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Abstract
We study nonparametric estimation with two types of data structures. In the first data structure n
i.i.d. copies of (C, N(C)) are observed, where N is a finite state counting process jumping at time-
variables of interest and C a random monitoring time. In the second data structure n i.i.d. copies of
(C ∧ T, I (T ≤ C), N(C ∧ T)) are observed, where N is a counting process with a final jump at time
T (e.g., death). This data structure includes observing right-censored data on T and a marker variable
at the censoring time.

In these data structures, easy to compute estimators, namely (weighted)-pool-adjacent-violator
estimators for the marginal distributions of the unobservable time variables, and the Kaplan–Meier
estimator for the time T till the final observable event, are available. These estimators ignore
seemingly important information in the data. In this paper we prove that, at many continuous data
generating distributions the ad hoc estimators yield asymptotically efficient estimators of -
estimable parameters.
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1. Introduction
In this paper we study nonparametric estimation with two types of data structures. First, we
discuss these two data structures in detail. Subsequently, we provide an overview of the rest
of the paper.

1.1. Current status data on a finite counting process

Consider a finite state counting process , where Tj is the time-variable at
which a specified event occurs and where N jumps from value j − 1 to j at time Tj. The number
of jumps k is fixed and known. We allow that there is a positive probability that the counting
process never reaches jump j0 for any particular j0 ∈ {1, …, k}; since T1 < · · · < Tk, this implies
that there is also a positive probability that N never reaches jump j for j = j0, …, k: that is, we
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allow multivariate distributions of (T1, …, Tk) with P (Tj = ∞) > 0 for j = j0, …, k. In this manner
we allow applications in which the number of jumps of N is random on {1, …, k}.

We consider the data structure (C, N (C)) for a single random monitoring time C. The only
assumption is that C is independent of N: the cumulative distribution G of C, and the probability
distribution F of N are unspecified. Note that the distribution of N, denoted by F, is not a
cumulative distribution function, but a probability distribution that is identified by the
multivariate cumulative distribution of (T1, …, Tk).

Such data structures occur in cross-sectional studies where each subject is monitored once. For
example, in some carcinogenicity experiments, one can only determine a discretized occult
tumor size at time t in a randomly sampled mouse, as measured by N (t), by sacrificing a mouse
at time t. In this example, T1 might represent time till onset of the tumor and T2, …, Tk might
correspond with times till increasing sizes of the tumor. Similarly, Tj might denote the age at
which a child has mastered the j th skill among a set of k skills ordered in difficulty. We refer
to Jewell and van der Laan (1995) for additional applications.

The distribution of (C, N (C)) depends on the distribution of T ⃗ = (T1, …, Tk) only through the
marginal distributions Fj of Tj, j = 1, …, k (see Section 2). In this problem, the NPMLE of the
distribution of Tj requires an iterative algorithm. On the other hand, an ad hoc method for
estimation of the distribution of Tj is directly available: reduce the observation (C, N (C)) to a
standard current status observation (C, Δj = I (Tj ≤ C)) on Tj. Then one can estimate the
distribution of Tj with the NPMLE based on the reduced current status observations, which we
will refer to as the reduced data NPMLE (RNPMLE). This estimator provides regular and
asymptotically linear estimators of pathwise differentiable functionals of Fj such as μj = ∫(1 −
Fj)(u)r(u) du, for a given r, in the nonparametric model under certain conditions [Groeneboom
and Wellner (1992)]. Previous work and examples of traditional current status data on a time
variable T can be found in Diamond, McDonald and Shah (1986), Jewell and Shiboski
(1990), Diamond and McDonald (1992), Keiding (1991) and Sun and Kalbfleisch (1993). In
its nonparametric setting, the current status data structure is also known as case I interval
censored data [Groeneboom and Wellner (1992)]. Current status data commonly arise in
epidemiological investigations of the natural history of disease and in animal tumorigenicity
experiments. Jewell, Malani and Vittinghoff (1994) give two examples that arise from studies
of Human Immunodeficiency Virus (HIV) disease.

Note that the RNPMLE of Fj ignores the value of N (C), beyond information on whether N
(C) ≥ j or not. For example, if N (t) is tumor size in a carcinogenicity experiment, then the
simple current status estimator of the distribution of time, T1, till onset of tumor would not
distinguish between an observation (C, N (C)) with N (C) large and an observation (C, N (C))
with N (C) small but larger than 0, while the latter observation seems to suggest that onset
occurred recently. Nonetheless, we establish that the RNPMLE yields efficient estimators of
pathwise differentiable parameters at a large class of continuous data generating distributions
of interest.

1.2. Current status data on a finite counting process when the final event is right censored
We also consider the data structure (T ̃k ≡ C ∧ Tk, N (T ̃k)) for a finite state counting process

, where Tk represents the final event (say death) which is right censored
by the monitoring time C, and k is known. Note that this observation includes observing the
failure indicator I (T ̃k = Tk). For example, consider a carcinogenicity experiment with mice in
which T1 is time till onset of colon tumor, T2 time to liver metastasis and T3 time to death from
tumor, where we assume that colon tumors do not cause death except through liver failure
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secondary to metastasis. Here C is either a sacrificing time or time till death from any unrelated
cause.

