG channels have been carried out; the majority of studies have focused on cAMP- and
cGMP-dependent protein kinases and cyclic nucleotide phosphodiesterases (reviewed in
[108]). Nonetheless, several analogues have been used in studies of CNG channel function and
structure, and new strategies for generating CNG-channel-selective cyclic nucleotide
analogues are emerging.

Different classes of CNG channels have distinct preferences for cGMP and cAMP (Fig. 1). As
CNG channels were discovered and cloned from various tissues it became clear that different
combinations of the pore-forming A and B subunits respond to cAMP and cGMP differently.
For instance, cAMP and cGMP are full activators of native olfactory CNG channels with
similar potencies, while native rod photoreceptor CNG channels require ~10-fold higher cGMP
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and ~500-fold higher cAMP concentrations for half maximal activation [3,109,110].
Furthermore, cAMP is only a partial activator of the rod channel, eliciting 10-40% of the
maximal cGMP-activated current at saturating concentrations of cAMP (depending on the
species). This nucleotide preference highlights the importance of evaluating more than one
class of CNG channel and suggests the additional challenge of producing cyclic nucleotide
analogues that are selective for a single type of CNG channel.

An understanding of how cyclic nucleotides bind to and activate CNG channels, as well as the
structural features that underlie nucleotide selectivity will be important guides in the
development of CNG channel-selective analogues. Although the three-dimensional structures
of vertebrate CNG channels are not yet known, the essential structural blueprint for a cyclic
nucleotide-binding domain (CNBD) is conserved from bacteria to mammals, as revealed by
atomic resolution structures of CNBDs from diverse proteins: a transcription factor, protein
kinases, a guanine nucleotide exchange factor, a voltage-sensitive potassium channel and a
bacterial potassium channel [62,111-117]. The CNBD consists of an eight-stranded antiparallel
β roll with one α helix (A) at the N-terminus of the domain and two (B and C) at the C-terminus.
The cyclic nucleotide binds to a cleft on the β roll with the cyclic phosphate making an
electrostatic interaction with a conserved arginine residue (R558 in bovine CNGA1). Mutation
of this residue in a chimeric CNG channel results in reduced cyclic nucleotide affinity but
allows full activation at saturating cyclic nucleotide concentrations [118]. The ribose binds to
the β roll via hydrogen bonding interactions, while contacts between the purine ring and the
β roll and are largely hydrophobic. Additional contacts with the purine ring are made by the
C-helix, especially in the open state. Of particular note is aspartate 604 in bovine CNGA1,
which is thought to be largely responsible for nucleotide preference by contributing two
hydrogen bonds to cGMP (N1 and N2) while presenting an unfavorable interaction with the
N1 position of cAMP [119]. CNGA2 and CNGA3 contain glutamate and aspartate at this
position, and all three subunits show strong selectivity for cGMP over cAMP when they are
expressed on their own. In contrast, CNGA4, CNGB1 and CNGB3 do not contain acidic
residues here. This is thought to be the primary reason why these subunits, which do not express
on their own, make native heteromeric channels more sensitive to cAMP than homomultimers
formed from CNGA1-3 alone. In general, though, how cyclic nucleotide binding triggers
channel opening is largely unknown. One indicator of the complexity of this process is that
CNGA2 exhibits a higher probability of opening than CNGA1 with either cGMP or cAMP
bound, and evidence suggests that regions spread throughout the CNGA2 subunit contribute
to this [120]. Finally, there is the surprising observation that the CNBD from HCN2 binds
cAMP in the anti conformation (about the N-glycosidic bond) and cGMP in the syn
conformation even though cAMP and cGMP modulate activation of the channel to the same
extent [62].

