
On the classification of binary shifts of finite
commutant index
Geoffrey L. Price†

Department of Mathematics 9E, United States Naval Academy, Annapolis, MD 21402

Edited by Richard V. Kadison, University of Pennsylvania, Philadelphia, PA, and approved October 19, 1999 (received for review October 8, 1999)

We provide a complete classification up to conjugacy of the bi-
nary shifts of finite commutant index on the hyperfinite II1 factor.
There is a natural correspondence between the conjugacy classes
of these shifts and polynomials over GF(2) satisfying a certain du-
ality condition.

conjugacy class � subfactor index

1. Introduction

L et R denote the hyperfinite II1 factor. A pair of *-auto-
morphisms σ; ρ on R are said to be conjugate if there exists

a *-automorphism γ on R that satisfies γ ◦σ�A� = ρ ◦ γ�A� for
all A in R. The notion of conjugacy carries over to the setting
of unital *-endomorphisms on R. In this situation, it turns out
that the Jones index �R x σ�R�� of the subfactor σ�R� in R is a
numerical conjugacy invariant, as is the commutant (or relative
commutant) index: this is the first positive integer k (or :) for
which the relative commutant algebra σk�R�′ ∩ R is nontrivial.

In ref. 1 R. T. Powers introduced a family of unital *-
endomorphisms on R known as binary shifts. The range σ�R�
of each binary shift σ is a subfactor of index 2. As a result,
the minimal possible commutant index for a binary shift is 2
(ref. 2). Powers has shown in ref. 1 that there exist binary shifts
of any specified commutant index k � �:; 2; 3; : : :�. In partic-
ular, he showed that for any finite commutant index there are
at most countably many conjugacy classes but that there are
uncountably many conjugacy classes having infinite commutant
index (see Theorem 2.4).

In ref. 3, we gave a complete classification of the conjugacy
classes of binary shifts of commutant index 2. We showed that
there is a natural correspondence between the conjugacy classes
of these shifts and polynomials with coefficients in GF�2� that
satisfy a certain duality condition (see Theorem 2.7). These are
the polynomials that have constant coefficient 1 and that have
no self-reciprocal factors (see Definition 2.2) of degree greater
than 1. In this paper, we show that there is an analogous corre-
spondence between binary shifts of any finite commutant index
k � 2 and polynomials over GF�2� with constant coefficient 1
and no self-reciprocal factors of degree exceeding 2k−3. Unlike
the case for k = 2, the correspondence for higher commutant
indices is not one-to-one, but we produce a recursion formula
5.1 that relates the number of conjugacy classes of binary shifts
of commutant index k that are associated with each of the poly-
nomials of the form described above. As a consequence, we can
provide precise information, for example, on the number of bi-
nary shifts of fixed finite commutant index that are associated
with any irreducible polynomial p�x� over GF�2�.

2. Preliminaries
In this section, we present Powers’ construction of the binary
shifts on R. We also state some of the results that are known
about binary shifts and that are relevant to their classification up
to conjugacy. In particular, we shall exploit the close connections
existing between the theory of recurring linear sequences and

binary shifts. See ref. 4, chapter 6, for an extensive bibliography
on the subject of recurring linear sequences.

Let X be a (finite or infinite) subset of �, with character-
istic function g: �→ �0; 1�. Let �u0; u1; : : :� be a sequence of
hermitian unitary operators (or generators) that satisfy the com-
mutation relations

uiui+j = �−1�g�j�ui+jui; i; j � �+: [2.1]

One may define words in the generators by setting, for finite
ordered subsets J = �j0; j1; : : : ; jm� of distinct nonnegative in-
tegers, u�J� = uj0uj1 · · ·ujm , and u�∅� = I; the identity. In fact,
because the uj values are hermitian and satisfy 2.1, any product
of the generators may be rewritten as either +u�J� or −u�J�
for some finite ordered subset J � �+. (See ref. 5 for a con-
crete realization of these generators as operators on a Hilbert
space.) For n � �, let An be the finite-dimensional group al-
gebra over � consisting of linear combinations of the words in
the generators �u0; u1; : : : ; un−1�. Note that An has dimension
2n, the number of words in the generators. Because An � An+1
for all n � �, one may obtain an AF−algebra by taking the
uniform closure of the union

⋃:
n=1 An. Following the terminol-

ogy of ref. 1, definition 3.2, we refer to A as the binary shift
algebra associated with X. The binary shift itself is the uni-
tal *-homomorphism on A defined uniquely by the mappings
σ�uj� = uj+1 on the generators. We shall refer to X as the an-
ticommutation set, to a = �a0; a1; : : :�, where aj = g�j�, as the
bitstream, and to ǎ = �: : : ; a2; a1; a0; a1; a2; : : :� as the reflected
bitstream associated with σ .

If the reflected bitstream is periodic, it is easy to see that A
has a nontrivial center. In fact, if ǎ has period length p the word
u0up (as well as its shifts) lies in the center. On the other hand,
A has trivial center if ǎ is not periodic.