Consider another example concerning estimation of the survival function of the time T = J −
I between time I at seroconversion and time J at death of a hemophiliac patient infected with
HIV. For this purpose we observe n i.i.d. subjects in a fixed time-interval of 10 years. If we
assume that the time I at seroconversion of the subject is observed (which is approximately
true for hemophiliacs), then the subject’s survival time T is right censored by C ≡ 10 − I, where
T will play the role of Tk. We define Tj as the time till a given monotone “surrogate” process
Z(t) achieves a particular value among a set of k − 1 increasing values, j = 1, …, k − 1, where
we assume that death T = Tk always and only occurs after the value Z(Tk − 1) has been reached.

Let  be the counting process. Here Z(t) measures the progression of the
disease of the subject t years after seroconversion; for example, Z(t) might be a measure of
viral load of the subject t years after seroconversion, where it may be reasonable to assume
that the viral load is a nondecreasing process in the absence of treatment.

Suppose that for every subject who did not die before the end of the study C one measures the
“surrogate” Z(C) at time C only. In other words, we observe failure times only for subjects
who fail before end of follow up and for every subject who is alive at end of follow up we also
have a marker indicating future prognosis. Note that the observed data on a subject is given by
(T ̃ = T ∧ C, Z(T ̃)). We only assume that C is independent of Z. A seemingly ad hoc estimator
of S(t) = P (T > t) is the Kaplan–Meier estimator which simply ignores the marker information.
In this example, a natural question is whether one can improve on the Kaplan–Meier estimator
using the information in the surrogate process Z. In this paper we prove that the Kaplan–Meier
estimator is asymptotically efficient at many continuous data generating distributions for which
Fj have compact support.

A special case of this data structure has been treated in the literature. Consider a carcinogenicity

experiment with , T1 is time till onset of tumor and T2 is time till death
from tumor. Thus one observes (T ̃2 ≡ C ∧ T2, N (T ̃2)). This data structure has been considered
in Kodell, Shaw and Johnson (1982), Dinse and Lagakos (1982), Turnbull and Mitchell
(1984), van der Laan, Jewell and Peterson (1997), and recently Groeneboom (1998). The
NPMLE for this data structure requires an iterative algorithm: Turnbull and Mitchell (1984)
implemented the NPMLE via the EM-algorithm (using an initial distribution with point masses
at each data point so that the EM-algorithm indeed converges to the NPMLE), while
Groeneboom (1998) implements the NPMLE by maximizing the actual likelihood with a
modern optimization algorithm. In this problem, an ad hoc estimator of the distribution of T2
is the Kaplan–Meier estimator based on the reduced data (T ̃2, Δ2 = I (T ̃2 = T2)). In Dinse and
Lagakos (1982), the Kaplan–Meier estimator of F2 was proposed and it was suggested that the
NPMLE might be more efficient than the Kaplan–Meier estimator. In van der Laan, Jewell and
Peterson (1997) it is shown that the Kaplan–Meier is efficient under a weak condition on
(F1, F2). Moreover, an isotonic regression estimator of F1 was provided: note that estimation
of F1 is complicated by the fact that for some subjects one only observes T2 and thus that T1
< T2, where T2 cannot be viewed as an independent monitoring time for T1. We note here that,
in van der Laan, Jewell and Peterson (1997), a simulation study was carried out which
incorrectly implements the NPMLE, so that finite sample comparisons between the Kaplan–
Meier estimator and the NPMLE remain open to study [specifically the derivation of the score
equations in van der Laan, Jewell and Peterson (1997) for the NPMLE was not valid since the
authors incorrectly assumed that the NPMLE F̂1 is strictly smaller than the NPMLE F̂2].
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1.3. Organization and overview of results
In Section 2 we prove, for the data structure of Section 1.1, that if the Fj’s are continuous with
Lebesgue density bounded away from zero on [0, τj] and zero elsewhere, and G is also
continuous, then any estimator of a parameter  that is regular and asymptotically
linear at PF,G is also asymptotically efficient. The complexity of the NPMLE is discussed
including that it is more efficient at many data generating distributions with singular pairs
Fj1, Fj2; for example, F1 discrete and F2 continuous

In Section 3, we prove an analogous result for the nonparametric model with the data structure
(C ∧ Tk, N (C ∧ Tk)). This shows that the Kaplan–Meier estimator of the distribution of Tk,
based on the reduced data (T ̃k, Δk ≡ I (Tk ≤ C)), is asymptotically efficient at many continuous
data generating distributions, extending the result in van der Laan, Jewell and Peterson
(1997) for the case k = 2. Moreover, simple isotonic regression estimators for the distributions
Fj, j = 1, …, k − 1, are proposed that also yield asymptotically efficient estimators of smooth
functionals by our general result.

