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There has been a recent burst of activity in the atmosphere/ocean
sciences community in utilizing stable linear Langevin stochas-
tic models for the unresolved degree of freedom in stochastic
climate prediction. Here several idealized models for stochastic
climate modeling are introduced and analyzed through unam-
biguous mathematical theory. This analysis demonstrates the po-
tential need for more sophisticated models beyond stable linear
Langevin equations. The new phenomena include the emergence
of both unstable linear Langevin stochastic models for the climate
mean and the need to incorporate both suitable nonlinear effects
and multiplicative noise in stochastic models under appropriate
circumstances. The strategy for stochastic climate modeling that
emerges from this analysis is illustrated on an idealized example
involving truncated barotropic flow on a beta-plane with topog-
raphy and a mean flow. In this example, the effect of the original
57 degrees of freedom is well represented by a theoretically pre-
dicted stochastic model with only 3 degrees of freedom.

An area with great importance for future developments in
climate prediction involves simplified stochastic modeling
of nonlinear features of the coupled atmosphere/ocean system.
The practical reasons for such needs are easy to understand.
In the foreseeable future, it will be impossible to resolve the ef-
fects of the coupled atmosphere/ocean system through computer
models with detailed resolution of the atmosphere on decadal
time scales. However, the questions of interest also change. For
example, for climate prediction, one is not interested in whether
there is a significant deflection of the storm track northward in
the Atlantic during a specific week in January of a given year,
but rather, whether the mean and variance of the storm track
are large during several years of winter seasons and what is the
impact of this trend on the overall pole-ward transport of heat in
both the atmosphere and ocean. The idea of simplified stochas-
tic modeling for unresolved space-time scales in climate model-
ing is over 20 years old and emerged from fundamental papers
by Hasselman (1) and Leith (2). In the atmosphere/ocean com-
munity, there is a recent flourishing of ideas utilizing simple
stable linear Langevin stochastic equations to model and pre-
dict short-term and decadal climate changes such as El Nino (3,
4), the North Atlantic Oscillation (5, 6), and mid-latitude storm
tracks (7-9) with notable positive results but also failure of this
simplified stochastic model in some circumstances (10).

Here we introduce and analyze several idealized models for
stochastic climate modeling and utilize unambiguous mathemat-
ical theory to demonstrate the potential need for more sophisti-
cated stochastic models beyond those developed in earlier works
(3-10). In particular, explicit examples demonstrate that simple
Langevin models can emerge in stochastic climate modeling with
an unstable climate mean and, in appropriate circumstances,
stochastic models need to incorporate both suitable nonlinear
effects and multiplicative noise beyond standard Langevin equa-
tion regression fitting. The mathematical strategy for stochastic
climate modeling is illustrated on an idealized example involv-
ing truncated barotropic flow on a beta-plane with topography
and a mean flow. In this example, the effect of the original 57
degrees of freedom is well represented by a theoretically pre-
dicted stochastic model with only 3 degrees of freedom, which
yields the model climate behavior with reasonable accuracy after
coarse-graining in time.

We summarize the remainder of this paper briefly. First we
discuss the general strategy for stochastic climate modeling; then
we develop explicit examples with new phenomena for stochas-
tic climate modeling; finally, we illustrate several aspects of the
theory on the idealized example mentioned above.

Basic Strategy for Stochastic Climate Modeling

We illustrate the ideas for stochastic climate modeling on an ab-
stract basic model involving quadratically nonlinear dynamics,
which is very appropriate for modeling many aspects of atmo-
spheric dynamics. In the abstract model, the unknown variable
Z evolves in time in response to a linear operator, LZ, and a
quadratic or bilinear operator, B(Z, Z), and satisfies

dz - .

i Lz + B(z, 2). [1]
In stochastic climate modeling, the variable Z is decomposed
into an orthogonal decomposition through the variables ¥, y
by Z = (X, y). The variable X¥ denotes the climate state of the
system; the climate state necessarily evolves slowly in time com-
pared to the y variables, which evolve more rapidly in time and
are not resolved in detail in the stochastic climate model. De-
composing the dynamic equation in 1 by projecting on the ¥ and
y variables yields the equations

dx . . .- . - .
a = Ly X+ L,y + B (%, %) + Bly(%, ) + By(3,5), [2]
dy - - - - - ..
a =Ly X + Lypy+ B} (X, %) + B,,(X, ¥) + B3,(3, 7). [3]