Theorem 2.1 (from ref. 1, theorem 3.9; ref. 6, theorem 2.3;
and ref. 7, corollary 5.5). Let A be the binary shift algebra with
anticommutation set X and corresponding bitstream given by aj =
g�j�; j � �+. Then the following conditions are equivalent.
�i� ǎ is not periodic.
�ii� The center of A consists of scalar multiples of the identity.
�iii� For any nontrivial word w, wuj = −ujw for some uj .
�iv� A has a unique normalized trace.
�v� A is isomorphic to the UHF algebra of type 2:.

Hence if any of the above conditions hold, then in the trace rep-
resentation of A, the weak operator closure of A is isomorphic to
the hyperfinite II1 algebra R.

It is straightforward to see that the binary shift σ on A extends
to a unital *-homomorphism on R that we shall also denote
by σ . Then we have the following results for binary shifts on R.

Theorem 2.2 (from ref. 1, theorem 3.6). A pair of binary shifts
on R are conjugate if and only if they are defined via the same
bitstream.

Theorem 2.3 (ref. 1 and ref. 2, example 2.3.2). For any binary
shift on R the subfactor σ�R� has Jones index �R x σ�R�� = 2.
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As a consequence of the previous theorem the minimal com-
mutant index for a binary shift is 2 (ref. 2, corollary 2.2.4). On
the other hand, if X = �k−1�, then u0 � σ

k�R�′∩R;σk−1�R�′∩
R = �I, so the associated binary shift has commutant index k.
Hence, there exist examples of binary shifts for any finite com-
mutant index k � 2. The following theorem characterizes those
binary shifts with finite commutant index.

Theorem 2.4 (from ref. 8, theorem 2.1, and ref. 9, theo-
rem 5.8). A binary shift on R has finite commutant index if and
only if its bitstream a is eventually periodic. For a binary shift σ
of finite commutant index k and generators uj; j � �+, there is a
word w = u�j0; j1; : : : ; jn� such that
�i� j0 = 0, i.e., w “starts” with u0, and
�ii� for any s � 0, σk+s�R�′ ∩ R is a 2s−dimensional algebra

generated by the words w;σ�w�; : : : ; σr�w�.
Definition 2.1: Let σ be a binary shift on R with generators

uj; j � �+. Let z be a word in the generators, and let p�x� =
c0+ c1x+ · · ·+ cnxn be a polynomial with coefficients in GF�2�,
then �z; p� shall denote the word zc0σ�z�c1 · · ·σn�z�cn in R.

Suppose p�x� is the polynomial for which w = �u0; p� in the
preceding theorem. In the study of binary shifts of commutant
index 2 in ref. 3, we described connections among polynomials
p�x�, words w = �u0; p� generating relative commutant alge-
bras, and conjugacy classes of shifts. Theorem 2.7 describes this
connection. To state the theorem, we need to identify polyno-
mials that possess a special symmetry.

Definition 2.2: A polynomial p�x� with coefficients in GF�2�
and constant term 1 is called reciprocal or self-reciprocal if its
coefficients are flip-symmetric �4; 10�, i.e., p�x� = c0 + c1x +
· · · + cnxn = cn + cn−1x+ · · · + c0x

n.
Remark 2.1: Note that if a polynomial p�x� = c0+ c1x+· · ·+

cnx
n with constant coefficient 1; then p∗�x� = xnp� 1

n
� = cn +

cn−1x+· · ·+c0x
n. Hence, p�x� is reciprocal if and only if p�x� =

p∗�x�.
The following results about reciprocal polynomials will be

used in the next section.
Lemma 2.5. If h�x� is a polynomial with constant coefficient 1;

then h∗�x�h�x� is reciprocal. The product of reciprocal polynomi-
als is reciprocal.

Proof: Obvious. D

Theorem 2.6 (see ref. 3, theorem 4.3). Any polynomial p�x�
with constant coefficient 1 has a unique reciprocal divisor of max-
imal degree.

Theorem 2.7. Let p�x� be a polynomial over GF�2� with con-
stant coefficient 1. Then there exists a binary shift of commutant
index 2 and generators uj; j � �+ such that �u0; p� generates
σ2�R�′ ∩ R if and only if p�x� has no reciprocal factors of de-
gree exceeding 1. Moreover there is a one-to-one correspondence
between such polynomials and the family of binary shifts of com-
mutant index 2.

It is possible to show that among those polynomials of degree
n � 3 whose constant coefficient is 1 there are 2n−2 that satisfy
the hypotheses of the theorem, (ref. 3, theorem 4.4). Hence,
there are countably many conjugacy classes of binary shifts of
commutant index 2. Corollary 5.5 establishes the same conclu-
sion for any finite commutant index.

Although we are interested in analyzing binary shifts on R,
it is useful for that purpose to understand the structure of the
AF−algebras �⋃:

n=1 An�− that have nontrivial centers.
Theorem 2.8. Let a be a bitstream for which ǎ is periodic. Let

A be the corresponding AF−algebra, and let τ be the trace on
A that vanishes on nontrivial words. Let M be the von Neumann
algebra obtained by completing A in the weak operator closure with
respect to τ. Then there exists a word w = �u0; p� = uc00 u

c1
1 · · ·ucnn

such that
�i� c0 = 1,
�ii� p�x� is reciprocal, and
�iii� the center of M is generated by w and its shifts.

Hence the center of M is isomorphic to the algebra of continuous
functions on the Cantor set.