Ribose and Cyclic Phosphate Modifications
CNG channels are very sensitive to alterations of the ribose and the cyclic phosphate: 2’-deoxy-
cGMP, 2’,3’-cGMP and 5’-GMP are unable to activate rod CNG channels [1,109].
Furthermore, while phosphorothioate derivatives of cGMP, SP-cGMPS and RP-cGMPS (Fig.
2), are able to activate the rod CNG channel, 12- and 70-fold higher concentrations are required
relative to cGMP [121]. In studies of the native olfactory CNG channel SP-cAMPS and RP-
cAMPS were 4- and 75-fold less potent than cAMP, and RP-cAMPS was only a partial
activator, eliciting ~35% of the maximal current at saturation [122]. This sensitivity to
modification at the cyclic phosphate has been utilized to generate “caged” cyclic nucleotides,
analogues with modifications to the cyclic phosphate that prevent channel activation but can
be cleaved by photolysis to rapidly release cGMP [123,124]. For example, the 4,5-
dimethoxy-2-nitrobenzyl ester of cGMP was used in flash photolysis experiments to measure
the gating kinetics of the CNG channel from retinal rods [32].
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Purine Ring Modifications
Other than at the C8 position, modifications to the purine ring system have resulted in
compounds with decreased apparent affinity for CNG channels (Fig. 2). For example, 2-
aminopurine 3’,5’-cyclic monophosphate that lacks the C6 oxygen of cGMP is unable to
activate CNG channels from retinal rods. Substitution of the 6-oxy group with sulfur is
tolerated, albeit with a 3-fold reduction in potency [109]. Modification of both the 2-amino
and the nitrogen at position 1 was achieved with the synthesis of β-phenyl-1, N2-etheno-cGMP
(PET-cGMP) [125]. This modification introduces significant nonpolar bulk to the purine ring,
and PET-cGMP is unable to activate homomeric rat CNGA1 channels when present at 2.5 mM.
However, in conjunction with modifications at other positions that rescue binding affinity, the
PET modification may turn out to be useful in creating competitive antagonists (see below).
PET-cGMP can potentiate channel activation by subsaturating concentrations of cGMP, an
effect that is maximal at ~100 μM PET-cGMP, indicating that this analogue can bind to the
channel [126].

A number of cGMP analogues with substitutions at the C8 position have been tested on CNG
channels (Fig. 3). In addition to exhibiting an increased apparent affinity, these analogues have
the advantage of being generally resistant to degradation by PDE [127-130], and hydrophobic
substitutions can increase membrane permeability. Early studies of 8-Br-cGMP demonstrated
that it is about 10-fold more potent than cGMP in activating retinal rod CNG channels [121,
131,132]. In addition, 8-N3-cGMP, 8-(p-azidophenacylthio)-cGMP, 8-benzylthio-cGMP, and
8-Fl-cGMP [8-(5-thioacet-amidofluorescein)-cGMP)] were also reported to be potent
activators, the latter two more potent than 8-Br-cGMP [57,109,132]. To systematically
examine the effects of charge and hydrophobicity at this position on channel activation, Brown
et al. synthesized a series of 8-amino- and 8-thio-substituted cGMP analogues and tested them
on native retinal rod channels [133]. Results from these experiments suggest that amine (n-
propylamino, carboxyethylamino, and aminoethylamino) substitutions at the C8 position alter
the electronic structure of the guanine ring system, leading to lower potency. Positively charged
groups several bond lengths from the guanine ring (aminoethylthio and trimethy-
laminoethylthio) are also detrimental. Conversely, nonpolar (n-propylthio) or negatively
charged groups at the same position (sulfoethylthio and carboxyethylthio) yield activators that
exhibit similar or slightly greater potency than 8-Br-cGMP. The photoaffinity analogue 8-(p-
azidophenacylthio)-[32P]cGMP labels a stretch of hydrophobic amino acids within the CNBD.
This region may be responsible for the greater potency of cGMP analogues with hydrophobic
substituents at the C8 position [58]. One such compound, 8-(p-chlorophenylthio)-cGMP (CPT-
cGMP), has found use in several studies as a membrane-permeant activator of CNG channels
that is highly resistant to hydrolysis by PDEs [91,134]. Finally, it appears that the cyclic
nucleotide-binding pocket of CNG channels is capable of accommodating very large
substituents at the C8 position. This is illustrated by the ability of 8-Fl-cGMP, more than twice
the mass of cGMP, to fully activate the rod photoreceptor channel, with potency greater than
8-Br-cGMP [109,132]. Despite the potency of different C8 substituted derivatives, many of
these compounds are also very potent activators of protein kinase G (PKG) [125,135]. Thus,
other modifications will likely be required to produce channel-specific agents.

