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We use an off-lattice minimalist model to describe the effects of
pressure in slowing down the foldingyunfolding kinetics of proteins
when subjected to increasingly larger pressures. The potential energy
function used to describe the interactions between beads in the
model includes the effects of pressure on the pairwise interaction of
hydrophobic groups in water. We show that pressure affects the
participation of contacts in the transition state. More significantly,
pressure exponentially decreases the chain reconfigurational diffu-
sion coefficient. These results are consistent with experimental results
on the kinetics of pressure-denaturation of staphylococcal nuclease.

pressure denaturation u hydrophobic effect u activation
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Proteins are responsible for most of the functions that occur
in living organisms. Their activity, however, depends on their

three-dimensional structure and dynamics, and for this reason
protein folding has been a central problem in molecular biology.
Energy landscapes and the funnel concept have provided the
theoretical framework for a quantitative understanding of the
folding problem. To firmly establish the connection between this
theoretical framework and reality, a generation of experiments
have been devised to probe the details of the early folding events
and to explore the topography of the folding landscape. A
powerful technique that has received recent attention is the
pressure dependence of protein-folding kinetics (1–6). Devel-
oping the theoretical tools to interpret these pressure experi-
ments on light of landscape theory is the focus of this paper.

Proteins undergo reversible foldingyunfolding transitions when
subjected to hydrostatic pressures of 2–10 kilobars (kbar) (1).
Despite the fact that folded proteins are highly incompressible (7,
8), pressure induces conformational changes that reduce the overall
volume of the system. This decrease in volume results from the
exposure of hydrophobic groups in the interior of the protein to
solvent. The effects of pressure on the dynamic structure of water
interacting with proteins and polymers are complex but well studied
(4, 9–11). Water will balance the tendency of forming an open
structure resulting from directional hydrogen bond interactions,
with the tendency to pack as Lennard–Jones particles to reduce its
volume. This balance is shifted with the application of pressure. The
dynamic fluctuations of a protein in aqueous solvent will, as a
consequence, be affected by pressure. Equilibrium solvation prop-
erties are also affected by pressure.

Kauzmann (12) pointed out that the pressure dependence of
protein unfolding is in disagreement with the hydrophobic core
model. His objections were based on the observation that change
in volume (DV) upon unfolding is positive at low P, but negative
for P 5 1–2 kbar. The transfer of hydrocarbons into water shows
exactly the opposite behavior. A solution to this puzzle was
recently suggested by Hummer et al. (4) by focusing on the
pressure-dependent transfer of water into the protein interior, in
contrast to the transfer of nonpolar residues into water. That is,
pressure denaturation corresponds to the transfer of nonpolar
groups into water.

Fig. 1 shows the potential of mean force (PMF) between two
methane-like particles in water for pressures up to 7 kbar, calculated
using the Information Theory Model for hydrophobic interactions
(4, 13, 14). The PMF exhibit two minima—a contact minimum at
0.4 nm distance and a solvent-separated minimum at a distance of

about 0.7 nm. The two minima are separated by a desolvation
barrier with a width of approximately one water molecule diameter.
The PMFs are normalized at the solvent-separated minimum to
illustrate that the contact minimum is shallow relative to the energy
of the solvent-separated minimum. Meanwhile, the desolvation
barrier between these two minima increases with pressure. Physi-
cally, these phenomena can be justified with a simple model: At low
pressures, the interstitial space between two large nonpolar solutes
is energetically unfavorable for water molecules. As the pressure
increases, the space between nonpolar solutes is more likely to be
occupied by water molecules, thus increasing the sampling of the
solvent-separated configurations. The increase of the desolvation
barrier between contact and solvent-separated minima can be
quantified by calculating the barrier heights DWf

‡ and DWu
‡ from the

solvent-separated and contact minima, respectively. DWf
‡ and DWu

‡

are the barriers for forming and breaking hydrophobic contact
configurations, corresponding to the contact-formation and con-
tact-breaking reactions, respectively. The activation volumes, which
can be defined as Dvf/u

‡ 5 DWf/u
‡ yp, are both positive, with Dvf

‡ 5
3.8 mlymol and Dvu

‡ 5 1.6 mlymol. Dvu/f
‡ are constant for pressures

below 5 kbar (4). Increasing pressure is expected to slow down the
kinetics of hydrophobic pair formation and breaking. Experimental
studies of pressure dependence of folding and unfolding kinetics on
staphylococcal nuclease (Snase) and trp repressor showed a reduc-
tion of both rates with increasing pressure (1–3, 5).