Suppose a is a bitstream in GF�2� with a0 = 0. Then for each
n � � one may construct an nxn Toeplitz matrix An whose first
row consists of the first n elements of a, viz.,

An =



ao a1 a2 a3 · · · an−1

a1 ao a1 a2 · · · an−2

a2 a1 ao a1 · · · an−3

:::
:::

:::
:::

: : :
:::

an−1 an−2 an−3 · · · · · · ao


[2.2]

Because An is a skew-symmetric matrix, it has even rank
(this holds true even for matrices over GF�2� (ref. 11, theo-
rem IV.11). The sequence of Toeplitz matrices associated with a
bitstream has a rather remarkable property.

Theorem 2.9 (from ref. 7, theorem 5.4). Let ν�An� denote
the nullity of the n 3 n Toeplitz matrix above. If ǎ is not periodic,
the sequence �ν�An� x n � �� consists of the concatenation of
strings of non-negative integers of the form 1; 2; : : : ;m−1;m;m−
1; : : : ; 2; 1; 0. If ǎ is periodic, then the nullity sequence consists of
finitely many strings of the above mentioned form followed by the
sequence 1; 2; : : : :

Theorem 2.10 (From ref. 12, corollary 2.10; see also
ref. 13). For any even positive integer n there are 2n−2nxn
invertible Toeplitz matrices of the form above.

Finally, it will be helpful to use the following properties of
the operations �z; p� for a word z in the generators of a binary
shift on R and for polynomials p�x� with coefficients in GF�2�
(see ref. 6, section 4):

�z; p��z; q� = 5�w;p+ q� [2.3.1]〈�w;p�; q〉 = 5�w;pq� [2.3.2]

3. Bitstreams and Polynomials
In this section, we prove some elementary results about bit-
streams over finite fields that are based on some well-known
results from the theory of linear recurring sequences (ref. 4,
chapter 6). Our results stem from important connections that
exist between eventually periodic bitstreams with entries in a fi-
nite field and polynomials with coefficients in the same field.
Here we deal exclusively with the finite field GF�2�. We shall
say that a polynomial p�x� = c0 + c1x+ · · · + cnxn annihilates a
bitstream a if for all j � �+,

∑n
l=0 claj+l = 0. If a bitstream is

eventually periodic, i.e., if there exists a positive integer s such
that ak = ak+s for all k � N , some N, then the polynomial
xN + xN+s annihilates a. In particular, one has the following re-
sult.

Lemma 3.1 (cf. ref. 4, theorem 6.11). A bitstream a over
GF�2� is eventually periodic if and only if it is annihilated by
some polynomial p�x� with coefficients in GF�2�: a is periodic
if and only if it is annihilated by a polynomial with constant
coefficient 1.

If a and b are bitstreams, then define addition by a + b = c;
where cj = aj + bj for all j � �+. Defining scalar multiplication
in the obvious way, one sees that the set of periodic (respec-
tively, eventually periodic bitstreams) forms a vector space over
GF�2�: for if a is periodic (respectively, eventually periodic) with
period s and b is periodic (respectively, eventually periodic)
with period t, then c is periodic (respectively, eventually peri-
odic) with period a divisor of st (4). The same is true for dou-
bly infinite periodic sequences, and also for the subset consist-
ing of those reflected bitstreams ǎ = �: : : ; a2; a1; a0; a1; a2; : : :�;
a0 = 0; which are periodic. Thus we have the following:
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Lemma 3.2. With the addition and multiplication operations as
defined above, the set of periodic reflected bitstreams forms a vector
space over GF�2�.

Definition 3.1 (cf. ref. 4, section 6.5): For a polynomial p�x�
with coefficients in GF�2� and constant coefficient 1, let S�p�
be the vector space of periodic reflected bitstreams annihilated
by p�x�.

Proposition 3.3. Suppose ǎ is a periodic reflected bitstream in
S�p�: If r�x� is the maximal reciprocal factor of p�x� then ǎ �
S�r�:

Proof: Because the reflected bitstream ǎ is symmetric about
its entry a0 = 0, it is clear that p�x� annihilates ǎ if and only if
p∗�x� does too (see Remark 2.1). Hence ǎ � S�p� ∩ S�p∗�. But
for any pair p; q of polynomials, S�p� ∩ S�q� = S�gcd�p; q��,
by ref. 4, theorem 6.54. Clearly r divides the polynomial
d = gcd�p;p∗�. Suppose p�x�/r�x� = ∏

hi�x�; where the hi
values are irreducible, then clearly d�x� = r�x� · gcd�∏hi�x�;∏
hi
∗�x��. But if h�x� is an irreducible factor of both

∏
hi�x�

and
∏
hi
∗�x�, then h�x� = hi�x� = hj

∗�x� for some i and j.
But then by Lemma 2.5, hi�x�hj�x� = hi�x�hi∗�x� is recipro-
cal, which contradicts the maximality of the degree of r. Hence
r = gcd�p;p∗� = S�p� ∩ S�p∗� annihilates ǎ.

Proposition 3.4. Let r�x� be a reciprocal polynomial with con-
stant coefficient 1 and degree either 2l or 2l+ 1; l � �+; The vec-
tor space of periodic reflected bitstreams annihilated by r�x� has
dimension l.

