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Abstract
Staphylococcus aureus is a versatile pathogen capable of causing a wide range of human diseases.
However, the role of different virulence factors in the development of staphylococcal infections
remains incompletely understood. Some clonal types are well equipped to cause disease across the
globe, whereas others are facile at causing disease among community members. In this review,
general aspects of staphylococcal pathogenesis are addressed, with emphasis on methicillin-resistant
strains. Although methicillin-resistant S. aureus (MRSA) strains are not necessarily more virulent
than methicillin-sensitive S. aureus strains, some MRSA strains contain factors or genetic
backgrounds that may enhance their virulence or may enable them to cause particular clinical
syndromes. We examine these pathogenic factors.

OVERVIEW OF THE PATHOGENESIS OF STAPHYLOCOCCUS AUREUS
This article summarizes the pathogenesis of S. aureus disease and specifically addresses the
pathogenesis of infections caused by methicillin-resistant S. aureus (MRSA) strains originating
in health care settings (hospital-acquired MRSA [HA-MRSA]) and in the community
(community-acquired MRSA [CA-MRSA]). S. aureus pathogenesis is reviewed before the
discussion of the pathogenesis of MRSA, because MRSA virulence factors are generally not
unique to MRSA. Nonetheless, certain MRSA strains appear to contain particular factors or
genetic backgrounds that enhance their virulence or enable them to cause particular clinical
syndromes.

Colonization and disease
S. aureus is both a commensal organism and a pathogen. The anterior nares are the main
ecological niche for S. aureus. Approximately 20% of individuals are persistently nasally
colonized with S. aureus, and 30% are intermittently colonized. However, numerous other sites
may be colonized, including the axillae, groin, and gastrointestinal tract. Colonization provides
a reservoir from which bacteria can be introduced when host defenses are breached, whether
by shaving, aspiration, insertion of an indwelling catheter, or surgery. Colonization clearly
increases the risk for subsequent infection [1,2]. Those with S. aureus infections are generally
infected with their colonizing strain [3]. In a study of bacteremia, blood isolates were identical
to nasal isolates in 82% of patients [4]. Colonization also allows S. aureus to be transmitted
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among individuals in both health care and community settings. The basis for S. aureus
colonization is complex and incompletely understood but appears to involve the host's contact
with S. aureus (e.g., other carriers) and the ability of S. aureus to adhere to host cells and to
evade the immune response (reviewed by Wertheim et al. [1]).

Virulence factors and disease
The armamentarium of virulence factors of S. aureus is extensive, with both structural and
secreted products playing a role in the pathogenesis of infection (figure 1). Selected examples
of these factors are described in table 1. Two noteworthy features of staphylococci are that a
virulence factor may have several functions in pathogenesis and that multiple virulence factors
may perform the same function. In establishing an infection, S. aureus has numerous surface
proteins, called “microbial surface components recognizing adhesive matrix
molecules” (MSCRAMMs), that mediate adherence to host tissues. MSCRAMMs bind
molecules such as collagen, fibronectin, and fibrinogen, and different MSCRAMMs may
adhere to the same host-tissue component. MSCRAMMs appear to play a key role in initiation
of endovascular infections, bone and joint infections, and prosthetic-device infections.
Different S. aureus strains may have different constellations of MSCRAMMs and so may be
predisposed to causing certain kinds of infections [5–8].

Once S. aureus adheres to host tissues or prosthetic materials, it is able to grow and persist in
various ways. S. aureus can form biofilms (slime) on host and prosthetic surfaces, enabling it
to persist by evading host defenses and antimicrobials [9]. The ability to form and reside in
biofilms is one reason why prosthetic-device infections, for example, can be so difficult to
eradicate without removal of the device. In vitro, S. aureus can also invade and survive inside
epithelial cells, including endothelial cells, which theoretically may also allow it to escape host
defenses, particularly in endocarditis [10–12,30]. S. aureus is also able to form small-colony
variants (SCVs), which may contribute to persistent and recurrent infection. In vitro, SCVs are
able to “hide” in host cells without causing significant host-cell damage and are relatively
protected from antibiotics and host defenses. They can later revert to the more virulent wild-
type phenotype, possibly resulting in recurrent infection [13–15].