The present model for pressure-induced denaturation of
proteins is based on the properties of pairwise interactions of
simple solutes in pure water and does not consider large-scale
effects (15). Molecular dynamics (MD) simulations of wa-
terymethane solutions are in qualitative agreement with this
model (16). However, a protein contains both polar and hydro-
phobic groups distributed along the chain, and competition
between polar and hydrophobic interactions plays a crucial role
in the equilibrium properties of proteins. Much insight can be
gained by describing how pressure affects protein dynamics and
folding, accounting for competing polar and ionic solvation, and
correlated multiparticle interactions. All-atom MD studies are
limited, however, by the extremely slow relaxation of proteins at
high pressures. Experimental studies of pressure-induced un-
folding of Snase show that the transition takes hours (1, 3).
Minimalist models for proteins can capture the correct physics
for describing the role of the hydrophobic core formation in
proteins by mimicking the role of pressure on pairwise side-chain
interactions. In this manuscript, we present an off-lattice mini-
malist model that captures the combined role of the folding
transition state and changes in the chain configurational diffu-
sion in describing the activation volume changes in pressure-
induced protein foldingyunfolding. The increase with pressure
in the desolvation barrier for an individual pair contact forma-
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tion leads to a reduction in the chain reconfigurational diffusion
coefficient, thus increasing the folding and unfolding times.

Minimalist Model For Describing Pressure Effects on
Protein-Folding Kinetics
We incorporate pressure effects into a minimalist model by using
a simple square-well potential with an infinite repulsive core to
represent the PMF of hydrophobic groups’ aggregation in aqueous
solution (shown in Fig. 1). A model for the widely studied (17–19)
b-barrel protein that has a funnel-like energy landscape is con-
structed. This system is minimally frustrated in the sense that all
native interactions favor folding, only one structure is favored at the
bottom of the funnel, and all native interactions are equally
distributed throughout the structure. For this model, we can clearly
use the number of native contacts, Q, as an approximate-reaction
coordinate. The simplest off-lattice representation of this model is
known as a Go# model (18). Here, we use the Go# model studied by
Nymeyer et al. (18), but the potential interaction energy is changed
to the square-well pair potential described below. The ground-state
structure and the attractive interactions included in the Go# model
are shown in Fig. 2.

The potential energy function used is shown in Fig. 3, where
«1 and «2 represent the barriers from the solvent-separated
minimum to the desolvation barrier and the well depth of the
contact minimum. In this model, the basic kinetic step in the
pairwise interaction is getting water inyout of hydrophobic
contacts. This contrasts with the lattice HP (20, 21), off-lattice
Lennard–Jones (17, 18), Morse (22), and square-well (23) po-
tential energy models where there is no desolvation barrier, and,
as a consequence, the basic kinetic step is the amino acids
(beads) contact formation by finding each other through free
diffusion. The pairwise desolvation barrier is a source of local
roughness in the protein energy landscape. Following the pres-
sure dependence of DW f/u

‡ described above, we parameterize the
pressure dependence of the model potential by tuning the
energies «1 5 1.333 1 .2778P, and «2 5 21.00 1 .1667P, where
P is in kbar. At P 5 0, the contact-well depth is 21, and the
desolvation barrier from the solvent separated configuration is
1.333. Units of energy have been chosen for convenience so that
the relevant temperatures are of order one. Energies are shown
in units of temperature. The temperature dependence of the
hydrophobic PMF is not taken into account. As a consequence,
we do not expect our model to describe cold denaturation (24).

The dynamics are studied with the Metropolis Monte Carlo
(MC) simulations with a move set including chain ends and

crankshaft moves. Multiple simulations are done at various tem-
peratures and pressures. Histograms are collected to reconstruct
the density of states V(E, Q, P), where Q is an order parameter,
taken here as the degree of similarity between a state and the native
state (i.e., number of contacts in common). To compare our results
with the calculations by Nymeyer et al. (18), we obtained the
free-energy surface for a system with a square-well potential of «1

5 0, and «2 5 21, i.e., with no desolvation barrier.

Results and Discussion
Free-Energy Profiles. Fig. 4 shows the free energy of the system
with (Lower) and without (Upper) a desolvation barrier in the
potential, as a function of Q at various temperatures. These

Fig. 1. Pressure dependence of the PMF between two methane-like solutes
in water. The arrow indicates changes with increasing pressures from 2.16 to
7.25 kbar.