Proof: Let č = �: : : ; c2; c1; c0; c1; c2; : : :� be a periodic re-
flected bitstream (with c0 = 0). Because r is reciprocal of de-
gree 2l or 2l + 1, and č is symmetric about c0, r annihilates č
if and only if it annihilates �cl; cl−1; : : : ; c1; c0; c1; : : :�. Because
degree(r)� �2l; 2l+1�, it is clear that c1; c2; : : : ; cl may be cho-
sen arbitrarily but that cl+1; cl+2; : : : depend on the choice of c1
through cl.

Corollary 3.5. If r�x� is a reciprocal polynomial with con-
stant coefficient 1 and degree either 2l or 2l+ 1; l � �+; there are
exactly 2l periodic reflected bitstreams annihilated by r�x�:

Definition 3.2: Let k � 2 be a fixed positive integer. Let w =
u
c0
0 u

c1
1 · · ·ucnn , with c0 = 1, be a word in the generators uj; j � �+

of a binary shift σ . Then w is called a qkword if w � σk�R�′ ∩R
but w /� σk−1�R�′ ∩ R.

Remark 3.1: Suppose a is a bitstream and w is a word of the
form above. By using 2.1 repeatedly, it follows that for j � �+;
wuj = �−1�ajc0+aj−1c1+···+a�n−j�cnujw: Hence w is a qkword if and
only if there exists a bitstream a satisfying the following linear
system.

ak−1c0 + ak−2c1 + ak−3c2 + · · · + a�n−k−1�cn = 1

akc0 + ak−1c1 + ak−2c2 + · · · + a�n−k�cn = 0

ak+1c0 + akc1 + ak−1c2 + · · · + a�n−k+1�cn = 0

:::

[3.1]

The first equation holds because w must anticommute with uk−1
and the remaining equations hold because w commutes with
uk; uk+1; : : : :

Remark 3.2: As �R x σ�R�� = 2; σ�R�′ ∩R = �I (ref. 2, corol-
lary 2.2.4), so there are no q1words.

We shall see below that for fixed values c0; c1; : : : ; cn it is
possible to have more than one bitstream a that satisfies 3.1.
For that reason, we shall need the following terminology.

Definition 3.3: Let p�x� = c0+c1x+· · ·+cnxn be a polynomial
with constant coefficient 1. If the linear system above is satisfied
then p�x� is said to meet a at the integer k. If there is an integer
k for which p�x� meets a; then we say that �p; a� are a binary
pair.

Remark 3.3: Note that if �p; a� meet at k then if σ is the
binary shift on R with generators uj; j � �+ and bitstream a;

w = �u0; p� � σk�R�′ ∩ R, w /� σk−1�R�′ ∩ R. Hence w is a
qkword and σ is a binary shift of commutant index � k. On the
other hand, since 2 is the minimal possible commutant index
for a binary shift, if a binary pair �p; a� meet at 2 then σ has
commutant index 2.

Theorem 3.6. Let k � 2 and n , 2k − 2 be fixed integers.
Then for any polynomial p�x� of degree n and constant coefficient
1 there are at most 2k−2 distinct bitstreams a = �a0; a1; : : :� �with
a0 = 0� which meet p�x� at k.

Proof: We sketch the induction proof. By using the remark
above, a restatement of Theorem 2.7 shows that any polynomial
of any degree n with constant coefficient 1 can meet at most
one bitstream a at the integer 2. Suppose the assertion holds for
j = 2; : : : ; k−1, and suppose a; b are bitstreams that meet p�x�
at k. Then if s = a + b; it follows that either �i� the reflected
bitstream š of s is periodic and annihilated by p�x�, or �ii� p�x�
meets s at j for some j � �2; 3; : : : ; k − 1�. One obtains the
result by combining the induction assumption with the count,
in Corollary 3.5, of the number of periodic reflected bitstreams
annihilated by a reciprocal polynomial. D

4. Counting Polynomials with Symmetry
In this section, we complete the analysis necessary to enumer-
ate the binary shifts of finite commutant index on the hyperfi-
nite II1 factor R. As in ref. 3, where a classification was made
of the binary shifts of commutant index 2, we establish a natural
connection between binary shifts of finite commutant index and
polynomials over GF�2� that satisfy a certain symmetry condi-
tion. In the course of making this connection, it is convenient
first to study the family of binary pairs that meet at a fixed inte-
ger k � 2 (see Definition 3.3) and subsequently to match these
pairs with binary shifts. In Lemmas 4.1 and 4.2 we show that a
polynomial p�x� with constant coefficient 1 meets a bitstream at
k if and only if p�x� has no reciprocal factors of degree� 2k−2.
Using these results, we are able to provide a recursion formula
that counts, for each polynomial p�x� above, the number of bi-
nary shifts σ of commutant index k, with generating family uj;
j � �+ of hermitian unitaries for which �u0; p� generates the
first nontrivial relative commutant algebra σk�R�′ ∩ R.