2. Current status data on a counting process
2.1. Traditional current status data

Traditional current status data can be viewed as current status data on a simple counting process
as follows. Let T be a univariate failure time of interest and define the process Δ(t) = I (T ≤ t)
as the counting process with one single jump at point T. Let Y = (C, Δ(C)) represent current
status data on Δ at a monitoring time C. We assume that C is independent of T [i.e., of Δ(·)].
The parameter of interest is the distribution F of T.

The properties of the NPMLE Fn of the distribution of T were established in Groeneboom and
Wellner (1992). Here the NPMLE is defined as the maximum likelihood estimator over all
discrete distributions with jumps at the monitoring times. Beyond proving a limit distribution
result for Fn, these authors also established efficiency of smooth functionals of Fn with a closed
form expression of the limit variance so that Wald-type confidence intervals are directly
available. Huang and Wellner (1995) provide an alternative proof of asymptotic linearity of
the NPMLE of smooth functionals of F under weak conditions.

We refer to Bickel, Klaassen, Ritov and Wellner (1993) for definitions of a regular,
asymptotically linear and efficient estimator and influence curve of an estimator. The
semiparametric-information bound at PF,G is defined as the infimum of parametric information
bounds over a specified class of parametric submodels. We choose as parametric one-
dimensional submodels

where dFε,h1 (·) = (1 + ε,h1 (·)) dF (·), dGε,h2 (·) = (1 + ε,h2 (·)) dG (·) and ε is the unknown
parameter with parameter space [− δ, δ] for some small δ > 0. The tangent space at PF,G is
now defined as the closure in  of the linear span of all the scores of these one-
dimensional submodels, where, for a given measure μ, we define

 as the Hilbert space endowed with inner product 〈h1, h2〉μ =
∫h1(y)h2(y) d μ(y). Thus the tangent space at PF,G is a sub-Hilbert space of .
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In this paper it is particularly important to realize that efficiency of an estimator is a local
property in the sense that a regular estimator can be efficient at a particular PF,G and inefficient
at another element of the model.

Lemma 2.1—Consider the nonparametric model for Y = (C, Δ(C)), where Δ(·) ≡I (T ≤ ·), T
has unspecified distribution F and C is independent of T with unspecified distribution G. We
observe n i.i.d. observations of Y = (C, Δ(C)). Consider the parameter μ = ∫(1 − Fn)(u)r(u) du
for a given function r. Consider the estimator μ = ∫(1 − Fn)(u)r(u) du, where Fn is the NPMLE
of F. We have that μn is regular and asymptotically linear at any (F, G) for which F is continuous
with density fT > 0 on [0, M] and zero elsewhere (M < ∞), g(x) = dG/dx > 0 on [0, M], and r
is bounded on [0, M].

The influence curve of μn is given by

(1)

The variance of IC is given by

This lemma is proved in Huang and Wellner (1995).

We can also prove the following tangent space result.

Lemma 2.2—Consider the nonparametric model for Y = (C, Δ(C)), where Δ(·) ≡I (T ≤ ·), T
has unspecified distribution F and C is independent of T with unspecified distribution G. We
observe n i.i.d. observations of Y = (C, Δ(C)). Suppose that:

1. F has a Lebesgue density f with f > 0 on [0, τF) and, if τF < ∞(τF = ∞ is allowed), then
f = 0 on (τF = ∞), and

2. G has a Lebesgue density g.

We allow F ({∞}) > 0. Then the tangent space at PF,G equals . This implies that an
estimator of a parameter μ (F) which is regular and asymptotically linear at PF,G is also
asymptotically efficient if F, G satisfy (1) and (2).

In Gill, van der Laan and Robins (1997) it is proved that if one only assumes that the conditional
distribution of the observed data Y, given the full data T, satisfies “coarsening at
random” (CAR), then the tangent space at PF,G is saturated, that is, equals . The tangent
space generated by G(· | T) under the sole assumption CAR equals

. Therefore, the main idea of the proof below is to show
that under the independent censoring model G(· | T) = G(·), the tangent space of the marginal
distribution G equals TCAR at a PF,G satisfying (1) and (2) of Lemma 2.2. The proof below
will be an ingredient of the proofs of our two main theorems.

VAN DER LAAN and JEWELL Page 5

Ann Stat. Author manuscript; available in PMC 2008 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proof of Lemma 2.2—Let  be the score operator for F and let

 be its adjoint. The closure of the range of a Hilbert space operator equals
the orthogonal complement of the null-space of its adjoint; that is, , where

 is the closure of the range of the score operator and N (A⊤) is the null space of A⊤. Thus
.

The data generating distribution is indexed by two locally variation-independent parameters
F and G, so that the tangent space at PF,G can be obtained as a sum of two tangent spaces,
namely the tangent space for F, which is given by , and the tangent space for G. For every

 with finite supremum norm, we have that ε →(1 + εh2) dG is a one-dimensional
submodel through G at ε = 0. Thus the tangent space corresponding with submodels ε →
PF,Gε equals . Thus we have that the tangent space is given by . We conclude
that it suffices to show that .