Fig. 2. An illustration of the ground state of the Go# model. Each arrow
represents an attractive interaction that exists between two monomers; there
are 47 interactions. The nonbonded interaction between two monomers
without a connecting arrow is a hard core repulsion term responsible for
excluded volume.

Fig. 3. Square-well potential with a desolvation barrier representing the
hydrophobic-pair potential between pairs of beads participating in native
contacts in the Go# model. We parameterize the pressure dependence of the
model potential by «1 5 1.333 1 .2778P, and «2 5 21.00 1 .1667P, where P is
in kbar. At P 5 0, the contact-well depth is 21, and the desolvation barrier
from the solvent-separated configuration is 1.333. Here the units of energy
have been chosen for convenience so that the relevant temperatures are of
order one. Energies are shown in units of temperature.
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curves are similar to those in figure 7 of Nymeyer et al. (18). The
free-energy curve at T ; Tf for the system without a desolvation

barrier exhibits a very small transition-state free-energy barrier
of approximately 0.2 energy units separating the folded and
unfolded states. The free-energy curve at T ; Tf for the system
with a desolvation barrier exhibits a significantly larger free-
energy barrier of about 1.8 energy units. The free-energy profile
of the model with a desolvation barrier is rougher than the
corresponding curves for the model with no desolvation barrier.
The roughness in the free-energy profiles can be attributed to the
local roughness introduced by the pairwise desolvation barrier,
where the formation of a native pair may force chain-constrained
neighboring beads to form pairs within the desolvation-barrier
region.

Fig. 5 shows the specific heat as a function of temperature of
the Go# model with a potential energy function with and without
desolvation barriers. The width and height of the specific heat
peak at T ; Tf are narrower and higher when the desolvation
barrier is present. This suggests that the folding transition
becomes more cooperative with a pairwise desolvation barrier.
The peak heights also increase with pressure at lower pressures
(P # 0.5 kbar) and saturate for higher pressures. The transition
temperature and the width and height of the Cv curve depend on
the width of the contact minimum attractive potential well. For
narrower square-well width, the transition temperature is lower
(Tf ; 0.3 for Rc 5 1.167; Tf ; 0.74 for Rc 5 1.8), the specific heat
peaks are higher, and the specific heat width is narrower. In all
of our calculations, unless otherwise specified, we used Rc 5 1.8.
Fig. 5 also shows ^Q& as a function of T for various pressures. The
apparent latent heat described at T ; Tf by a peak in Cv coincides
with the sharp change in ^Q&.

Fig. 6 shows the free-energy profiles as a function of the
folding-order parameter Q at the folding temperature Tf for each
of the various pressures (in kbar). Here, the transition-state
energy is much larger ('1.8), the folding temperatures are lower,
and the free-energy profile is more rugged than for the model
with no desolvation barrier. Several local free-energy minima are
observed, yet, energy barriers smaller than 0.5 separate these
local minima so they would be averaged over in most kinetic
experiments. The transition-state value of the number of con-
tacts order parameter, Q 5 Q‡, corresponding to the largest
free-energy barrier (measured from the folded state) changes

Fig. 5. The specific heat, Cv, of the Go# model vs.
temperature for various pressures, and for the
potential-energy function without a desolva-
tion barrier (Upper) is contrasted with the fold-
ing denaturation curves (Lower). The specific
heat for the model with no desolvation barrier is
labeled NB, with Rc 5 1.8 and Rc 5 1.167, where
Rc is the width of the attractive square-well
potential.

Fig. 4. Free-energy curves as a function of the folding order parameter Q, at
various temperatures for the square-well potential-energy function with no
desolvation barrier (Upper), and with a desolvation barrier corresponding to
P 5 0 kbar (Lower). Tf for the no desolvation and desolvation models are Tf ;
0.74 and Tf ; 0.64, respectively.
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with pressure. The barrier at Q 5 22 is the largest at P 5 0, and
decreases with P at all pressures. However, at higher P, the
barrier at Q 5 27 is the largest. This barrier first decreases with
P, but at higher P, later increases. If we neglect chain-diffusion
effects on the folding rate, this free-energy curve will suggest
that the free-energy barrier decreases with pressure at low
pressures, but it increases at higher pressures. However, chain
diffusion cannot be discarded. In the next section, we study the
folding kinetics for this model.