S. aureus has many other characteristics that help it evade the host immune system during an
infection (reviewed by Foster [16]). Its main defense is production of an antiphagocytic
microcapsule (most clinical isolates produce type 5 or 8). The zwitterionic capsule (both
positively and negatively charged) can also induce abscess formation [17,18]. The
MSCRAMM protein A binds the Fc portion of immunoglobulin [31] and, as a result, may
prevent opsonization. S. aureus may also secrete chemotaxis inhibitory protein of
staphylococci or the extracellular adherence protein, which interfere with neutrophil
extravasation and chemotaxis to the site of infection (reviewed by Foster [16]). In addition, S.
aureus produces leukocidins that cause leukocyte destruction by the formation of pores in the
cell membrane [19].

During infection, S. aureus produces numerous enzymes, such as proteases, lipases, and
elastases, that enable it to invade and destroy host tissues and metastasize to other sites. S.
aureus is also capable of producing septic shock. It does this by interacting with and activating
the host immune system and coagulation pathways. Peptidoglycan, lipoteichoic acid, and α-
toxin may all play a role [22–24] (reviewed by Lowy [32]). In addition to causing septic shock,
some S. aureus strains produce superantigens, resulting in various toxinoses, such as food
poisoning and toxic shock syndrome [25,33]. Unlike the structural components noted earlier,
these superantigens can produce a sepsis-like syndrome by initiating a “cytokine storm.” Some
strains also produce epidermolysins or exfoliative toxins capable of causing scalded skin
syndrome or bullous impetigo [26].
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Regulation of expression of staphylococcal virulence factors plays a central role in
pathogenesis. To reduce undue metabolic demands, expression occurs in a coordinated fashion
—only when required by the bacterium. Expression of MSCRAMMs generally occurs during
logarithmic growth (replication), whereas secreted proteins, such as toxins, are produced
during the stationary phase. During infection, the early expression of the MSCRAMM proteins
facilitates initial colonization of tissue sites, whereas the later elaboration of toxins facilitates
spread. The accessory gene regulator (agr) is a quorum-sensing system that plays a critical role
in the regulation of staphylococcal virulence. It has been studied extensively and has been
reviewed by Yarwood and Schlievert [34] and Novick [35], among others. The agr mutants
appear to have diminished virulence, and certain agr types are associated with particular
clinical syndromes [36]. Other important regulators include the staphylococcal accessory
regulator [37], ArlR and ArlS [38], SaeRS [39,40], Rot [41], and mgr [42].

Host factors may also affect susceptibility to staphylococcal disease but, in general, are poorly
characterized. In one large study, S. aureus nasal carriage and subsequent development of S.
aureus bacteremia and mortality were assessed in nonsurgical, hospitalized patients. Among
those who developed S. aureus bacteremia, noncarriers had mortality higher than that among
carriers. Because most infections among carriers occurred with their colonizing strains,
colonization may confer some protective immunity if staphylococcal infection develops [43].
Antibodies also appear to protect against the development of toxic shock syndrome, which
occurs almost exclusively in those who lack antibodies to the implicated toxin at the time of
acute illness [33].

As described, S. aureus has numerous mechanisms to produce disease and to evade host
defenses. However, it is important to note that not all S. aureus strains are created equal.
Different strains may contain different adhesins or toxins or may differ in their ability to
produce biofilms and resist phagocytosis. The distribution of some virulence factors is related
to clonal type, whereas the presence of others is unrelated to genetic background [44]. In this
regard, it is important to note that there is limited information on the expression of these genes
during infection.

PATHOGENESIS OF HA-MRSA
History of MRSA

Methicillin was first introduced in 1959−1960, and, within a year, methicillin-resistant isolates
were reported [45]. Methicillin resistance is conferred by the mecA gene, which encodes a
penicillin-binding protein (PBP2A) with decreased affinity for β-lactam antibiotics. mecA is
part of a mobile genetic element called the “staphylococcal cassette chromosome (SCC)
mec.” SCCmec is flanked by cassette chromosome recombinase genes (ccrA/ccrB or ccrC) that
permit intra- and interspecies horizontal transmission of SCCmec. The initial reservoir of
SCCmec is unclear but may have been a coagulase-negative staphylococcal species [46–48].