Competitive Antagonists
As protein kinases display greater affinity for cAMP and cGMP relative to CNG channels, it
seems unlikely that alterations at a single position will yield a CNG channel-selective
modulator. Greater success may be achieved by modifying several positions on the nucleotide.
Some progress has been made by combining phosphorothioate modification of the cyclic
phosphate (either RP or SP isomers) with phenyletheno (PET) derivatization of the 2-amino
and N1 positions of the guanine ring in cGMP. Specifically, SP-8-Br-PET-cGMPS was
reported to be a potent activator of PKG, but a competitive inhibitor of the rod CNG channel
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[126]. Conversely, RP-8-Br-cGMPS activates the homomeric rod CNG channel but
antagonizes activation of PKG [134]. However, these agents bind quite poorly to CNG
channels, and their specificities against different isoforms and other cyclic nucleotide binding
proteins remain at issue. Also, it would be desirable to have analogs that act on only one protein
at a given concentration. In another study RP-8-CPT-cGMPS was found to be an effective
competitive inhibitor of homomeric CNGA2 channels [122]. Further work will be required to
determine if it acts similarly on native olfactory channels.

Multivalent Ligands
A novel approach for producing ligands that bind selectively and with high affinity to proteins
containing multiple ligand binding sites has been employed in the synthesis of highly potent
CNG channel activators. The concept is to connect two ligands with flexible polymer chains
of defined average length, until a compound is found that optimally spans two binding sites
on the protein of interest (Fig. 4) [136]. The largest enhancement in affinity occurs when the
average length of the polymer chain matches the average distance between binding sites. These
multivalent compounds are referred to as polymer-linked ligand dimers (PLDs). The
enhancement in apparent affinity is due to a dramatic slowing of the off-rate. When one ligand
moiety of the pair dissociates, its tendency to rebind is very high because it has a high effective
concentration in a hemisphere swept out by the polymer chain (Fig. 4b). Thus, the effective
off-rate of the PLD is given by the normal off-rate at a single binding site multiplied by the
probability that the second site is not occupied (which is very low).

A series of polymer-linked cGMP dimers of varying length was generated by reacting 8-SH-
cGMP with vinyl sulfone-derivatized polyethylene glycol (Fig. 4a) [136]. The compounds were
tested on homomeric rod and olfactory CNG channels expressed in oocytes, and on cGMP-
dependent protein kinase (PKG). Fig. (5a) shows that for both channels, there was a gradual
increase in apparent affinity with increasing polymer length until an optimal average length
was reached. Flexible polymers like PEGs have average lengths that are proportional to the
square root of the number of monomers [137]. At the optimal length (30 Å for retinal channels
and 39 Å for olfactory channels) the enhancement of apparent affinity (cf. cGMP) was 250-
fold for the rod channel and 800-fold for the olfactory channel. Kinetic experiments with the
olfactory channel showed that the off-rate for the optimal PLD was slowed by a factor of several
thousand. The PLDs were less effective in activating PKG (30-fold enhancement – Fig. 5b),
most likely because one of the two cGMP-binding sites in each regulatory subunit does not
bind C8-substituted cGMP derivatives as well as cGMP itself [135]. The optimal PLD was
different for each target protein, showing that the PLD strategy can reveal agents with a
selectivity for specific proteins, even if their binding sites are conserved. This was best
illustrated by the 39 Å cGMP PLD, which was the first cyclic nucleotide derivative to activate
a CNG channel (olfactory CNGA2) more potently than PKG, by a factor of about 20 (Fig. 5).
There is significant promise for the development of even more potent and selective CNG
channel modulators via changes to the number of ligands (cGMP trimers and tetramers),
refinements to the optimal polymer length, alterations of polymer stiffness, or the incorporation
of additional modifications to the cyclic nucleotide.