In stochastic climate modeling, the explicit nonlinear self-
interaction through B%,(y, y) of the variables ¥, which are not
resolved in detail, is represented by a linear stochastic operator

. T. .
By(.3) ~ ——5+ %W(r), [4]

where I', o are diagonal matrices (for simplicity in exposition)

with positive coefficients and W(r) is a vector-valued white-
noise. We note from 4 that & measures the ratio of the correla-
tion time of the under-resolved y-variables to the climate vari-
ables ¥ and the requirement ¢ « 1 is very natural for stochas-
tic climate models where the climate variables should change
more slowly. In fact if we coarse-grain the equations in 2 and 3
with the approximation from 4 on a longer time scale, t — &t,
to measure the slowly evolving climate variables, we derive the
stochastic climate model

dx 1 R R . . .
T ;(Lnx + L1,y + By (X, X) + B,(X, ) + B (3, 7)),
dy 1 - > 2 2 2 2 (2 =

€ g(LZIX + Lypy + By (X, X) + Blz(xa}’)) [5]

T . 5
- =i+ 2.
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Abbreviations: SDE, stochastic differential equations; DNS, direct numerical simulation.
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In practice, the climate variables X are determined by a vari-
ety of procedures including leading order empirical orthogonal
functions (EOFs), zonal averaging in space, low pass and high
pass time filtering, or a combination of these procedures (3,
7-10). Next we explicitly analyze the equations in 5 in some
instructive elementary examples that demonstrate the new phe-
nomena mentioned earlier.

Stochastic Models with Stable and Unstable

Langevin Dynamics

We consider the special case of the system in 5 consisting of
three modes, x, y;, y,, which satisfy the equations

A; N
dxe(1) = Syp(opsy de,

S a & A & &
dy(0) = 235y di+ x5y di

~Nyeryde + 2 awy (o), [6]
g2 e

b A
dy; (1) = —yr(nde + fxg(t)yf(t) dt
Y2 e o
- S%yz(t) dr + f dw,(1),

where the nonlinear interaction coefficients satisfy 4, + 4, +
A; =0, and dW,(t), dW,(t) are independent white-noise pro-
cesses. Equations like the system in 6 are a prototype for
stochastic models for mean flow-wave interaction in barotropic-
baroclinic turbulence (8) provided that these general equations
are projected on three modes consisting of one mean flow
climate variable x arising from zonal averaging and two wave
variables y;, y,. The nonlinear coupling arises from triad interac-
tion. We are interested in the statistical behavior of the climate
variable, x*(¢), in the limit as ¢ — 0. The equations in 6 are a
Markov process and, for any suitable function f(x), the condi-
tional statistics (f(x°(¢))), where (-) denotes ensemble-average,
is determined through the backward equation (11)

du’®
Jat

with u®(x, y, t) = (f(x°(¢))). The operators L, £, in 7 are given
explicitly by

1 1
= ;Elu‘g + gﬁzug, ue}tzoz f(x), [7]

2
Jd g Jd
Li= D0 =Wty o
=12 dy; 2 9y,
-
ax

Jd
L, = A3y, (ay, + Alx)’z)g 8]
1

J
+ (by; + Ayxy,)—.
1 N5

With the structure in 7 and 8, we apply a theorem of Kurtz
(12) to obtain that, in the limit as ¢ - 0, 0 < ¢ =T, T < oo,
x°(t) — x(t) converges to zero, where x(¢) satisfies the linear
Langevin stochastic equation

dx(t) = —y(x(t) — x) dt + o dW (1), [9]
with the same initial data for x from 6 and
y = — A, (1‘111722 + A20'12>
2vi+7v2)\ 7 Y1
A 2 po?
Vi = 73<“ﬂ+ﬂ>, [10]
2+ 7))\ 7 Y1
2 A%‘leo'zz

2917 (v1 +72)
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Several aspects of the formulas in 9 and 10 merit comments.
First, the coarse-grained in time stochastic model in 9 for the
climate variable x(¢) is a linear Langevin model with a nontrivial
climate mean X produced through the linear interaction of the
wave variables y;, y,. On the other hand, this linear stochastic
model is stable only for y > 0 and, using A; = —(A4; + A4,), this
condition is satisfied only if

A, < — maX(Ab A10'2271/0'1272) [11]
or AZ > — min(Al, Alo-zz‘YI/o-lZ/YQ)'

In particular, there is always stability if the nonlinear interaction
coefficients satisfy sgn(A4;A4,) = 1 but instability in the climate
model occurs for sgn(A4,;A4,) = —1 if the conditions in 11 are
violated.