A limited number of MRSA lineages has emerged from the transfer of SCCmec into successful
methicillin-susceptible S. aureus (MSSA) clones. Using multilocus sequence typing
(comparing the internal sequences of 7 housekeeping genes), Enright et al. [49] demonstrated
that MRSA clones evolved from 5 different groups of related genotypes or clonal complexes,
each arising from a distinct ancestral genotype. The earliest MRSA isolates evolved from
sequence type (ST) 8-MSSA, which, after a point mutation, evolved into ST250-MSSA. This
MSSA was likely the first recipient of SCCmec (specifically, type I) to yield the first MRSA,
labeled ST250-MRSA-I [49]. As in the work of Enright et al. [49], Crisóstomo et al. [50]
identified probable recipient MSSA strains for early MRSA strains in another collection of
isolates. Select MRSA clones are described in table 2.
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HA-MRSA infections historically have been caused by internationally disseminated clones,
including 5 major clones (the Iberian, Brazilian, Hungarian, New York/Japan, and Pediatric
clones) that have been described in several ways (e.g., by multilocus sequence typing and
PFGE) with the use of different nomenclature. Subsequently, these multidrug-resistant clones
were disseminated globally and accounted for the majority of HA-MRSA infections in several
regions. For example, the Brazilian clone spread to Portugal, Argentina, Uruguay, Chile, and
the Czech Republic [55]. It remains unclear why particular clones are so transmissible and are
able to become the “established” HA-MRSA strains in certain regions. Certainly, resistance to
multiple antibiotics plays a role in establishing dominance in hospital settings. However,
investigators have also postulated that these clones have enhanced virulence, as denoted by
their increased transmissibility or ability to colonize hosts.

One example of a successful clonal type is phage type 80/81, which was responsible for
pandemic S. aureus nosocomial and community-acquired infections throughout the 1950s. Its
prevalence began to fade in the 1960s after methicillin became available. Phage type 80/81 is
ST30 and contains the Panton-Valentine leukocidin (PVL) gene. This highly successful clone
is related to the southwest Pacific (SWP) clone, a CA-MRSA clone that is also ST30 and
contains SCCmec IV as well as PVL. Given the similar genetic backgrounds of these strains
and the previous epidemicity of phage type 80/81, one would expect the SWP clone to have
great potential to cause widespread disease. Of note, this clone has already appeared in the
United Kingdom. Phage type 80/81 also is a likely close relative of the hospital-acquired,
epidemic MRSA-16 strain (ST36-MRSA-II) [56].

HA-MRSA virulence: the Brazilian clone
The Brazilian clone (also known as Brazilian epidemic clonal complex [BECC]), PFGE type
A1, became the major cause of invasive staphylococcal infections at João Barros Barreto
University Hospital (Belém, Brazil) in the 1990s. In 1995, it accounted for 38% of S. aureus
isolates and, by 1998, 79% of isolates. Investigators compared BECC A1 strains to MSSA and
sporadic MRSA strains (rarely detected in hospitals) in several in vitro experiments. BECC
A1 strains produced significantly more biofilm than did the other strains. They also had higher
adhesion to polystyrene, as well as to bronchial epithelial cells, and were more likely to invade
these cells. The presence of accessible fibronectin-binding domains appeared to be necessary
for a high level of invasion. These in vitro studies suggest that this particular clone may be
successful because it has an enhanced ability to bind, persist, and invade [57]. Whether these
attributes are present in other HA-MRSA epidemic clones is unknown.

PATHOGENESIS OF CA-MRSA INFECTION
Until the 1990s, MRSA rarely caused infections among community members without exposure
to the health care setting (one exception is injection drug users). An outbreak of CA-MRSA
infections occurred between 1989 and 1991 among indigenous Australians in western Australia
without health care contact [58]. CA-MRSA infections were also reported in people from
neighboring regions [59]. In the late 1990s, several cases of aggressive MRSA infection also
occurred among individuals in the United States without established risk factors for MRSA.
Four children died of CA-MRSA infections in Minnesota and North Dakota from 1997 to 1999.
All the cases were rapidly fatal and were associated with necrotizing pneumonia or pulmonary
abscesses and sepsis [60]. The strain responsible for these infections was ST1 and PFGE type
USA400 (also known as the MW2 strain) [52]. Subsequently, clonal outbreaks of skin and
soft-tissue infection caused by CA-MRSA were also reported among prison inmates, men who
have sex with men, soldiers, and athletes, particularly football players [61–64]. The strain
responsible for these infections was ST8 and PFGE type USA300 [53]. Cases of CA-MRSA
skin infection and necrotizing pneumonia were reported internationally as well [65,66].
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In addition to causing necrotizing pneumonia, CA-MRSA has recently been reported to cause
infections or infectious complications in situations in which S. aureus or MRSA is an unusual
pathogen. These have included cases of necrotizing fasciitis caused by PFGE type USA300
[67], as well as cases of pyomyositis [68,69], purpura fulminans with toxic shock syndrome
[70], and Waterhouse-Friderichsen syndrome [71].