PORE BLOCKERS AND GATING MODIFIERS
The two CNG channel blockers that are most commonly used are l-cis-diltiazem, an optical
isomer of the clinically-relevant Cardizem (an antihypertensive drug), and dichloro-benzamil,
a derivative of amiloride, the well-known blocker of epithelial sodium channels (Fig. 6). l-
cis-diltiazem (LCD) was first reported to block CNG channels in 1985 by Koch and Kaupp,
who demonstrated inhibition of cGMP-dependent ion flux from bovine rod outer segment
vesicles [131]. This compound was subsequently tested on membrane patches excised from
the rod photoreceptors of the salamander, Ambystoma tigrinum. In these studies, LCD was
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found to inhibit the rod photoreceptor CNG channel with a K1/2 of ~ 1 μM at +30 mV, whereas
the more common isomer, d-cis-diltiazem was at least an order of magnitude less effective
[138]. LCD has also been shown to block the CNG channels from olfactory receptor neurons
and cone photoreceptors, although the affinity for these channels is lower (~ 50 μM)
[139-141]. Inhibition of the rod channel by LCD is noncompetitive and voltage-dependent,
with the K1/2 increasing about 5 – 10-fold at negative voltages [141-143]. High affinity block
of the rod CNG channel by LCD requires the presence of the CNGB1 subunit, as channels
formed by the CNGA1 subunit are less sensitive by nearly two orders of magnitude [41]. A
similar finding has also been reported for the CNG channel from cone photoreceptors [144].
Thus, LCD can be used as a diagnostic tool to assess the presence of CNG channel β subunits.
Because it is relatively membrane-permeant, LCD is also effective when applied from the
extracellular surface in the whole-cell recording mode [143]. Although the actual binding site
for LCD remains unknown, it is thought to be within the transmembrane domain (zδ ~ 0.5
[141,145]), and it has been suggested to inhibit channel current through effects on gating, rather
than direct blockage of the pore [141]. Although commonly used as a diagnostic tool to
demonstrate the presence of CNG channels, these results must be interpreted with caution, as
LCD can by no means be considered a specific blocker. Although the affinity of LCD for L-
type calcium channels is ~ 10-fold lower than that of d-cis-diltiazem, it is still an effective
blocker at low or sub μM concentrations, comparable to those required to inhibit the rod CNG
channel, and much lower than the concentrations required to inhibit the olfactory and cone
isoforms [146,147]. More recently, LCD has also been shown to have cardioprotective effects
that are not related to block of calcium channels [148,149], and it has been shown to block
voltage-dependent sodium channels at μM concentrations [150]. Despite these limitations,
however, LCD has been proposed for use in clinical treatment of retinal degeneration due to
altered cGMP metabolism, which causes calcium overload and apoptosis, and it has been
shown to be partially neuroprotective in rodent models of retinal degeneration [151].

Dichlorobenzamil (DCB), an amiloride derivative, was shown to inhibit CNG channel currents
in ion-flux experiments and when applied to the cytoplasmic face of inside-out patches excised
from frog rod outer segments [152] (Fig. 6). Block was half-maximal at low μM concentrations
and was relatively independent of voltage. This compound is equally effective on CNG
channels found in the sensory neurons of rat olfactory epithelium [139,153], but, to our
knowledge, its effectiveness on the channel isoform found in cone photoreceptors has not been
reported. DCB has been used to demonstrate the presence of CNG channels in hippocampal
neurons, airway epithelium, and intestine [104,154,155]. Once again, however, DCB cannot
be considered a selective antagonist of CNG channels. Although originally developed as an
inhibitor of the sodium-calcium exchanger at low μM concentrations [156], it has also been
shown to inhibit voltage-gated sodium, calcium, and potassium channels in a similar
concentration range [157-159].

Several additional pharmacological agents known to target other ion channels have also been
shown to block CNG channels (Fig. 7). Pimozide, a calcium channel blocker used as an
antipsychotic drug [160] has been reported to block the CNG channel in frog rod photoreceptors
when applied to inside-out patches at low μM concentrations [161], and the related compound,
clopimozide, was reported to block the channel from bovine rods in ion flux experiments when
applied at low μM concentrations [131]. However, attempts to reproduce the effect of pimozide
in ion flux experiments and on excised inside-out patches containing the heterologously-
expressed bovine rod channels (CNGA1 + CNGB1) have not been successful ([131] and Fig.
8). Amiloride, typically used at very low μM concentrations to block the epithelial sodium
channel [162], has been shown to block rod and olfactory CNG channels [140,143]. The block
by amiloride is strongly voltage-dependent, with the K1/2 for the olfactory channel increasing
from 17 μM at +100 mV to 400 μM at -100 mV [140]. D-600, a derivative of the L-type calcium
channel blocker verapamil, has also been shown to block the olfactory CNG channel at
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relatively high concentrations (Ki = 200 μM) at -20 mV, but was more effective at depolarized
potentials (Ki = 12 μM at +100 mV) [140]. However, other calcium channel blockers, such as
nimodipine, nifedipine, and verapamil are ineffective on the rod CNG channel [131].
Nifedipine, however, has been reported to block the frog olfactory CNG channel [163]. More
recently, dequalinium, a blocker of small-conductance calcium-activated potassium channels,
has been reported to be a high-affinity and voltage-dependent blocker of both homomeric and
heteromeric rod CNG channels [164,165].