Folding Kinetics. To study the kinetics of folding, a series of
simulations were performed over a range of temperatures and
pressures. On the order of 10–300 simulations were performed
at each temperature and pressure. The simulations were stopped
whenever the folded state (Q 5 47) was reached. The length of
the simulation was then used to calculate the median first
passage time (MFPT) of folding. MC runs that did not reach the
folded state within 5 3 109 steps where assigned a folding time

of 5 3 109. Fig. 7 shows the MFPT at P 5 0, 0.5, and 1.5 kbar,
as a function of 1yT. The MFPT increases as 1yT is decreased
(T increased). However, given the designed minimal frustration
in the model, the MFPT does not increase significantly for large
1yT (low T), in contrast to the results described by Socci et al.
(21) for the 3LC lattice polymer with TfyTg 5 1.6. For a wide
range of temperatures around Tf, the MFPT at constant T
increases as P is increased. This suggests that the apparent
activation volume, calculated from the change in folding rate
with pressure, is positive. However, given the decrease of the
contact minimum in the potential with pressure, the folding
temperature also decreases with P. The Inset in Fig. 7 shows the
MFPT at Tf(P). Fig. 6 shows that the transition-state energy
(DG‡) and the transition-state coordinate (Q‡) change with
pressure. Different combinations of contacts in the transition
state are affected differently at various pressures. As a result, the
transition-state energy can both decrease as a function of P (e.g.,
Q ; 22) or increase (e.g., Q ; 27) at P between 1.25 and 2.5 kbar.
However, the folding-time trend goes opposite to what is sug-
gested by the free-energy curves alone. The increase in rough-
ness in the energy landscape resulting from the desolvation
barrier height increases with pressure, resulting in an increase in
the folding times, even though the intrinsic thermodynamic
free-energy barriers are lower. This apparent discrepancy in
folding times can be explained by an analytic energy landscape
calculation using the Kramer’s kinetics, to be a consequence of
the decrease in reconfigurational diffusion of the system. The
variation in the chain-reconfigurational diffusion coefficient
with pressure is described next.

Reconfigurational Diffusion Coefficient. We apply Bryngelson–
Wolynes (25) diffusive theory of folding for a system with a
reasonably unfrustrated energy surface to determine the role of
pressure on the chain-reconfigurational diffusion. This follows
the applications of this theory to lattice models by Socci et al.
(21). Within the quasiharmonic approximation for the free-
energy well around the unfolded state, the diffusion coefficient
can be approximated by DQ 5 dQ2ytcorr, where dQ2 is the
variance of the reaction coordinate about the unfolded state, and
the tcorr is the reaction-coordinate autocorrelation time, defined

Fig. 7. MFPT (tf) as a function of 1yT. Time is
measured in number of MC steps. (Inset) The
MFPT as a function of P at T 5 Tf. Error bars reflect
one SD from block averages.

Fig. 6. Free-energy curves as a function of the folding order parameter Q at
the folding temperature Tf and various pressures (in kbar). Notice that as the
pressure is increased, «2 decreases, and therefore Tf also decreases.
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by limt3`C(t) ; exp(2tytcorr), where the Q autocorrelation
function C(t) is defined by Socci et al. (21).

In our model, the variance of the reaction coordinate about
the unfolded state, ^dQ2& and the C(t) are calculated from
simulations at T 5 Tf, and for trajectory segments that only
involve the unfolded state (Q # 29). These simulations exhibit
multiple foldingyunfolding transitions. Block averages over var-
ious segments were performed to assess the errors in ^dQ2& and
tcorr. The reconfigurational-diffusion coefficient characterizes
the average rate of local motion on the landscape and is a
function of the native-protein motif and the roughness of the
landscape. When the folding landscape is funnel-like and the
native state can be reached by a large number of ‘‘quasi-
equivalent’’ pathways, the diffusion picture provides a good
description of the folding mechanism (21, 26). In this regime, the
folding process is exponential in time and the folding bottleneck
is to overcome the free-energy barrier. Folding therefore can be
described as a diffusive process in an effective potential-energy
surface as a function of Q andyor other appropriate reaction
coordinates. However, if glassy dynamics are reached and folding
becomes controlled by long-lived traps, the folding event be-
comes nonexponential in time and the diffusive description fails
(26).