The number of CA-MRSA infections appears to be increasing, and the strains responsible for
these infections have now entered the health care setting, blurring the line between
“community” and “hospital” strains [72,73]. The strains that cause these virulent infections
carry SCCmecIV (sometimes SCCmecV), the smallest of the SCCs that confer methicillin
resistance, and are generally susceptible to several non–β-lactam antibiotics. This is in contrast
to the multidrug-resistant nosocomial MRSA strains that carry larger SCCmec types [74,75].
CA-MRSA strains may also have a growth advantage over HA-MRSA strains [27,76].

Although SCCmecIV has appeared in several different genetic backgrounds [55], PFGE types
USA300 (ST8) and USA400 (ST1)—both agr type III—accounted for the vast majority of
CA-MRSA infections in individuals without the usual MRSA risk factors or health care contact
in the United States [52,77]. USA300 is now the predominant strain. Of interest, some of these
USA300 isolates that cause infections are PVL positive but methicillin susceptible [78].

Worldwide, there are other prevalent CA-MRSA strains, such as ST80 (France-Switzerland),
ST30 (SWP clone), and ST93 (Australia Queensland clone) [65]. Said-Salim et al. [77]
identified additional “community-acquired strains” (CA-MRSA strains defined as containing
SCCmecIV); however, these were in individuals with MRSA risk factors or health care contact.

The basis for the apparent increased virulence of CA-MRSA strains is incompletely
understood. Numerous factors have been proposed, such as increased fitness, improved evasion
of the host immune system, and unique toxin production. The genes and mechanisms by which
CA-MRSA strains may cause aggressive disease are discussed in the sections that follow.
Because these strains usually contain PVL, which is usually absent in HA-MRSA strains, some
researchers postulate that this protein, with leukocytolytic and dermonecrotic activity, is
responsible.

The role of PVL versus other virulence determinants
There is a strong epidemiological association between PVL and the emergence of CA-MRSA
infections. PVL is uncommonly found in MSSA and HA-MRSA isolates [79–83]. In a study
of 593 S. aureus isolates in France, PVL was absent in HA-MRSA isolates but was associated
with all CA-MRSA strains [83]. In another study, PVL was ubiquitous in a large sample of
CA-MRSA isolates collected from across the globe [65]. It is usually present in USA300 and
USA400 [27,53,77] and is often harbored by other SCCmecIV-containing strains [77]. The
outbreaks of skin and soft-tissue infections and necrotizing pneumonia mentioned above were
caused by PVL-positive strains.

Lina et al. [66] determined the presence of lukS-PV and lukF-PV (the cotranscribed genes for
PVL) in 172 S. aureus strains collected from patients with a variety of clinical syndromes. PVL
was significantly associated with community-acquired pneumonia (85% of strains), compared
with hospital-acquired pneumonia (0%). PVL was also significantly associated with strains
causing invasive skin infections such as furunculosis (93%) and cutaneous abscess (50%),
compared with superficial folliculitis (0%). PVL was not observed in strains associated with
infective endocarditis, urinary tract infections, toxic shock syndrome, or mediastinitis,
although few strains were tested [66]. Diep et al. [80] reported a similar association of PVL
and skin and soft-tissue infections caused by MRSA isolated from inpatients and outpatients
from San Francisco General Hospital and inmates in county jails.
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In addition to the epidemiological evidence suggesting that PVL may be a virulence factor in
CA-MRSA, there is a scientific rationale for this association. Staphylococcal leukotoxins,
including PVL, are secreted as bicomponent toxins consisting of S and F proteins [16,84].
Depending on the combination of particular S and F proteins, a toxin is formed with varying
leukocytolytic, erythrocytolytic, and dermonecrotic properties [84,85]. PVL consists of LukS-
PV and LukF-PV and 4 units of each form of octameric β-barrel pores in leukocyte membranes
in vitro, resulting in cell lysis [19,86–88]. This may cause cells such as neutrophils to release
inflammatory enzymes and cytokines (sublytic concentrations of PVL also appear to induce
the release of these substances) [88–90]. PVL also appears to induce apoptosis of neutrophils
via a mitrochondrial pathway at lower concentrations, whereas, at higher concentrations, PVL
induces necrosis [91]. In vivo, PVL causes dermonecrosis when injected intradermally in
rabbits [92].