Finally, tetracaine (compound 1, Table 1), a local anesthetic that blocks both sodium and
calcium channels, has been shown to block rod CNG channels at micromolar concentrations
[142,166,167]. (Mutagenesis studies of sodium channels have suggested a bimodal interaction
of local anesthetics with the pore; an electrostatic interaction with negatively charged residues
in the selectivity filter and a hydrophobic interaction with aromatic residues on the pore-lining
helix [168-172].) Further work on homomeric retinal (CNGA1) and olfactory (CNGA2)
channels established that block by tetracaine is voltage- and state-dependent. The apparent
KD for block of open channels is 170 μM in contrast to 220 nM for closed channels [173].
Evidence was also presented that tetracaine interacts with the pore glutamate residues [73].
The very strong preference of tetracaine for closed channels may have to do with the precise
arrangement of glutamate residues in the closed configuration. For a closed state blocker the
efficiency of block increases with the fraction of closed channels. This can be a desirable
property in a therapeutic setting for channels like CNG channels that are thought to spend most
of their time in the closed state. More recently, a multiply charged tetracaine derivative that
blocks CNG channels at subnanomolar concentrations was reported (compound 4,Table 1)
[174]. Like tetracaine this compound binds preferentially to closed channels. The extra charges
increase the apparent affinity for the pore, and also confer a steep voltage dependence of block.
Compound 4 is selective for CNG channels over brain Na+ channels. The highly charged
moiety likely interacts more strongly with the selectivity filter of rod CNG channels, which
contain three (heteromeric channel) to four (homomeric channel) glutamates, than the
selectivity filter of Na+ channels, which contains aspartate, glutamate, and lysine [175]. Several
additional tetracaine derivatives were synthesized to examine the effects of increased positive
charge and alterations to the hydrophobic character of tetracaine for blockade of homomeric
CNGA1 (Table 1) [176]. The results show that the addition of one or two positively charged
groups to the tertiary amine end of tetracaine results in dramatic increases in potency and
voltage-dependence of block. In contrast, addition of a positively charged amine to the
hydrophobic butyl tail of tetracaine is deleterious to block. A derivative with a polar N-acetyl
group at the butyl tail or a derivative lacking the butyl tail are both very poor blockers, further
reinforcing the importance of hydrophobic character at this end. Among this series of tetracaine
derivatives the apparent KD for block varies over nearly eight orders of magnitude, which
provides a fair amount of guidance for how to produce blockers that may be more specific for
CNG channels.

A second category of CNG channel blockers includes a number of calmodulin antagonists (Fig.
9). Undoubtedly, many of the CNG channel blockers in this category were discovered during
experiments designed to elucidate the mechanism and physiological role of calcium-
calmodulin (Ca-CaM) regulation in olfactory transduction. Binding of the Ca-CaM complex
is known to reduce the cyclic nucleotide affinity of all three isoforms of CNG channels
[177-179]. Although the physiological significance of this regulation is unclear for rod and
cone channels [180,181], binding of Ca-CaM to the native olfactory channel causes a
twentyfold increase in the K1/2 for cAMP, which is thought to underlie olfactory desensitization
[81,178]. Kleene [182] reported that application of the calmodulin antagonists, trifluoperazine
and W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide hydrochloride), reduced the
cAMP-dependent current when applied at low μM concentrations to the cytoplasmic face of
membrane patches excised from frog olfactory neurons. Thus, although they can discriminate
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between the cAMP-activated current and the Ca2+-activated chloride current in olfactory
neurons, these reagents will be of little use for investigating the Ca-CaM regulation of olfactory
transduction. Furthermore, trifluoperazine and W-7 have been reported to inhibit other ion
channels, including calcium channels [183], sodium channels [184], potassium channels
[185], and chloride channels [186], at similar concentrations, so they certainly cannot be
regarded as specific blockers of CNG channels.