We have

Thus ∫V (c, Δ(c)) dG(c) = 0 F -a.e. implies that

(2)

Differentiation w.r.t T yields V (C, 0) = V (C, 1) on [0, τF) G-a.e. If τF < ∞ and c > τF, then c
> T and thus V (c, Δ(c)) = V (c, 1). Thus V (C, 0) = V (C, 1) G-a.e. which proves

. □

It is of interest to note that one can represent FT (t) as a monotonic regression of Δ on C since
F (t) = E(Δ (C) | C = t). This suggests that one can estimate FT with the estimator Fn(t) which

minimizes  over all distribution functions FT. Fn(t) can be computed
using the pool-adjacent-violator-algorithm [see Barlow, Bartholomew, Bremner and Brunk
(1972)] which, in fact, yields the NPMLE.

2.2. Current status data on a counting process

Let the process of interest be a counting process , where Tj is the time-
variable at which an event occurs and where N jumps from value j − 1 to j. Let C be a monitoring
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time and consider the data structure Y = (C, N (C)). We observe n i.i.d. copies of Y. We only
assume that C is independent of N.

The distribution of (C, N (C)) depends on the distribution of T ⃗ only through the marginal
distributions Fj of Tj, j = 1, …, k. To be precise, we have (denoting Si = 1 − Fi), for j ∈ {0, …,
k},

Thus the distribution of Y = (C, N (C)) only identifies the marginal distributions of Tj, j = 1,
…, k.

The NPMLE does not exist in closed form and can only be computed with an iterative
algorithm. For a given j, we can reduce the observation (C, N (C)) to simple current status data
(C, Δj = I (Tj ≤ C)) on Tj, and estimate Fj with the RNPMLE. Under the conditions stated in
Lemma 2.1, with F = Fj and G = G, this estimator provides regular and asymptotically linear
estimators of smooth functionals of the type μj = ∫(1 − FTj)(u)r(u) du,, for a given r in the
nonparametric model. The following theorem proves that, at a data generating distribution of
Y satisfying a specified condition, any regular asymptotically linear estimator will provide
asymptotically efficient estimators of smooth functionals of FTj. We decided to state a condition
(3) which is easy to understand, but our proof shows that this can be weakened, for example,
to allow the analogue of (3) for the case where all distributions G, F1, …, Fk are discrete with
a finite number of support points; that is, the support points of Fj are contained in the support
points of Fj are contained in the support points of Fj+1, j = 1, …, k −1, and G is discrete with
support contained in the support of Fk.

Theorem 2.1—Let T1 < T2 < ···< Tk be time-variables corresponding to the chronological
events of interest. Define the counting process with jumps of size 1 at these Tj’s by

Let Y = (C, N (C)). Consider the following semiparametric model for Y: Let C ~ G be
independent of T⃗~ F, but leave G and F unspecified. Then, the distribution of Y only depends
on the multivariate distribution F of T⃗ = (T1, …, Tk) through the marginal distributions F1, …,
Fk of T1, …, Tk.

Consider a data generating distribution PF,G in the model above, satisfying the following
condition (3): For certain τ1 < ···< τk < ∞let Fj have Lebesgue density fj on [0, τj] with

(3)

We allow that pj ≡ P (Tj = ∞) > 0 for j = j0, …, k and j0 ∈ {1, …, k}.
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Then the tangent space at PF,G equals  and is thus saturated.

This implies that any estimator of a real valued parameter of F that is a regular and
asymptotically linear estimator at PF,G is also asymptotically efficient if PF,G satisfies (3). In
particular, given j ∈ {1, …, k}, if PF,G satisfies (3), and Fj, G satisfy the conditions of
Lemma 2.1 for the RNPMLE of μFj based on (C, I (Tj = C)) (thus with F = Fj and G = G), then
the RNPMLE of μFj is asymptotically efficient.

2.2.1. Heuristic understanding of the difference between NPMLE and RNPMLE
—To understand the difference between the NPMLE and the RNPMLE, we consider the special
case k = 2 in detail. In this case N can have three possible values:

Let us assume that C has a Lebesgue density g. The likelihood of (C, N (C)) is given by

We note that the density pF1,,F2,G can be reparametrized as

where R(t) ≡ S1(t)/S2(t). Thus, if we ignore the relation between F2 and R, then the NPMLE of
F2 of the likelihood corresponding with pR,F2,G would actually be equal to the reduced data
NPMLE based on the reduced data (C, I (T2 ≤ C)). However, F2 and R are related since S2R
has to be a survival function. Therefore, it is not possible to determine the NPMLE by separate
maximization w.r.t. F2 and R, which explains why the NPMLE and the RNPMLE of F2 differ.