Given this evidence and the strong epidemiological association between PVL-containing CA-
MRSA strains and necrotizing pneumonia and skin and soft-tissue infections, it is plausible
that PVL is partly responsible for the enhanced virulence of CA-MRSA (other leukocidins may
also play a role). However, recent studies comparing the virulence of PVL-positive and PVL-
negative strains have had conflicting results.

Saïd-Salim et al. [77] compared human polymorphonuclear cell lysis among PVL-positive and
PVL-negative CA-MRSA strains with similar genetic backgrounds and found no difference in
polymorphonuclear lysis. Voyich et al. [93] compared PVL-positive strains and PVL-negative
strains with similar genetic backgrounds in mouse sepsis and abscess models, as well as PVL
knockouts created for the USA300 and USA400 strains. There was no difference in survival
in the mouse sepsis model. In the abscess model, PVL-negative strains unexpectedly caused
slightly larger abscesses than did the PVL-positive strains. Isogenic pvl strains of USA300 and
USA400 showed no difference in the ability to cause polymorphonuclear lysis in vitro. The
authors concluded that the PVL “...toxin is not the major determinant of disease caused by
these prominent CA-MRSA strains” [93, p. 1769]. It is possible that the mouse models used
in this study were not optimal to assess the in vivo effects of PVL, or, as the authors suggested,
that PVL either is a marker for other virulence factors present in these strains or is one of many
factors causing the enhanced virulence of particular CA-MRSA strains.

PVL was investigated in a mouse pneumonia model by Labandeira-Rey et al. [94]. Mice were
infected with isogenic PVL-positive and PVL-negative (non–CA-MRSA) strains. PVL-
positive strains caused necrotizing pneumonia similar to that seen in humans, whereas PVL-
negative strains showed only some leukocytic invasion. When PVL-negative mutants were
complemented with plasmids containing the PVL operon, massive tissue damage and mortality
resulted. In mice, exposure to LukS-PV and LukF-PV toxin was sufficient to cause lung
damage, weight loss, and increased mortality in a concentration-dependent fashion [94]. In
these studies, however, a single non–CA-MRSA strain was used.

In contrast, Bubeck Wardenburg et al. [95] recently reported conflicting results. They
demonstrated that α-hemolysin and not PVL was responsible for mortality in a mouse
pneumonia model, using USA300 and USA400 CA-MRSA strains.

These studies suggest that the association of PVL with enhanced S. aureus virulence is complex
and controversial and warrants further investigation. Furthermore, Wang et al. [20] recently
discovered that phenol-soluble modulins, a previously unrecognized class of secreted S.
aureus peptides, are up-regulated in CA-MRSA strains, compared with the level in HAMRSA
strains; cause inflammation; destroy neutrophils; and are responsible for virulence in mouse
abscess and bacteremia models. Other toxins, such as the enterotoxins, may also play an
important role in these infections.
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Virulence of USA400
USA400 (or MW2) is a highly virulent CA-MRSA strain. This is apparent not only in human
disease but also in animal models [27,93]. Initially, its only resistance genes were mec and
blaZ, which encodes penicillinase. Researchers sequenced USA400 and compared its sequence
with the sequences of 5 other strains (N315, a Japanese MRSA; Mu50, a vancomycin-resistant
MRSA; E-MRSA-16, an epidemic MRSA in the United Kingdom; COL, a MRSA strain; and
NCTC8325, a widely used reference strain) to identify potential virulence factors associated
with this strain. USA400 was the only strain to contain the PVL operon. In addition, it contained
16 unique superantigen genes, including 11 exotoxin genes and 5 enterotoxin genes. These
genes had at least a 2% difference in their amino acids, compared with their homologues. One
exception was staphylococcal enterotoxin H (seh), which was unique to USA400 [27] and can
cause a toxic-shock–like syndrome [96]. USA400 also contained a novel gene cluster dubbed
“bacteriocin of S. aureus” (bsa). bsa encodes a potential bacteriocin, or antibacterial agent.
This bacteriocin could help USA400 compete with other colonizing flora and increase the
chance of infection with this strain [27]. These data suggest that there are several factors that
may contribute to the virulence of USA400 and that these factors are ripe for future
investigation.