Recall that a polynomial p�x� = c0+c1x+· · ·+cnxn with con-
stant coefficient c0 = 1 meets a bitstream a at an integer k if and
only if the coefficients of p�x� satisfy the infinite system 3.1 of
linear equations over F . The first equation follows from 2.1 be-
cause w = �u0; p� must anticommute with uk−1. The remaining
equations are satisfied because w commutes with the generators
uk; uk+1; : : : : If n + 2k − 2; then �n − k − 1� + k − 1; and we
observe that because c0 = 1, for any choice of a1; a2; : : : ; ak−2;
there is one and only one choice of ak−1; ak; : : : such that the
system holds. Hence w is a qkword which corresponds to exactly
2k−2 distinct bitstreams a. This establishes the first assertion of
the following result. We omit the analysis of the case n = 2k−2;
whose proof we shall present elsewhere.

Lemma 4.1. If k � 2 and n + 2k − 2; any polynomial of de-
gree n with constant coefficient 1 meets at k with 2k−2 distinct bit-
streams. If n = 2k− 2 then there are 2n−1− 2n−k+1 polynomials of
degree n with constant coefficient 1 which meet at k with some bit-
stream. These are the polynomials which are not reciprocal. Each
of these polynomials meets at k with 2k−2 distinct bitstreams.

The analysis pertaining to polynomials of degree exceeding
2k− 2 is considerably more difficult, and we devote the remain-
der of this section to studying this case. As we shall see below,
whether a polynomial of degree n � 2k−2 meets a bitstream at
the integer k is determined by the degree of its maximal recip-
rocal factor. Polynomials with reciprocal factors of high degree
will not correspond to qkwords, and therefore we will be led to
counting the number of polynomial of fixed degree n � 2k − 2
having maximal reciprocal factors exceeding a certain degree
(see Theorem 4.4).
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Lemma 4.2. Let k � 2. No polynomial p�x� with coefficients
in GF�2�; constant coefficient 1; and a reciprocal factor of degree
� 2k− 2 meets at k with any bitstream.

Proof: Suppose p�x� = q�x�r�x�; where r�x� is a reciprocal
polynomial of degree m � 2k − 2, and suppose p�x� meets
at k with some bitstream a. Then there is a binary shift σ
with generators uj; j � �+, say, such that w = �u0; p� is a
qkword for σ . Let z = �u0; q�, then by 2.3 w = �u0; p� =
�u0; qr� = 5��u0; q�; r� = 5�z; r�. It is straightforward to see
that if zj = σj�z�; j � �+, then σ restricts to a binary shift on
the von Neumann algebra M generated by the zj values and
w � σk�M�′ ∩M but w /� σk−1�M�′ ∩M . Hence w anticom-
mutes with zk−1 so that if b is the bitstream for the restricted
binary shift on M and r�x� = l0 + l1x+ · · · + lmxm;

bk−1l0 + bk−2l1 + · · · + bm−k+1lm = 1:

If m = 2k − 2; then because r�x� is reciprocal the left side
becomes

bk−1l0 + bk−2l1 + · · · + b1lk−2 + b0lk−1 + b1lk−2 + bk−1l0;

which is 0, a contradiction. If m , 2k− 2; then because r�x� is
reciprocal the equation may be rewritten as

bk−1lm + bk−2lm−1 + · · · + bm−k+1l0 = 1;

which implies that w anticommutes with zm−k+1, also a contra-
diction (since m − k + 1 � k and w � σk�M�′ ∩M). By con-
tradiction w cannot be a qkword. Equivalently, p�x� does not
meet at k with any bitstream. D

Remark 4.1: We shall see below (Corollary 4.8) that for n �
2k− 2 all other polynomials with constant coefficient 1 meet at
k with at least one bitstream. In fact, they meet at k with exactly
2k−2 bitstreams.

Below we shall count the number of polynomials of fixed de-
gree n � 2k−2 which have maximal reciprocal factors of degree
� 2k− 2. To make this calculation, we require both a definition
and a result from ref. 3.

Definition 4.1 (cf. ref. 3, definition 4.1): A polynomial f �x� �
F�x� with constant coefficient 1 is completely free if f �x� has
no reciprocal factors except for the constant polynomial 1. z�n�
denotes the number of completely free polynomials of degree n
with constant coefficient 1.

Theorem 4.3 (from ref. 3, theorem 4.4). Let r � 1 be a fixed
integer. If n = 2r, then z�n� = 1

3 �2 ·4r−1+4�−2 and if n = 2r+1
then z�n� = 1

3 �4r − 4� + 2:
Combining this result with a calculation similar to the one that

appears in in ref. 3, theorem 4.4, one establishes the following.
Theorem 4.4. With the same notation as above, there are, for

n , 2k − 2, exactly 2n−k polynomials of degree n with constant
coefficient 1 whose maximal reciprocal factor has degree � 2k−2.
If n = 2k− 2 there are 2n−�k−1� = 2k−1 such polynomials.

Corollary 4.5. With the same notation as above, let n � 2k−
2 be a fixed integer. If n = 2k− 2 then the number of polynomials
of degree n with constant coefficient 1 which meet at k is at most
2n−1 − 2k−1 �equivalently, the maximum number of polynomials
of coefficient 1 for which �u0; p� is a qkword is 2n−1 − 2k−1�: If
n , 2k− 2 there are at most 2n−1 − 2n−k such polynomials.