Theorem 2.1 shows that this relation between F2 and R is not informative for estimation of
smooth functionals of F2 at a large class of data generating distributions, since the RNPMLE,
which ignores this relation, is still asymptotically efficient for estimation of -estimable
parameters. Our proof of Theorem 2.1 for k = 2 shows that the efficient score operator (for the
definition of an efficient score operator, see the proof) of F2 equals the efficient score operator
for F2 in the reduced data model based on (C, Δ2). This implies that, at (F1, F2) satisfying (3),
the efficient influence curve for any smooth functional of F2 equals the influence curve of the
RNPMLE as given in Lemma 2.1. Closer inspection of the proof for k = 2 also shows that, if
(e.g.) F2 is continuous while F1 is discrete on [0, τ1], or F2 is discrete with support not
containing the support of a discrete F1, then the efficient score operator for F2 is not the same
as the efficient score operator for F2 in the reduced data model, so that, in particular, the efficient
influence curves (and information bounds) differ for the two models. Thus, at such (F1, F2),
the RNPMLE of smooth functionals of F2 is inefficient.
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Here, we provide a likelihood-based explanation of this fact. Let Rn be the NPMLE of R. The
NPMLE of F2 maximizes the likelihood corresponding with pRn,F2 over all F2 for which
S2Rn is a survival function, while the RNPMLE maximizes the likelihood over all distributions
F2. Suppose now that the model consists of discrete F1’s and continuous F2’s. This model,
though smaller than the model with F1, F2 being unspecified, has the same semiparametric
efficiency bound at a (F1, F2) in this smaller model as the efficiency bound in the original
model. This follows from the fact that the class of one-dimensional submodels as needed to
compute the tangent space can still be chosen the same. In this smaller model, an R = S1/S2
will be discrete at the support points of F1, and the shape of R between the support points equals
the shape of 1/S2. As a consequence, since R determines the shape of F2 between the support
points, knowing R in the smaller model helps enormously in estimating S2. In particular, for a
given Rn, maximizing the likelihood corresponding with pRn,,F2 over F2 with S2Rn being a
survival function, is very different from maximizing this likelihood over all possible
distributions F2. This shows that the RNPMLE in the smaller model is inefficient at such
(F1, F2). Since the efficiency bound in the smaller model is the same as the efficiency bound
in the original model, this also shows that the RNPMLE will also be inefficient at such (F1,
F2).

Proof of Theorem 2.1—We need to prove that assumption (3) implies that the tangent space
at PF,G equals , and is thus saturated. The data generating distribution PF,G is indexed
by F and G, where the dependence on F is only through the marginals Fj, j = 1, …, k. Thus,
the tangent space at PF,G can be obtained as a sum of two tangent spaces, namely the tangent
space for F and the tangent space for G, where the latter equals . Let F, G be given and
satisfy (3). We now claim that the tangent space for F is given by the closure of the sum of the
k tangent spaces for Fj calculated as if the Fj ’s are variation-independent parameters, j = 1,
…, k. We will show this now. Let  have finite supremum norm, and let Fj,ε,hj be the

one-dimensional perturbation  through Fj at ε = 0, j = 1, …, k. First, note
that the support of Fj,ε,hj equals the support of Fj, j = 1, …, k. Since Fj > Fj +1 (strictly) on (0,
τj] we have that, given an arbitrarily small δ1 > 0, there exists a neighborhood ε ∈ (−δ, δ) with
Fj,ε,hj ≥ Fj+1,ε,hj+1on (δ, τj] for all j = 1, …, k − 1. Thus, PFj,ε,hj,j = 1,…,k,G satisfies the
constraints Fj ≥ Fj+1, j = 1, …, k − 1, of our model except on an arbitrarily small neighborhood
of 0. Thus, by modifying hj on an arbitrarily small neighborhood of 0, we can make ε →
PFj,ε,hj, j=1,…,k,G a true one-dimensional submodel. Since a tangent space for F is obtained
as the closure in  of the linear span of scores of all possible one-dimensional submodels,
it follows that the score of the unmodified ε → PFj,ε,hj, j=1,…,k,G also belongs to the tangent
space. This proves our claim.

Let j ∈ {1, …, k} be given. For a given , we consider the one-dimensional submodel
Fj,ε given by ε → (1 + εhj (t)) dFj (t) which goes through Fj at ε = 0. For notational convenience,
define the random variable R = N (C) + 1 ∈ {1, …, k + 1}, and let F−j be the (k − 1)-dimensional
vector of c.d.f.’s excluding Fj. This one-dimensional submodel Fj,ε implies a score for
PFj,ε,F−j,G given by
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If we define S0 ≡ 0 and Sk+1 ≡ 1, then, for j = 1, …, k,

where we use that S1 − S0 = S1, and Sk+1 − Sk = Fk. Here  is called the
score operator of, Fj = 1, …, k. The tangent space for Fj is given by the closure of the range of

Aj denoted by . Define  by AF (h1, …, hk) = A1(h1) +
… + Ak(hk). Then, the tangent space for F equals  so that the tangent space at PF,G is

given by . Thus, to prove the theorem, it suffices to show that

 at any F, G satisfying (3).