Virulence of USA300
Like USA400, USA300 is associated with virulent disease [93]; however, USA300 causes far
more incident cases of CA-MRSA infection and is becoming resistant to several non–β-lactam
antibiotics [28]. The genome of USA300 was sequenced by Diep et al. [28] and compared with
10 previously sequenced S. aureus strains as well as 4 coagulase-negative strains to identify
factors potentially associated with its high virulence. Of interest, there were minimal
differences between the core sequences of USA300 and COL, an early MRSA. In addition to
harboring SCCmecIV and the PVL operon, USA300 contained homologues closely related to
staphylococcal enterotoxins Q and K, designated SEQ2 and SEK2. Like COL and USA400,
USA300 also has a genome that includes a bacteriocin gene cluster. Most notably, USA300
contains a genomic island, termed “arginine catabolic mobile element” (ACME), which
encodes an arginine deaminase pathway that converts L-arginine to carbon dioxide, adenosine
triphosphate, and ammonia. Arginine deaminase, a known virulence factor in other pathogens,
may enhance the virulence of USA300 by enabling it to (1) survive more easily on acidic,
human skin; (2) proliferate more easily in conditions low in oxygen, such as abscesses; and
(3) evade host defenses by inhibiting production of nitric oxide and mononuclear cell
proliferation as in Streptococcus pyogenes [28,97]. Further investigation of ACME may help
elucidate the remarkable success and virulence of the USA300 strain.

Colonization and CA-MRSA
As discussed above, the anterior nares are the classic reservoir for nosocomial S. aureus
infections, including HA-MRSA. However, data suggest that other sites of colonization or
modes of transmission play an important and underappreciated role in the development of CA-
MRSA infection. Heterosexual contact was recently identified as a mode of transmission of
CA-MRSA. Most cases had genital CA-MRSA colonization without nasal colonization [98].
In an outbreak investigation of CA-MRSA abscesses among St. Louis Rams football players,
no MRSA was isolated from nasal or environmental samples. Perhaps other sites of
colonization, shared items, or an unsampled environmental site played a role in transmission
[64]. Future epidemiological investigations of CA-MRSA should include sampling of several
environmental and body sites in addition to the anterior nares.
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IS MRSA MORE VIRULENT THAN MSSA?
There is an active debate as to whether MRSA is more virulent than MSSA. Some
epidemiologic studies, including a meta-analysis, found increased morbidity and/or mortality
from nosocomial MRSA (e.g., bloodstream infections, surgical-site infections, and
pneumonia), compared with those from MSSA [99–102]; however, these studies may be
confounded because not all accounted for important factors such as time to initiation of
appropriate therapy or patient comorbidities. A recent retrospective review found increased
mortality for MRSA bacteremia but not MRSA pneumonia [103]. Other studies did not
demonstrate increased mortality associated with nosocomial MRSA bacteremia [104] or
ventilator-associated pneumonia [105], compared with MSSA infections. An investigation that
compared CA-MRSA skin infections and CA-MSSA skin infections did not find more serious
outcomes for the CA-MRSA infections [106]. To date, there is no compelling evidence that
MRSA, in general, is more virulent than MSSA. Although this issue remains unresolved,
invasive MRSA infection is associated with greater costs [101,102,104] and limited treatment
options.

UNANSWERED QUESTIONS
Although considerable progress has been made in understanding the pathogenesis of S.
aureus infection, numerous questions remain unanswered. The role of many virulence factors
in the pathogenesis of staphylococcal disease is unclear. This is a result, in part, of the
redundancy of function and/or the ubiquitous nature of many virulence factors in addition to
the complex nature of virulence factor regulation. In particular, the role of PVL in
staphylococcal virulence remains uncertain. Also, as discussed above, particular clonal strains
have the ability to persist for years and to establish themselves globally. Why certain clonal
types have this ability remains unknown. Other clonal types have become established among
otherwise healthy community members. Understanding what enables these strains to do this,
what their reservoirs are, and what their means of transmission are requires further
investigation. We hope that, in the future, a better understanding of the pathogenesis of
staphylococcal disease will lead to improved prevention and treatment strategies.
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Figure 1.
Pathogenic factors of Staphylococcus aureus, with structural and secreted products both
playing roles as virulence factors. A, Surface and secreted proteins. B and C, Cross-sections of
the cell envelope. TSST-1, toxic shock syndrome toxin 1. Reprinted from [32], with permission
from the Massachusetts Medical Society. Copyright 1998 Massachusetts Medical Society. All
rights reserved.
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Table 1
Selected Staphylococcus aureus virulence factors.