Proof: Combine the preceding with Lemma 4.2. D

Definition 4.2: For a fixed nonnegative integer n and an inte-
ger k � 2; we denote by BP�n; k� the number of binary pairs
�p; a� such that p�x� meets a at k.

Theorem 4.6. Let k � 2 be an integer. Then for all integers
n , 2k− 2, BP�n; k� � �2n−1 − 2n−k� · 2k−2:

Proof: We omit the details of the proof, which relies on the
unimodality properties of the nullity sequence �ν�Am� x m � ��
of the mxm Toeplitz matrices associated with any bitstream a =
�aj x j � Z+� (see Theorem 2.9; also see refs. 7 and 12–14). D

Corollary 4.7. Let k � 2 be an integer. Then
�i� BP�0; k� = 2k−2.
�ii� BP�n; k� = 2n−1 · 2k−2 if 1 � n + 2k− 2.
�iii� BP�n; k� = �2n−1 − 2n−k+1� · 2k−2 if n = 2k− 2.
�iv� BP�n; k� = �2n−1 − 2n−k� · 2k−2 if n , 2k− 2.

Proof: The first three equations are obtained by combining
the results of Lemmas 4.1 and 4.2. So suppose n , 2k − 2. By
Theorem 3.4 there are 2n−k polynomials of degree n , 2k − 2
with constant coefficient 1 having a reciprocal factor of degree
� 2k− 2. By Lemma 4.2 none of these polynomials meets with
any bitstream at the integer k. Therefore, among all polynomials
of degree n with constant coefficient 1, there are at most 2n−1−
2n−k that meet some bitstream at k. By Theorem 3.6 each such
polynomial meets at k with at most 2k−2 distinct bitstreams.
Hence BP�n; k� � �2n−1 − 2n−k� · 2k−2. But by the preceding
theorem, BP�n; k� � �2n−1 − 2n−k� · 2k−2. D

The following result follows as a corollary to the proof of the
preceding corollary.

Corollary 4.8. The following are equivalent for any polyno-
mial p�x� with constant coefficient 1 over GF�2�, and any integer
k � 2.
�i� p�x� meets at least one bitstream at k.
�ii� p�x� meets exactly 2k−2 bitstreams at k.
�iii� p�x� has no reciprocal factors of degree � 2k− 2.

5. Conjugacy Classes of Binary Shifts
As a consequence of the preceding results, we are now in a
position to establish a correspondence between the conjugacy
classes of binary shifts of finite commutant index and the family
of polynomials over GF�2� with constant coefficient 1. Specif-
ically we provide an algorithm that can be used to compute,
for any polynomial p�x� over GF�2� with constant coefficient 1,
and any integer k � 2, the number of binary shifts σ of commu-
tant index k associated with p�x� in the sense that w = �u0; p�
generates σk�R�′ ∩ R; (where uj; j � �+ are the generators
for σ). In Corollary 4.8, it is shown that for a fixed index k � 2,
any polynomial p�x� meets either 2k−2 bitstreams at k or it
meets no bitstreams at k. In terms of binary shifts, by using Re-
mark 3.3, this means that for a polynomial p�x� there are either
2k−2 binary shifts σ for which �u0; p� is a qkword, or no such
binary shifts. Note, however, that if w = �u0; p� is a qkword
for some binary shift σ; it is not necessarily the case that σ has
commutant index k. As an elementary example, consider the
polynomial p�x� = x + 1 and the binary shift σ with bitstream
�0; 1; 0; 0; 0; : : :�. Then �u0; p� = u0u1 is a q3word. On the
other hand, σ is a binary shift of commutant index 2, with the
word u0 generating the relative commutant algebra σ2�R�′ ∩R.
What is needed, therefore, is a way to determine how many of
the bitstreams a which meet p�x� at k actually correspond to
binary shifts of commutant index k. The following three results
provide the key.

Theorem 5.1. Let a be an eventually periodic but not mirror-
periodic bitstream, i.e., the reflected bitstream ǎ is not periodic.
Let σ , with generators �uj x j � �+�; be the binary shift on R
corresponding to a. Let k � �2; 3; : : :� be the commutant index
of σ . Then if p�x� is such that the word w = �u0; p� generates
σk�R�′ ∩ R,
�i� �p; a� is a binary pair,
�ii� �p; a� meets at the integer k,
�iii� if f �x� is a polynomial with constant coefficient 1; then

�pf; a� meets at k+ deg�f �,
�iv� if �g; a� is a binary pair for some polynomial g with con-

stant coefficient 1, then p is a factor of g and �g; a� meets
at k+ deg�g/p�.

Proof: First note that σ is indeed a binary shift on R, be-
cause ǎ is not periodic (Theorem 2.1). Also, σ has finite commu-
tant index, because a is eventually periodic (Theorem 2.4). Let
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p�x� = c0 + c1x + · · · + cnxn, then w = uc00 u
c1
1 · · ·ucnn : Because

w anticommutes with uk−1 and commutes with uk; uk+1; : : :, the
infinite linear system 3.1 is satisfied. Hence �p; a� is a binary pair
meeting at the integer k. This proves i and ii. To see iii, note
that if f �x� = l0 + l1x+ · · · + lmxm with l0 = 1 = lm then by 2.3,
�u0; pf � = 5��u0; p�; f � = 5�w; f � = 5wl0σ�w�l1 · · ·σm�w�lm .
It follows that �u0; pf � anticommutes with uk−1+m and com-
mutes with uk+m; uk+m+1; : : : whence iii.