The remaining task is to understand the range of AF. We decompose AF as a sum of efficient
score operators , where  is defined as Aj minus its projection, on the sum-space spanned
by the ranges of the other score operators A1, …, Aj −1, Aj +1, …, Ak, j = 1, …, k. We will prove

that the efficient score operator of Fj at a PF,G satisfying (3) equals ,
which is the score operator for the reduced current status data structure (C, Δj), j = 1, …, k.
Since the information bounds for smooth functionals of Fj are, in both models, solely expressed
in terms of the efficient score operator for Fj, the latter result proves that an efficient estimator
of μj based on (C, Δj), j = 1, …, k, like the RNPMLE, is also efficient in the model for the more
informative data structure (C, N (C)) [e.g., Bickel, Klaassen, Ritov and Wellner (1993)]. This
proves that the RNPMLE actually yields efficient estimators. Subsequently, we show that this
special structure of the efficient score operators implies that the tangent space at a PF,G
satisfying (3) is saturated, proving the more general statement of Theorem 2.1.

Derivation of the efficient score operators of Fj—Since E(Al(hl)Am(hm)(Y)) is equal to
0 if | l − m |≥ 2, it will follow that the efficient score operators mainly involve projections of

the type  and . Therefore we first obtain closed form expressions,
in general, for these projection operators.
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If the projection  is actually an element of R(Aj −1), then this projection is
given by (compare with the formula X(X′X)−X′Y for the least squares estimator):

(4)

where  is the adjoint of , and 

stands for the generalized inverse of . Similarly,

(5)

The adjoint  is defined by

It is easily shown that for l ∈ {1, …, k},

We have that

where

or, in fact, with our convention of S0 = 0 and Sk+1 = 1,
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Here φl (t) ≡ 0 if Sl(t) = 0.

If pl = P (Tl = ∞) > 0, then we can write

Thus, given a K with K ≪ G, a solution (if it exists) of  has to satisfy: for G-a.e.,
c ∈ [0, τl],

(6)

and, if pl = P (Tl = ∞) > 0, then the equation  yields

(7)

Thus, even when pl > 0, (6) is the principal equation to solve (and will imply our conditions)
since its solution hl on [0, τl] yields the complete solution hl(Tl) = hl(Tl)I[0,τl](Tl) + I(Tl = ∞)
hl(∞). This two-step method for solving for hl in  first solves for hl I[0,τl] and then
uses that, if pl > 0, hl (∞) is a function of hl I[0, τl].

We have, for l ∈ {1, …, k − 1},

We note that this element is indeed absolutely continuous w.r.t. G. Similarly, it follows that,
for l ∈ {1, …, k − 1},

Thus,  is the h satisfying
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(8)

for G-a.e., c ∈ [0, τj−1] and, if pj −1 > 0, then h(∞) is a simple function of hI[0,τj−1] as given
above. Similarly,  is the h satisfying

(9)

for G-a.e., c ∈ [0, τj+1] and, if pj +1 > 0, then h(∞) is a simple function of hI[0,τj+1]. If we can
take a derivative of the right-hand sides in (8) and (9) w.r.t. Fj −1 and Fj +1, then, in terms of
h, equations (8) and (9) have a solution. This is possible if Fj ≪ Fl (i.e., Fj is absolute continuous
w.r.t. Fl) on [0, τl], l ∈ {j − 1, j + 1}, which holds under assumption (3) since we assumed that
all Fj have positive Lebesgue density on [0, τj]. The efficient score operator  also involves
projections requiring existence of solutions hl−1,l, hl+1,l for l different from j. Therefore, the
assumed condition (3) includes (via an easy to understand condition) the necessary and
sufficient conditions for the existence of hl−1,l, hl+1,l for all possible l, as needed below.

This gives the following closed form expressions for the projections (4) and (5) by simply

replacing  in Al(h) by the expressions above. We have, for j = 1, …, k − 1,

(10)

and, for j = 2, …, k,

(11)

For simplicity we derive the efficient score operators for the case k = 3. (The proof generalizes
to the general case.) First, define

The efficient score operators  are given by
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Calculation of . Applying (10) and (11) with j = 2 gives us

and

Thus,

Now, notice that

Thus (using ),
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Calculation of . Formula (10) with j = 1 gives us

Thus,

We now note that

Thus,

It is easily verified that the adjoint  is given by

Subsequently, we can now verify that
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where

We need to find  with

This solution has to satisfy on [0, τ2]:

and, as shown previously, h23,1(∞) is a simple function of h23,1I[0,τ2]. We note that h23,1 exists
under the assumption Fj ≡ Fk (i.e., Fj ≪ Fk and Fk ≪ Fj) on [0, τj], j = 1, …, k − 1, which
follows from (3). We conclude that