Type of virulence factors Selected factorsa Genes Associated clinical syndromes Reference
(s)

Involved in attachment MSCRAMMs (e.g.,
clumping factors,
fibronectin-binding
proteins, collagen, and
bone sialoprotein-binding
proteins)

clfA, clfB, fnbA,
fnbB, cna, sdr,
bbp

Endocarditis, osteomyelitis, septic
arthritis, and prosthetic-device and
catheter infections

[5-8]

Involved in persistence Biofilm accumulation
(e.g., polysaccharide
intercellular adhesion),
small-colony variants,
and intracellular
persistence

ica locus, hemB
mutation

Relapsing infections, cystic fibrosis,
and syndromes as described above for
attachment

[9-15]

Involved in evading/
destroying host defenses

Leukocidins (e.g., PVL
and γ-toxin), capsular
polysaccharides (e.g., 5
and 8), protein A, CHIPS,
Eap, and phenol-soluble
modulins

lukS-PV, lukF-
PV, hlg, cap5 and
8 gene clusters,
spa, chp, eap,
psm-α gene
cluster

Invasive skin infections and
necrotizing pneumonia (CA-MRSA
strains that cause these are often
associated with PVL) abscesses
(associated with capsular
polysaccharides)

[16-20]

Involved in tissue
invasion/penetration

Proteases, lipases,
nucleases, hyaluronate
lyase, phospholipase C,
and metalloproteases
(elastase)

V8, hysA, hla, plc,
sepA

Tissue destruction and metastatic
infections

[21]

Involved in toxin-
mediated disease and/or
sepsis

Enterotoxins, toxic shock
syndrome toxin-1,
exfoliative toxins A and
B, α-toxin,
peptidoglycan, and
lipoteichoic acid

sea-q (no sef),
tstH, eta, etb, hla

Food poisoning, toxic shock
syndrome, scalded skin syndrome,
bullous impetigo, and sepsis syndrome

[22-26]

With poorly defined role in
virulence

Coagulase, ACME, and
bacteriocin

arc cluster, opp-3
cluster, bsa

[27,28]

NOTE. ACME, arginine catabolic mobile element; CA-MRSA, community-acquired methicillin-resistant S. aureus; CHIPS, chemotaxis inhibitory protein
of staphylococci; Eap, extracellular adherence protein; MSCRAMMs, microbial surface components recognizing adhesive matrix molecules; PVL, Panton-
Valentine leukocidin. Adapted from Projan and Novick [21] and Archer [29].

a
Several factors may have >1 role in S. aureus pathogenesis.
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Table 2
Details of select important methicillin-resistant Staphylococcus aureus (MRSA) clones and their clonal complexes.

Clone namea Clonal complex Other names of cloneb

ST1-MRSA-IV 1 USA400, MW2
ST5-MRSA-I 5 UK EMRSA-3
ST5-MRSA-II 5 New York/Japanese, GISA, and USA100
ST5-MRSA-IV 5 USA800 and Pediatric
ST228-MRSA-I 5 Southern Germany
ST8-MRSA-II 8 Irish-1
ST8-MRSA-IV 8 UK EMRSA-2, -6, USA300, and USA500
ST239-MRSA-III 8 UK EMRSA-1, -4, -11, Portuguese, Brazilian, and

Viennese
ST247-MRSA-I 8 UK EMRSA-5, -17, and Iberian
ST250-MRSA-I 8 First MRSA and Archaic
ST22-MRSA-IV 22 UK EMRSA-15 and Barnim
ST36-MRSA-II 30 UK EMRSA-16 and USA200
ST30-MRSA-IV 30 Southwest Pacific
ST45-MRSA-IV 45 Berlin and USA600
ST72-MRSA-IV ... USA700

NOTE. EMRSA, epidemic MRSA; GISA, glycopeptide-intermediate S. aureus. Adapted from [51], with permission from Elsevier.

a
The clone name is comprised of the sequence type (ST), which is the multilocus sequence type based on the sequences of 7 housekeeping genes, and the

MRSA staphylococcal cassette chromosome (SCC) mec type.

b
Only select “other names” are included. Additional sources: Enright et al. [49], McDougal et al. [52], Tenover et al. [53], and Melles et al. [54].
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