To see iv; let y = �u0; g�. Because �g; a� is a binary pair, there
is an integer k0 where they meet. It follows that the word y an-
ticommutes with uk0−1 and commutes with uk0

; uk0+1; : : : ; i.e.,
y /� σk0−1�R�′ ∩R but y � σk0�R�′ ∩R. Because σ has commu-
tant index k; then k � k0 and y /� σk0−1�R�′ ∩R, y � σk0�R�′ ∩
R = �w;σ�w�; : : : ; σk0−k�w��′′. We conclude that there is a
polynomial h�x� of degree k0 − k and constant coefficient 1
such that y = 5�w;h�. But then �u0; g� = y = 5�w;h� =
5��u0; p�; h� = 5�u0; ph�, so p�x�h�x� = g�x�. Hence, p�x�
is a factor of g�x�. That �g; a� meet at k+deg�g/p� now follows
from iii: D

As an immediate corollary we have the following.
Corollary 5.2. Suppose σ is a binary shift on the hyperfinite

II1 factor R with corresponding bitstream a = �a0; a1; : : :�. Sup-
pose there are an integer k0 and a polynomial g�x� � F�x�; with
constant coefficient 1; such that g is paired at k0 with a. Then σ
has finite commutant index. In particular there is a unique poly-
nomial p with constant coefficient 1 such that p and a are paired
at k; the commutant index of σ . Moreover;
�i� p is a factor of g, and
�ii� if the polynomial g/p has degree s, then k+ s = k0.

Corollary 5.3. Suppose σ is a binary shift on R with finite
commutant index k and corresponding bitstream a. Then for s � 0
there are exactly 2s−1 binary pairs �g; a� which meet at the integer
k + s. Each such polynomial g has the form g�x� = p�x�f �x�
where p�x� is the unique polynomial which meets a at k; and
f �x� is a polynomial with constant coefficient 1 of degree s.

Proof: The result follows from the preceding result and the
fact that there are exactly 2s−1 distinct polynomials of degree s
with constant coefficient 1. D

Definition 5.1: Let p�x� be a polynomial with constant coeffi-
cient 1 in GF�2�. For any integer k � 2 let C�p;k� denote the
family of binary shifts σ of commutant index k on R for which
the word w = �u0; p� in the generators of σ generates the first
nontrivial relative commutant algebra σk�R�′ ∩ R.

Remark 5.1:
�i� Restating Theorem 2.7 (see also Remark 3.3) in terms of

this notation, we have C�p; 2� = ∅ if p�x� has any recip-
rocal divisors of degree exceeding 1 and �C�p; 2�� = 1;
otherwise.

�ii� Because there are no q1words, by Remark 3.2, C�p; 1� =
∅.

�iii� Let p�x� = 1. Then C�p;k�, for k � 2, consists of
all binary shifts of commutant index k for which the
word w =+ u0; p ,= u0 generates σk�R�′ ∩R. It is not
difficult to show that these are the binary shifts each
of whose bitstreams a = �a0; a1; : : :� satisfies ak−1 =
1; ak = ak+1 = · · · = 0. Note that, as a1; a2; : : : ; ak−2
may be chosen arbitrarily, there are 2k−2 such binary
shifts, i.e., �C�p;k�� = 2k−2.

The following result gives a recursive formula for computing
the cardinality of C�p;k�.

Theorem 5.4. Let k � 2 be a fixed integer. Let p�x� be a poly-
nomial of degree n with constant coefficient 1. If p�x� has a re-
ciprocal factor r�x� with deg�r�x�� � 2k − 2 then C�p;k� = ∅.
Otherwise, for each j = 0; 1; : : : ; n− 1 let qj1; qj2; : : : ; qjmj be the

distinct factors of p�x� of degree j. Then∣∣C�p;k�∣∣ = 2k−2 −
∑

max��0; 2+n−k���j�n−1
1�i�mj

∣∣C�qji; k− �n− j��∣∣ [5.1]

Proof: If p�x� = 1; statement iii of the remark indicates that
�C�p;k�� = 2k−2. It is clear that the summation in this case is
0 and the formula holds in this situation. If k = 2 and p�x�
has no reciprocal factors of degree , 1; then by statement
iii the formula should be 1. Because C�p; 1� = ∅ by state-
ment ii, the formula holds in this case. So we may assume that
p�x� has degree � 1 and that k � 3. Let p�x� be a polyno-
mial of degree n with constant coefficient 1. By Lemma 4.2
(see also Remark 3.3), C�p;k� = ∅ if p�x� has a reciprocal
factor of degree � 2k − 2, so we may assume that the max-
imal reciprocal factor of p�x� has degree + 2k − 2. Suppose
�C�q; l�� is known, for all polynomials q�x� of degree + n and all
l � �2; 3; : : : ; k− 1�. Suppose a is a bitstream that meets p�x�
at k. Let σ be the corresponding binary shift on R. Then either
σ � C�p;k� or by Corollary 5.2 there is an l � �2; : : : ; k − 1�
such that σ has commutant index l + k. In the latter case there
is a unique polynomial q�x� for which σ � C�q; l�. Suppose
deg�q� = j � n − 1. By Corollary 5.2 q�x� is a proper factor of
p�x� and k = l + deg�p/q� = l + n− j, so l = k− �n− j�: Be-
cause C�q; l� = 0 unless l � 2; we must have k−�n− j� � 2; or
j � 2 + �n− k�. Of course j � 0 also. On the other hand, q�x�
is a proper factor of p�x�, so j = deg�q� + deg�p� = n, hence
max��0; 2 + �n − k��� � j � n − 1. Hence every binary shift σ
of commutant index less than k, for which �u0; p� is a qkword
(where �uj x j � �+� are the generators of σ) is accounted for
in the summation in the formula above.