Using F2/(F1(S2 − S1)) − 1/(S2 − S1) = −1/F1 and  yields

Calculation of . This calculation is very similar to the one above for  and is omitted. We
have
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Proving that the tangent space is saturated—Given the expressions for the efficient
score operators derived above, we now prove that the tangent space at a PF,G satisfying (3) is
saturated. Under our assumption (3), the tangent space equals  (scores generated by G)

plus the closure of the range of  defined by

where the marginal efficient score operators are given by

. The closure of the range of a Hilbert space operator equals
the orthogonal complement of the null-space of its adjoint, that is, . Thus we

need to show that . The adjoint  is given by

where it is easily verified that the adjoint  of  is given by

Consider the operator  given by , where
 is the space of functions of (C, Δj) with finite variance and zero mean (both taken

w.r.t. PF,G). Using precisely the same proof as the proof of Lemma 2.2, it follows that, if Fj

has a Lebesgue density fj > 0 on [0, τj], then the null-space , that is, it consists of
functions independent of Δj. Thus, under (3),  implies that E(V (C, R) | C, Δj) = E
(V (C, R) | C) ≡ φ(C), j = 1, …, k.

Setting Δ1 = 0 yields φ(C) = E(V (C, R) | C, Δ1 = 0) = V (C, 1). Now, we note that
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where P (R = m | c) = (Sm − Sm−1)(c). Thus, E(V (C, R) | C, Δj = 1) is given by

For j = k, this equality gives V (c, k + 1) = φ(c). For j = k − 1, this equality gives then

so that V (c, k) = φ(c). In this manner, we subsequently find φ(c) = V (c, k + 1) = V (c, k) = …
= V (c, 2). This shows that V (C, R) does not depend on R. This completes the proof.

3. Current status data on a counting process when final event is right
censored

The following theorem proves efficiency of any regular asymptotically linear estimator at a
specified rich sub-model.

Theorem 3.1

Let N (t) be a counting process  for random variables T1 < …< Tk. Let C
be a random censoring time. For every subject we observe the following data structure:

We assume that C is independent of (T1, …, Tk). The distribution of Y only depends on the
multivariate distribution F of (T1, …, Tk) through the marginal distributions F1, …, Fk of
(T1, …, Tk).

Consider a data generating distribution PF,G in the model above satisfying the following
condition (12): For certain τ1 < …< τk < ∞, let Fj have Lebesgue density fj on [0, τj] with
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(12)

We allow that pj ≡ P(Tj = ∞) > 0 for j = j0, …, k and j0 ∈{1, …, k}.

Then, the tangent space at PF,G equals  and is thus saturated. This implies that an
estimator of a real valued parameter of the distribution F which is regular and asymptotically
linear at PF,G is also asymptotically efficient if PF,G satisfies (12). In particular, if Ḡ(t) > 0
and F, G satisfy (12), then the Kaplan–Meier estimator Sk,KM (t) of Sk(t) = P (Tk > t), based on
the i.i.d. data (T ̃, Δ), is asymptotically efficient.

3.1. Regular and asymptotically linear estimators—The important implication of
Theorem 3.1 is that, if we can construct an estimator of -estimable parameters of Fj which
is regular, then this estimator will be asymptotically efficient at any F satisfying (12), j = 1,
…, k. In this subsection, we provide relatively simple regular and asymptotically linear
estimators.

First, consider estimation of Sk(t) = P (Tk > t). It is well known that Sk,KM (t) is a regular
asymptotically linear estimator of Sk(t) whenever Ḡ(t) > 0. Second, consider estimation of Sj
(t) = P (Tj > t), j = 1, …, k − 1. Let Δj ≡ I (Tj ≤ C). Under independent censoring (we can weaken
this to noninformative censoring of Tk), we have

(13)

So

(14)

In other words, estimating Sj can be viewed as estimating a monotonic regression of Sk(C)(1
− Δj) on the observed C’s. This suggests replacing Sk by the efficient Kaplan–Meier estimator
Sk,KM and minimizing

(15)

over the vector (Sj (Ci): i = 1, …, n), under the constraint that Sj is monotone, where wi, i = 1,
…, n, is a given set of weights possibly assigning more mass to observations with smaller
variance. The solution Sj,n of this problem can be obtained with the pool-adjacent-violator-
algorithm (PAVA) [see, e.g., Barlow, Bartholomew, Bremner and Brunk (1972)].

A simple calculation shows that
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(16)

Since Rj is not identified from the data at a better rate than Sj, a good set of weights is

 [see van der Laan, Jewell and Peterson (1997)].

It is beyond the scope of this paper to prove that smooth functionals of Sj,n are regular and
asymptotically linear. Since it is straightforward to prove such a theorem for a standard
histogram regression estimator of the regression of Sk(C)(1 − Δj) on the observed C’s, one
expects that the more sophisticated isotonic regression estimate Sj,n (which only differs because
it selects its bins adaptively) is regular and asymptotically linear under the same conditions.
We note that the choice of weights wi, i = 1, …, n, has no effect on the limit distribution of
smooth functionals of Sj,n.