Fig. 8 shows the chain reconfigurational correlation time, and
the reconfigurational-diffusion coefficient as functions of pres-
sure. tcorr increases over one order of magnitude over pressure
changes in the range of 0–2.5 kbar, indicating that pressure slows
the rate of configurational changes. (The slope of this curve
cannot be taken as an activation volume because the tempera-
tures are changed to T 5 Tf for each P.) The variance of the order
parameter, ^dQ2& (not shown), increases by a factor of 2 over the
same pressure range. The reconfigurational-diffusion coeffi-
cient, given by DQ 5 dQ2ytcorr, decreases by nearly an order of
magnitude over the same pressure range, with a slope of
0.8ykbar. The expected slope resulting from a single-pair for-
mation is 0.06ykbar, suggesting that reconfigurational diffusion
involves 13 contacts. In experiments on Snase, the slope of the
reconfigurational-diffusion coefficient with pressure is 1.7ykbar
(2), which is about a factor of 2 larger than the value for our
minimalist model of a b-barrel, and a factor of 28 larger than for
a single-pair formation (4). The slopes for our model and Snase
are in qualitative agreement. The differences in slope may result
from different number of contacts in the transition state that are
affected by pressure. The largest protein shows the larger slope
in the pressure dependence of the reconfigurational-diffusion
coefficient. Our results suggest that the slope of the reconfigu-
rational-diffusion coefficient depends on the degree of cooper-

ativity imposed by the presence of the desolvation barrier.
Therefore, it is expected that different proteins may show
variations for the change of reconfigurational-diffusion coeffi-
cient with pressure.

Within the diffusive theory of folding (25), the folding time is
given by:

tf 5 E
Qu

Qf

dQ E
0

Q

dQ9
exp@bF~Q! 2 bF~Q!#

D~Q!
, [1]

where F(Q) is the PMF shown in Fig. 4. In this equation, we
included the possibility of the reconfigurational-diffusion coef-
ficient varying with Q. However, in our calculations, we use a
constant value for the reconfigurational-diffusion coefficient.
Therefore, the equation above can be written in the following
discrete form:

Dtf 5 O
Q51

47 O
Q956

Q

exp@bF~Q! 2 bF~Q9!#. [2]

The MFPT calculated from the MC simulations are compared
with the folding times calculated from the discrete double
integral in Table 1. The agreement between the Kramer-like
model and the simulation results is outstanding. From Table 1,
we observe that Dtf shows a decrease, followed by an increase
with increasing pressure, as expected from F(Q) curves. How-
ever, it is clear that the major effect of pressure is in changing
the roughness of the landscape and not the free-energy profile.
For this reason, the effects of pressure can be mostly described
in terms of variations of the reconfigurational-diffusion coeffi-
cient. It is clear that tf, obtained after accounting for the changes
in reconfigurational-diffusion coefficient, increases with pres-
sure. The values of the MFPT obtained from the MC and the
discrete integral form in Eq. 2 differ by at most a factor of 4,
perhaps reflecting topological restriction, thus justifying the use
of the native-contact number as an order parameter for the
folding reaction. From this calculation, we show that the main
effect of pressure on the folding rates is to decrease the
chain-reconfigurational diffusion, when temperatures are main-
tained equal to the chain-folding temperatures (i.e., at equal
folded-state stabilities).

Conclusions
We have presented a minimalist model of a b-barrel protein that
describes the effect of pressure on the transition state and kinetics
of proteins. In agreement with observed experimental data on
Snase (2), we observe that pressure increases the roughness of the
energy landscape, thus increasing the pressure-unfolding transition
times. We can trace the slow-down of the reaction as a consequence
of the increase in desolvation barrier shown in the pair PMF of
hydrophobic groups in water as a function of pressure. Although we
cannot map our results to the time scale or the physical system (i.e.,
Snase vs. a b-barrel), our results suggest that water penetration into
the hydrophobic core of a protein is involved in pressure-induced
protein denaturation. Nevertheless, the process is well described by
a protein configuration-dependent reaction coordinate.

Fig. 8. Pressure dependence of the chain-reconfigurational correlation
time, tcorr (right side axis); and the reconfigurational-diffusion coefficient,
D(Q) (left side axis), for the b-barrel minimalist model.

Table 1. Folding MFPT From MC and from the energy landscape
theory folding times

P 5 0 P 5 0.5 P 5 1.25 P 5 2.5

Dtf 1824 1774 2128 ND
D 15 3 1025 9 3 1025 6 3 1025 1.6 3 1025

tf 1.2 3 107 2 3 107 3.5 3 107 ND
tMC 6 3 107 8 3 107 9 3 107 1.7 3 108

ND, not determined.
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Pressure perturbs the equilibrium distribution of states contrib-
uting to the transition state. As a result, pressure may increase or
decrease the folding rates of proteins. Our results show a lowering
of the transition-state energy with pressure, but, in our minimalist
model, the decrease in the reconfigurational diffusion dominate
easily a reduction in the transition-state free energy.
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