Conversely, suppose q�x� is a proper factor of p�x�, and sup-
pose σ � C�q; k − deg�p/q�� = C�p;k − n + deg�q��. Let a
be the bitstream corresponding to σ . Then by Corollary 4.8 and
Theorem 5.1, a is one of the 2k−2 bitstreams that meet p�x� at k.
Hence, the summation in the formula subtracts from the 2k−2

bitstreams corresponding to p�x� any bitstream associated with
a binary shift σ of commutant index + k for which �u0; p� is
a qkword. Hence the right side of the formula above counts all
binary shifts σ of commutant index equal to k for which �u0; p�
generates σk�R�′ ∩ R. D

Corollary 5.5. There are countably many conjugacy classes
of binary shifts of any finite commutant index.

Corollary 5.6. Let p�x� be an irreducible polynomial over
GF�2� of degree n � 1. Let k � 2 be an integer. If p�x� is recip-
rocal then
�i� �C�p;k�� = 0 if n � 2k− 2,
�ii� �C�p;k�� = 2k−2 if k− 1 � n + 2k− 2, and
�iii� �C�p;k�� = 2k−2 − 2k−n−2 if 0 + n � k− 2.

If p�x� is not reciprocal then
�iv� �C�p;k�� = 2k−2 if n � k− 1, and
�v� �C�p;k�� = 2k−2 − 2k−n−2 if 0 + n � k− 2:

Proof: Statement i follows immediately from the first asser-
tion of the theorem. Otherwise, because 1 is the only proper fac-
tor of p�x� the formula in the theorem reduces to �C�p;k�� =
2k−2 − �C�1; k − n��. If n � k − 1; then �C�1; k − n�� = 0, so
ii and iv follow. If 0 + n � k − 2; then �C�1; k − n�� = 2k−n−2

by iii of the remark preceding the theorem, and �C�p;k�� =
2k−2 − �C�1; k− n�� = 2k−2 − 2k−n−2, giving iii and v. D

What follows is an algorithm for determining the bitstreams
of those binary shifts that lie in C�p;k�, for any polynomial
p�x� over GF�2� with constant coefficient 1. If p�x� = 1; then
C�p;k�, by Remark 5.1�iii�, consists of binary shifts whose bit-
streams are of the form a = �0; a1; a2; : : : ; ak−2; 1; 0; 0; : : :�.
Suppose p�x� has degree n , 0 and suppose k � 2. Sup-
pose moreover that p�x� has no reciprocal factors of degree
� 2k − 2. Assuming the bitstreams for all binary shifts in
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C�q; l�, deg�q�x�� + n; l � n − 1; have been determined we
find the bitstreams associated with the binary shifts in C�p;k�.

To do this we first seek any bitstream a that meets p�x� at k.
If q�x� is a factor of p�x� such that C�q; k − deg�p/q�� 6= ∅
then by Theorem 5.1 the bitstream associated with a binary shift
in this set meets p�x� at k. If no such factor q�x� exists we find
a as follows. If deg�p�x�� � 2k− 2 then we may obtain a as in
the proof of Lemma 4.1. If deg�p�x�� , 2k−2 then we can find
a bitstream a by solving the system consisting of the first n + 1
equations in the infinite system 3.1. Having done that, the re-
maining elements �an−k; an−k+1; : : :� are obtained from the re-
maining equations in 2.1 using the fact that c0 = 1. For the next
step, let s�1�; s�2�; : : : ; s�m� be the bitstreams constructed as in the
proof of Theorem 3.6. For 1 � j � m let b�j� = a + s�j�. [From
that theorem it was determined that m � 2k−2. From the com-
putation of BP�n; k� in Corollaries 4.7 and 4.8, however, it turns

out that m = 2k−2.) By the theorem, we have found all of the
bitstreams that meet p�x� at k. Note that all of these bitstreams
correspond to binary shifts in C�p;k�. For if not, the proof of
the theorem above implies that one of these bitstreams meets
with some factor q�x� of p�x� at the integer k−deg�p/q�, which
is not the case for the situation we are currently considering.

Because a bitstream is a complete conjugacy invariant for bi-
nary shifts on R, the procedure above leads to the following.

Theorem 5.7. The algorithm above gives a complete classifica-
tion of the binary shifts of finite commutant index up to conjugacy.
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