3.2. Proof of Theorem 3.1—In the first part of the proof we establish that, if condition (12)
holds, then the efficient score operator of Fk equals the efficient score operator of Fk in the
reduced data model for (T ̃k, Δk), hereby establishing a proof of the efficiency of the Kaplan–
Meier estimator SKM (t). Subsequently, exploiting this special form of the efficient score
operator of Fk, we prove saturation of the tangent space and thus Theorem 3.1.

Consider the data structure (T ̃k = Tk ∧ C, N (T ̃k)), where  and T1 < T2 < …
< Tk are ordered random variables. Let R = N (T ̃k) + 1. The density of the data is given by

where S0 ≡ 0 and Sk+1 ≡ 1. We refer to the beginning of the proof of Theorem 2.1 to show that
the tangent space at a PF,G satisfying condition (12) is the closure of the sum of the tangent
spaces generated by Fj, j = 1, …, k and the tangent space of G, treating Fj as locally variation-
independent. We have that the score operators:  for Fj, j= 1, …, k − 1, are
given by

and
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Derivation of efficient score operator of Fk: We first determine the efficient score operator
for Fk. For notational convenience, we consider the case k = 3. We have

where

Applying formula (11) gives

where we need to assume that F2 ≪ F1 on [0, τ1]. Thus, an easy calculation shows that

Another straightforward calculation shows that the adjoint  of
 is given by

A straightforward calculation now shows that

We also have
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This shows that  satisfies, on [0, τ2],

and, if p2 = P (T2 = ∞) > 0, then h21,3(∞) is a simple function of h21,3I[0, τ2]as shown above
(7). Here we need to assume that this equation can be solved in h21,3. This is true if F3 ≪ F2
on [0, τ2]. Then

This proves that

Thus, we have proved that, if Fk ≡ Fj on [0, τj], j = 1, …, k − 1, then the efficient score

. The latter condition holds, in particular, if (12) holds. This proves the
statement of Theorem 3.1 regarding efficiency of the Kaplan–Meier estimator SKM.

Saturated tangent space result: Note that, for a random variable Y, we define
. For simplicity, we prove saturation for k = 3. Let

 be defined by A(h1, h2) = A1(h1) + A2(h2). Then, the tangent

space of F is given by . Thus, the tangent space at PF,G is given

by , where  is the score operator for the censoring
mechanism G, given by B(h) = E(h(C) | T ̃3, Δ3). By factorization of the likelihood into F and
G parts, we have that R(B) is orthogonal to F-scores. It is well known that

. The latter result simply states that the tangent space for the
nonparametric right-censored data model for (T ̃3, Δ3), only assuming that C is independent of
T, is saturated [e.g., Bickel, Klaassen, Ritov and Wellner (1993)]. Thus, we need to prove that
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 which is equivalent to proving , where
 is the adjoint of A and N (A⊤) denotes its null space.

First, we decompose A1 + …+ Ak− 1 into a sum of orthogonal operators (efficient score operators

in the model with Fk known). Let  and . By (4),
it follows that

where we need the equivalence assumptions Fj ≡ Fj +1 on [0, τj] for j = 1, …, k, again. A more

compact manner of representing these operators  is

(17)

Consider the operator  defined by .

Proving  is equivalent to proving , where A′⊤ is the adjoint
of A′.

From the representation (17), the adjoint  is given by

and thus, .

Consider now a solution V I (T3 > C) ∈ H (C, R) satisfying . In order

to prove , it suffices to show I (T3 > C)V = I (T3 > C)φ(C) for some φ. Using
precisely the same proof as the proof of Lemma 2.2, it follows that, if Fj has a Lebesgue density
fj > 0 on [0, τj] and G has a Lebesgue density, then, for any function I (T3 > C)η(C, Δj), E(I
(T3 > C) η (C, Δj) | Tj) = 0 implies η (C, 1) = η (C, 0). This proves that E(V (C, R)I (T3 > C) |
C, Δj, T3 > C) = E(V (C, R)I (T3 > C) | C, T3 > C) ≡ I (T3 > C)φ(C) does not depend on Δj, j =
1, 2.

Setting Δ1 = 0 yields I (T3 > C)φ(C) = E(V (C, R)I (T3 > C) | C, Δj, T3 > C) = V (C, 1)I (T3 >
C). Now, we note that
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Thus, E(V (C, R)I (T3 > C) | C, Δj = 1, T3 > C) is given by

For j = 2, this equality gives I (T3 > C)V (C, 3) = I (T3 > C)φ(C). For j = 1, this equality gives

so that I (T3 > C)V (C, 2) = I (T3 > C)φ(C). We have shown I (T3 > C) × V (C, 1) = I (T3 > C)
V (C, 2) = I (T3 > C)V (C, 3) which proves that V = I (T3 < C)V1(T3) + I (T3 > C)φ(C) for some

functions V1 and f, and thus that . This completes the proof. □
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