Stochastic Models Requiring Nonlinear Effects and
Multiplicative Noise

We consider the special case of the system in 5 involving two
climates x;, x, and a single stochastic variable, y, which solve
the nonlinear stochastic triad interaction equations

Ay o,
dxj(r) = —x5(1)y* (1) de,

dxs() = 220y (0) i,
€ [12]

A & & y &
dy (1) = Zxi(0s() di - 2y (0 de
+Zaw (),
&

where A, + A, + A; = 0 and dW (¢) is a white-noise. We claim
that as e — 0, x{(¢) —x,(¢) — 0, x5(¢t) — x,(t) — 0 where x,(¢),
x,(t) satisfy

A 2
dn() = 21 (A0 + s a0 e

+ %Alxz(t) Aw (1),
13
4, i 2 [13]
dx,(1) = 5 Asxi(t) + EAl xy(t) dt

+ %Am(r) aw (1),

with the same initial data for x;, x, from 12. We note that the
stochastic equations for the climate variables x,, x, in 13 in the
coarse-grained limit involve both nonlinear interaction between
these climate variables and also multiplicative rather than addi-
tive noises. Such features are usually not incorporated in con-
temporary stochastic climate models (3, 7-10) and are poten-
tially significant.

The method from ref. 12 we have utilized in analyzing the
previous model in 6 can also be applied here; however, it is also
instructive to establish the result in 13 by direct calculation. For
each (x,(¢), x,(¢)), the solution of the third equation in 12 is

A t
(1) = efwgzy + ?3/ 677("S)/82x1(s)x2(s) ds+g(t), [14]
0
where

ag ! <) /o2
g(1) = — / e T AW (s),
€ Jo

and y is the initial data. Inserting this expression (possibly sup-
plemented by the statistics of y) in the first two equations in 12
yields an exact, non-Markovian system of equations for x,(¢),
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x,(¢). The noise entering (multiplicatively) these equations is
Gaussian, with zero-mean and covariance:

(g(n)g() = ?(e”/"*"\/&2 — e,
Y

We analyze the long-time form of the resulting equations for
x1(2), x,(¢t) by considering the limitas e - 0,0 <¢t=T7T,T <
of 1/& times the three terms in the right-hand side of 14. First,
we have

1

—e My 0.
e

Second, we have

Ay [ A
?;A e—v(f—-")/sle(s)xz(s)ds—> 73x1(t)x2(t).

Finally, for an arbitrary test function (¢, t'), we have
1 (T (T o2 T
S weonswsoyarar % [ u o
e Jo Jo Y Jo
Thus g(¢) is itself approximately a white-noise as ¢ — 0, i.e.,
1
“g(tydt — L aw (o).
& y
Note, however, that, as an approximation of a process with
finite correlation time, dW(¢) has to be interpreted in the
Stratonovich sense (11).

Combining these formulae in the first two equations in 12, we
obtain the following Stratonovich system of SDEs:

d,(1) = B 2000 (1yde + T Ayxy(6) 0 dW(e),
Y Y
[15]
AyAs , o
dx,(t) = y xi(t)x,(t) dt + ;Ale(t) odW(t).

This system is equivalent to the Itd system in 13 (see ref. 11,
theorem 10.2.5 pp. 169-170).

Using the Stratonovich form of the SDEs in 15 can be useful
because usual rules of calculus (in contrast to Itd rules) apply.
Zero is an equilibrium state for 13 or 15 and the linearized
equations from 15 about this equilibrium reduce to

dx,(1) = %Alxz(ocvdwm,

o [16]
dx,y(t) = —Ayx.(t) o dW(2).
Y
The solution of this system is easily obtained:
| A
x, (1) = Cx; + A—;sz,
171

[ A
xy(t) = Cx, + /T?S’Cl’

C:coshai‘AlA2 tdWs ,
Y 0
S = sinh(ai .131142/; dW(s)).