Pharmacological agents targeting other signaling pathways have also been shown to block
CNG channels (Fig. 9). An inhibitor of soluble guanylyl cyclase, LY83,583, has been reported
to block olfactory CNG channels in salamander [187], but this compound is ineffective on rat
([188] and Fig. 8) and zebrafish channels [189]. LY83,583 is also ineffective at blocking
heteromeric rod channels (Fig. 8), suggesting caution in extrapolating blocking efficacy across
both species and channel isoforms. Reagents targeting Ca2+-signaling pathways have also been
reported to block CNG channels. Ruthenium red, a well-known blocker of the ryanodine
receptor, has been shown to be a high-affinity, but voltage-dependent, blocker of the zebrafish
olfactory CNG channel [189]. At -60 mV, ruthenium red was shown to block cAMP-activated
currents at sub-μM concentrations, but the efficacy was reduced by over two orders of
magnitude at +60 mV. Neomycin, an aminoglycoside antibiotic known to inhibit the activity
of phospholipase C, blocks the zebrafish olfactory CNG channel at 100 – 200 μM [189]. Finally,
H-8, an inhibitor of the cAMP-dependent protein kinase, has also been shown to directly inhibit
the rod CNG channel at mM concentrations [190].

The information above has important consequences for all of ion channel pharmacology. When
a blocker that is widely used on a well-known channel is found to block a lesser-known class
of channels such as CNG channels, its utility plummets. Thus, many cherished pharmacological
agents will have to be reevaluated.

In an attempt to discover more specific, high-affinity blockers for CNG channels, Brown and
colleagues screened a variety of snake, spider, and scorpions venoms for peptide toxins that
would inhibit CNG channels when applied to the extracellular face of the channel. In 1999,
these efforts resulted in the purification of pseudechetoxin (PsTx) from the venom of the
Australian King Brown snake (Pseudechis australis) [191]. This 25 kDa toxin is a member of
the family of cysteine-rich secretory proteins (CRISP), which are widespread in the venoms
of elapid snakes [192]. Other members of this family are thought to inhibit L-type calcium
channels [193] and large conductance calcium-activated potassium channels [194]. When
applied to the extracellular face of HEK-293 cells expressing rat CNGA2, PsTx blocked
currents at low nM concentrations. It was slightly less effective on CNGA1 channels, and
almost totally ineffective on the cone channel isoform, CNGA3. PsTx is also largely ineffective
on heteromeric CNG channels containing CNGB1 or CNGB3 subunits [195], reducing its
utility in native preparations. PsTx has been shown to inhibit channel current by forming high-
affinity contacts with the extracellular pore turret, thereby occluding the entrance to the
transmembrane pore [195]. A comparision of PsTx with the homolog, pseudecin, which is 97%
identical but blocks CNGA2 with a 20-fold lower affinity, led to the suggestion that the
cysteine-rich carboxy terminus might be the site of channel interaction [192]. Recently, the
crystal structure has been solved for stecrisp, triflin, and natrin, other members of the CRISP
family [194,196,197]. The structure reveals that the cysteine-rich carboxy terminus forms a
separate domain, which is similar in structure to sea anemone toxins, BgK and ShK, that target
potassium channels. If this domain from PsTx can be expressed as a functional inhibitor, it will
facilitate further development of PsTx as a tool to study the structure and function of CNG
channels.
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TARGETING CNG CHANNELS IN RETINAL DISEASE
The involvement of CNG channels in retinal disease can be divided into two categories. In the
first category mutations in rod and cone CNG channel subunits impair vision by causing
improper functioning or trafficking of the channels. In the second category mutations cause
defects in cGMP metabolism, and CNG channels are important in the pathophysiology of the
diseases. Regarding the first category, mutations in either the CNGA1 [198-200] or CNGB1
[201] subunits of rods cause autosomal recessive forms of retinitis pigmentosa, a heterogeneous
group of diseases that cause progressive degeneration of rod and cone photoreceptors, and
ultimately blindness (see also [202]). The known mutants either lack major channel domains,
or are functional but mostly fail to reach the cell surface [198,203,204]. Mutations in either the
CNGA3 [205-207] or CNGB3 [208-210] subunits of cones cause complete achromatopsia,
also known as total colorblindness or rod monochromacy. This is an autosomal recessive
disorder characterized by a complete inability to discriminate between colors and a severe loss
of visual acuity. Regarding the second category, a number of forms of retinitis pigmentosa
affect phototransduction and cGMP metabolism [211,212]. Mutations that result in increased
cGMP levels, such as mutations in the cGMP phosphodiesterase of rods or in guanylyl cyclase
activating protein 1, cause a massive influx of Na+ and Ca2+ through CNG channels [211,
213,214]. This leads to metabolic overload, as well as direct toxicity and apparent activation
of the apoptotic pathway [215]. (Interestingly, some of the disease-associated mutations in the
cone channel subunits CNGB3 [216,217] and CNGA3 [218] have been shown recently to cause
a gain of channel function, which would result in the same problems as a rise in cGMP.) An
important experimental model for the phosphodiesterase defect has been the rd mutation in
mice [219,220]. Six years ago it was reported that the Ca2+ channel blocker d-cis-diltiazem
can rescue photoreceptors and preserve visual function in the rd mouse [221]. Unlike its optical
isomer, l-cis-diltiazem, this compound exhibits little or no interaction with rod CNG channels
[138]. The hypothesis for why it was able to rescue photoreceptors is that the high cGMP levels
in rd rods and consequent depolarization caused by CNG channels leads to the activation of
voltage-gated Ca2+ channels and excessive Ca2+ entry. However, this conclusion has been
called into question in two more recent studies [222,223], where no beneficial effects of d-
cis-diltiazem were observed. Even if protective effects are seen under some circumstances,
Ca2+ channel blockers will have many other effects on retinal function. It has been noted in a
number of reviews that an attractive treatment for the disorders involving high cGMP levels
would be a specific and slowly reversible blocker of CNG channels [224]. Although l-cis-
diltiazem was found to be partially neuroprotective in mouse studies [151], CNG channel
blockers that are more potent, specific, and membrane-permeant would likely be extremely
useful for treating these blinding diseases.