We note that the solutions of the linearized equations in 17
grow if and only if sgn(A4; 4,) = 1. Thus, strong stochastic forc-
ing of one mode of the real triad interaction equations in 12

where
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yields substantial growth of energy in the other two modes if and
only if these two modes have interaction coefficients with the
same sign. These results solve the interesting recent conjecture
of Smith and Waleffe (13) on stochastic forcing of triad equa-
tions in an extreme limiting regime for real-valued amplitudes.
Similar results will be reported elsewhere for the full complex
valued triad interaction equations as well as suitable multi-mode
generalizations. Our explicit analysis of 12 is also useful for un-
derstanding higher order non-Markovian corrections; this will
be developed elsewhere.

A Priori Stochastic Climate Modeling in an Idealized Model
There is an idealized model for geophysical flows where both the
stochastic modeling assumptions in 4 and 5 as well as the new
stochastic phenomena elucidated in 6-17 above can be checked
a priori in an unambiguous fashion. This model consists of trun-
cated barotropic fluid equations on a periodic beta-plane with
mean flow and topography:

aq n aq d
— +V -V U— — =0,
at + vova+ ox +B(7x
q=A¢+h, [18]
dU Y
— =4 h—.
dt ][ ax

There are nontrivial Gaussian measures (14) defining canonical
Gibbs distributions depending on two parameters, o, u > 0 for
the statistics of the truncated dynamics with

meanU:—E, V&I‘U:i,
oap
h 1 [19]
mean §; = L, aryY;, = —s—————.
w+ |l all(n+111?)

In 19 and below, f; denotes the I-th Fourier coefficient of the
27r-periodic function, f. In spherical geometry such models cap-
ture a number of large-scale features of the atmosphere (15).

For our purpose here, we regard the mean flow U as the cli-
mate variable to be determined through a stochastic model. We
pick the parameters u and « in the Gibbs distribution described
in 19 so that the correlation time of U is longer than those of
all the other fluid variables ;. We also pick an extreme case
where the topography consists of only one single mode, #; # 0,
with ¢, the stream function coefficient.

The Stochastic Model

Under the assumptions above, following the stochastic climate
modeling strategy in 4 and 5 above, we will predict the stochas-
tic behavior of the climate variable, U, through the coupled
stochastic equations

dps = L(Qy — k,U)ys dit + “H,U® dt
& &

= D — ) de + ZEaw (o), 20]

dU* = 2k, Im(ut) db,
&

where dW (1) is complex valued white-noise and €, = kx|lz|‘23,
H, = k,|k|™2hy, vy, is a complex damping coefficient. We will
provide a severe test of stochastic modeling by choosing the pa-
rameters of the stochastic model in 20 consistent with 19 a priori,
i.e., we set

- hk 0']3 _ 1

dsz > - = = )
m+ k2 Revi alkP(p+ |k?)

[21]
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Table 1. Statistics for a=1, pn=2, =0.5

Mean ¢4 var 4 MeanU  VarU
DNS 21 (5.66 +i6.44)10~2  0.33 —-0.215 0.409
Stat Mech 19 (5.51+6.28)1072  0.333 —-0.25 0.5
SDE 20 (5.5+6.27)1072 0.32 —0.249 0.466

in 20 so that the correlation time, vy, is the only parameter
supplied to the theory. The same procedure outlined in 7 and 8
above yields the theoretical prediction that as ¢ — 0, U —U —
0, where the climate variable U satisfies the stable Langevin
equation

dU = —yy (U — U) dt + oy, dW(1), [22]
with
_ 2k3 pl hye|* Re
I PIRE G+ R 031
2|k, |or|h -

It is simple matter to check that the mean and variance of U
predicted through 22 agrees with the values in 19 from equilib-
rium statistical theory. Thus the simple stochastic model in 20 is
consistent with the mean and variance of the climate variable U.

Comparison of the Stochastic Model and
Direct Numerical Simulations

We provide a severe a priori test for stochastic climate model in
20-22 by using the single mode topography, i(x) = 0.5sin(x +
2.93) with B = 0.5, and values @ = 1, u = 2 for the canonical
Gibbs measure in 19 with the truncation |7|2 = 17 so that there
are 57 active modes. We take a single random initial data with
micro-canonical ensemble values of energy and enstrophy con-
sistent with 19 and compute the statistics of the solution by time
averaging a direct numerical simulation after omitting a short
transient period. The comparison of the mean and variance of
the direct numerical simulation (DNS) and the predictions of
20 are presented in Table 1. The theoretical values of the mean
and variance of i, ) agree almost exactly, while those for the
climate variable, U, have about 15% error for mean U and 20%
error for var U. The DNS spectrum of ¢, for 1 < |I|> = 17 is
compared with the canonical spectrum using 19 in Fig. 1 and
the agreement is excellent.

As discussed in 3-5 above, a tacit assumption of climate mod-
eling is that the correlation time of the unresolved variables is
much shorter than those of the climate variables. In Fig. 2 we
plot the correlation functions determined by the DNS for the
modes, 1 =< |/|> = 5, and in Fig. 3 we plot the correlation func-
tion of U. In Fig. 2 the higher modes have shorter correlation
times. These DNS results indicate that replacing the nonlinear
interaction in 18 for the (1, 0) mode by a white-noise model is
an accurate approximation. From a least square fit of the DNS
data we obtain the empirical correlation times for the mode
W0 and U to be given by Rey( o) = 0.61 and y, = 0.0566,
respectively, with the ratio yy/ Re y( o) = 0.094 so that the em-
pirical parameter ¢ in the theory from 20-23 is quite small.

In Fig. 3 we compare the correlation predicted from the the-
ory in 20-23 with the single input parameter vy, ) with the DNS
and also with the numerical simulation of the stochastic equa-
tion in 20 (see also Tables 1 and 2). From a least square fit of
the DNS correlation function of Re ¢, ) we obtain the value
of the parameter y; o = 0.61 + i0.74. Using theoretical pre-
dictions 23 we obtain values v}, = 0.0555 and o7, = 0.2356. We
compute the numerical solution of 20 with the mean values from
21 and ¢ = 0.1 in order to compare asymptotic predictions in
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Fig. 2. Averaged correlation functions of i, vs. time.

Table 2. Numerical and analytical estimates for y,, oy,

Yu Ty
DNS 21 0.0566 0.205
Theory 23 0.0555 0.2356
SDE 20 0.0536 0.2234

the limit as ¢ — 0 from 22 with the finite ¢ effect in 20. We
obtain values of yy spr = 0.0536, oy spr = 0.2234. This is ex-
cellent overall agreement of the stochastic modeling procedure
given the crudeness of the approximation.

Concluding Discussion

Here we have utilized mathematical models and theory to elu-
cidate several new and potentially important phenomena in
stochastic climate models. These phenomena include unstable
Langevin equations for the climate variables and the neces-
sity for both incorporating nonlinear effects and multiplicative
noise in stochastic equations for the climate variables under
appropriate circumstances. We have utilized truncated models
for the barotropic equations on a beta-plane with topography

Majda et al.
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Fig. 3. Correlation function of U vs. time. Circles, DNS; solid line, theoretical
predictions, SDE.

and mean flow as an idealized climate model where one can
check the predictions of stochastic climate modeling a priori;
these results include both the tacit assumptions of the theory
and the excellent agreement of direct simulations with an ex-
plicit stochastic theory with only a single empirical parameter
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defined by a natural correlation time with all other parameters
theoretically determined.

The theory developed here has been extended by the au-
thors to several more complex stochastic models with wave-
mean flow interactions, non-trivial topography, and more gen-
eral mean states. Also by varying the statistical parameters w
and « from 19 as well as the mean flow, two of the authors
have demonstrated the need for utilizing nonlinear effects and
multiplicative stochastic noise in the truncated models from 18
representing idealized climate models. All of these results will
be reported elsewhere in the near future in additional publica-
tions.

Finally, we mention that the work in 18-23 provides an exam-
ple of a highly inhomogeneous conservative Hamiltonian system
with nonlinear stability that inherits a crude version of effec-
tive stochastic dynamics in a single large scale variable U which
interacts with a “heat bath” of modes for 1 = |/|> = 17 with
much shorter correlation times. Thus, this work provides fur-
ther empirical evidence beyond the interesting observation of
Cai, McLaughlin, and Shatah (16) in idealized Schrédinger mod-
els that even a single mode of instability can lead to effective
stochastic dynamics.
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