HYPERPOLARIZATION-ACTIVATED, CYCLIC NUCLEOTIDE-MODULATED
CHANNELS

Another physiologically important class of ion channels that is modulated by the direct binding
of cyclic nucleotides is the hyperpolarization-activated, cyclic nucleotide-modulated (HCN)
channels [225]. These channels are formed from the products of four known genes termed
HCN1-HCN4. Two of these members (HCN2 and HCN4) are exquisitely sensitive to
intracellular levels of cyclic nucleotides, which enhance their activity. Structurally and
functionally, HCN channels can be described as a chimera between a voltage-activated
potassium channel (albeit with a reversed polarity and reduced potassium selectivity) and a
cyclic nucleotide-gated ion channel. Each subunit of an HCN channel contains six putative
transmembrane helices and a reentrant loop forming a cation-selective pore that permits the
flow of both potassium and sodium ions. The carboxy-terminal region of the channel contains
a cyclic nucleotide-binding domain, which regulates the voltage-dependence of channel
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activation. The four isoforms of HCN channels vary in terms of voltage-dependence, gating
kinetics, sensitivity to cAMP, and tissue localization.

HCN channels are activated by membrane hyperpolarization, giving rise to the depolarizing
Ih current, which plays a key role in the generation of rhythmic activity in a variety of excitable
tissues, including the heart and brain. This current is best known for its role as the “pacemaker”
channel in the sinoatrial (SA) node of the heart. In cells of the SA node, HCN channels are
activated by the hyperpolarization following the cardiac action potential. The inward mixed-
cation current carried by these channels slowly depolarizes the cell until threshold is reached,
and another action potential is initiated. These channels are also thought to play a role in
generation of rhythmic activity in the brain, taste transduction, and synaptic plasticity. Finally,
HCN channels have been implicated in the pathophysiology of neuropathic pain [226].

Further efforts to characterize the functions of HCN channels in general, and individual
isoforms in particular, have been hampered by a striking lack of selective pharmacological
tools. Ih is often distinguished by substantial block by extracellular Cs+ in the low mM range,
and insensitivity to 2 mM intracellular Ba2+. However, several other K+ channels are also
blocked by Cs+ in this concentration range. The best-known blocker of HCN channels is the
Zeneca compound, ZD7288 [227]. A Ki of 41 μM has been reported for block of mouse HCN1,
although this may be an underestimate of the true affinity due to a slow phase of block that did
not reach steady state [228]. Block of HCN channels by ZD7288 has a complex dependence
on voltage and exhibits an unexpectedly high zδ between 3 and 5. Although block of Ih by
ZD7288 was originally reported to not be state-dependent, block is now thought to require
prior activation of the channel, and ZD7288 can be trapped in the pore by channel closure
[228]. It seems likely that some of the discrepancies in the literature arose from differences in
the experimental protocols. Although this blocker is relatively effective, it does not select
between HCN isoforms, and it has also been shown to inhibit currents through AMPA and
NMDA receptors [229], as well as T-type calcium channels [230], calling its specificity into
question. Two other organic blockers, zatebradine (UL-FS49) [231,232] and ivabradine
(S-16257) [233] have also been used to block HCN channels.
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Fig. (1).
Structures of cGMP and cAMP both drawn in the syn conformation with respect to the N-
glycosidic bond. Numbering of the purine ring is shown for cGMP.
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Fig. (2).
Structures of selected analogues of cGMP modified at the cyclic phosphate and purine ring.
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Fig. (3).
Modification of cGMP at the C8 position. Structures of selected C8 substituents.
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Fig. (4).
Polymer-linked ligand dimers (PLDs). a, Structure of a PLD containing two cGMP moieties
and a polyethylene glycol (PEG) linker, with n ethylene glycol units. b, Diagrams of PLDs
binding to a channel with four ligand-binding sites: PLDs are shown with polymers whose
average length is too short (left), just right (center), or longer (right) than necessary, to allow
the ligands to span two binding sites on the channel. Reproduced from ref. [136] by copyright
permission of Nature Publishing Group (http://www.nature.com/).
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Fig. (5).
Identification of optimal polymer-linked dimers (PLDs) for cGMP-binding proteins. a,
Activation of CNG channels (RET and OLF, CNGA1 and CNGA2). b, Activation of cGMP-
dependent protein kinase (PKG). Arrows indicate PLDs optimal for activating each target
protein. Polymer lengths were estimated from previous determinations, assuming an increase
with the square root of the Mr. Reproduced from ref. [136] by copyright permission of Nature
Publishing Group (http://www.nature.com/).
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Fig. (6).
Structures of l-cis- and d-cis- diltiazem, dichlorobenzamil and amiloride.
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Fig. (7).
Structures of Ca2+ channel blockers that have been reported to block CNG channels.
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Fig. (8).
Extent of inhibition of heteromeric retinal rod and olfactory CNG channels by various
pharmacological agents. Conventional whole-cell currents were recorded from HEK-293 cells
expressing the rod (CNGA1 + CNGB1) or olfactory (CNGA2 + CNGA4 + CNGB1b) channels.
Expression of all subunits was confirmed by measuring cyclic nucleotide dose-response
relations and LCD affinity on excised inside-out patches. Currents were elicited by 250 ms
voltage steps from a holding potential of 0 mV to potentials ranging from -50 to +50 mV in
25 mV increments. Control (Con) currents in the absence of inhibitor for both heteromeric
channels ranged from 1-5 nA at -50 mV. Because the effects of many of the agents were only
partially reversible, each set of traces was obtained from a different cell and normalized to a
control trace taken at -50 mV on the same cell. Abbreviations for inhibitors not defined in the
text are: TFP, trifluoperazine; Pim, Pimozide; and LY, LY83,583. External Mg2+ and Cd2+

were applied at 10 mM and 3 mM respectively; all other pharmacological agents were present
at 50 μM. The currents shown in the presence of inhibitors were obtained after steady-state
block was achieved, usually several minutes after extracellular application. Pimozide and
LY83,583 are known to be membrane-permeant on the timescale of this experiment (~10 min),
yet no channel block was detected (see text). The extracellular solution contained 140 mM
NaCl, 5 mM KCl, 0.5 mM EDTA, and 10 mM Hepes, pH 7.4; the internal solution contained
140 mM KCl, 5 mM NaCl, 0.5 mM EDTA, 1 mM MgCl2, 10 mM Hepes, pH 7.4, and 1 mM
cGMP.
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Fig. (9).
Structures of compounds with diverse activities: Ca2+/CaM antagonists, trifluoperazine and
W-7; an antibiotic, neomycin; an SK K+ channel blocker, dequalinium; a guanylyl cyclase
inhibitor, LY83,583; a PKA inhibitor, H-8. All of these compounds have been reported to block
CNG channels.
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Table 1
Tetracaine Analogue Structures and Block of CNGA1 Channels

Compound KD(40) (μM) zδ
1 6.8 0.47

2 3.1 0.45

3 0.074 1.8

4 0.00003 2.6

5 210 1.1

6 2500 0.47

7 2300 0.91

KD(40): The apparent dissociation constant at +40 mV. zδ: the charge carried by a blocker (z) multiplied by the fraction of the electric field (δ) traversed
to reach its binding site. Each structure shown is the predominant form at neutral pH.
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