Lo L

P

1\

AR AN

A remark on global positioning from local distances
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Finding the global positioning of points in Euclidean space from a
local or partial set of pairwise distances is a problem in geometry
that emerges naturally in sensor networks and NMR spectroscopy
of proteins. We observe that the eigenvectors of a certain sparse
matrix exactly match the sought coordinates. This translates to a
simple and efficient algorithm that is robust to noisy distance data.
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etermining the configuration of N points r; in R? (e.g., p =

2,3) given their noisy distance matrix §; is a long-standing
problem. For example, the points r; may represent coordinates of
cities in the United States. Distances between nearby cities, such
as New York and New Haven, are known, but no information is
given for the distance between New York and Chicago. In
general, for every city, we are given distance measurements to its
k << N nearest neighbors or to neighbors that are, at most, 6
away. The distance measurements §; of d; = [[; — r{| may also
incorporate errors. The problem is to find the unknown coor-
dinates r; = (x;;) of all cities from the noisy local distances.

Even in the absence of noise, the problem is solvable only if
there are enough distance constraints. By solvable, we mean that
there is a unique set of coordinates satisfying the given distance
constraints up to rigid transformations (rotations, translations,
and reflection). Alternatively, we say that the problem is solvable
only if the underlying graph consisting of the N cities as vertices
and the distance constraints as edges is rigid in R? (see, e.g., ref.
1). Graph rigidity had drawn a lot of attention over the years, see
(1-5) for some results in this area.

When all possible N(N — 1)/2 pairwise distances are known,
the corresponding complete graph is rigid, and the coordinates
can be computed by using a classical method known as multi-
dimensional scaling (MDS) (6-8). The underlying principle of
MDS is to use the law of cosines to convert distances into an
inner product matrix, whose eigenvectors are the sought coor-
dinates. The eigenvectors computed by MDS are also the
solution to a specific minimization problem. However, when
most of the distance matrix entries are missing, this minimization
becomes significantly more challenging because of the low
rank-p constraint that is not convex. Various solutions to this
constrained optimization problem have been proposed, includ-
ing relaxation of the rank constraint by semidefinite program-
ming (SDP) (9), regularization (10, 11), smart initialization (12),
expectation maximization (13), and other relaxation schemes
(14). Recently, the eigenvectors of the graph Laplacian (15) were
used to approximate the large scale SDP problem by a much
smaller one, noting that linear combinations of only a few
Laplacian eigenvectors can well approximate the coordinates.

The problem of finding the global coordinates from noisy local
distances arises naturally in localization of sensor networks
(16-18) and protein structuring from NMR spectroscopy (19,
20), where noisy measurements of neighboring hydrogen atoms
are inferred from the nuclear Overhauser effect (NOE). The
theory and practice involves many different areas, such as
machine learning (15), optimization techniques (14) and rigidity
theory (1,4, 5, 17, 21, 22). We find it practically impossible to give
a fair account of all of the relevant literature and recommend the
interested reader to see the references within those listed.
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In this article, we describe locally rigid embedding (LRE), a
simple and efficient algorithm to find the global configuration
from locally noisy distances, under the simplifying assumption of
local rigidity. We assume that every city, together with its
neighboring cities, forms a rigid subgraph that can be embedded
uniquely (up to a rigid transformation). That is, there are enough
distance constraints among the neighboring cities that make the
local structure rigid. The “pebble game” (23) is a fast algorithm
to determine graph rigidity. Thus, given a dataset of distances,
the local rigidity assumption can be tested quickly by applying the
pebble game algorithm N times, once for each city. In Summary,
we discuss the restrictiveness of the local rigidity assumption (see
refs. 17, 21, 22 for conditions that ensure rigidity) as well as
possible variants of LRE when the assumption does not hold.

The essence of LRE follows the observation that one can
construct an N X N sparse weight matrix I that has the property
that the coordinate vectors are an eigenspace. The matrix is
constructed in linear time complexity and has only O(N) nonzero
elements, which enables efficient computation of that small
eigenspace. The matrix W is formed by preprocessing the local
distance information to repeatedly embed each city and its
neighboring points (e.g., by using MDS or SDP), which is
possible by the assumption that every local neighborhood is rigid.
Once the local coordinates are obtained, we calculate weights
much like the locally linear embedding (LLE) recipe (24) and its
multiple weights (MLLE) modification (25). Similar to recent
dimensionality reduction methods (24, 26-28), the motif “think
globally, fit locally” (29) is repeated here. This is just another
example for the usefulness of eigenfunctions of operators on
datasets and their ability to integrate local information to a
consistent global solution. In contrast to propagation algorithms
that start with some local embedding and incrementally embed
additional points while accumulating errors, the global eigen-
vector computation of LRE takes into account all local infor-
mation at once, which makes it robust to noise.

Locally Rigid Embedding

We start by embedding points locally. For every point r; (i =
1,..., N) we examine its k; neighbors r; , r;,, . . ., ri, for which we
have distance information. We find a p-dimensional embedding
of those k; + 1 points. If the local (k; + 1) X (k; + 1) distance
matrix is fully known, then this embedding can be obtained by
using MDS. If some local distances are missing, then the
embedding can be found by using SDP or other optimization
methods. The assumption of local rigidity ensures that in the
noise-free case, such an embedding is unique up to a rigid
transformation. Note that the neighbors are not required to be
physically close but can, rather, be any collection of k; points that
the distance constraints among them make them rigid. This
locally rigid embedding gives local coordinates for r;, ri,, . .., r;,
up to translation, rotation, and, perhaps, reflection. We define
k; weights W;; that satisfy the following p + 1 linear constraints
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The vector equation (Eq. 1) means that the point 7; is the center
of mass of its k; neighbors, and the scalar equation (Eq. 2) means
that the weights sums up to 1. Together, the weights are invariant
to rigid transformations (translation, rotation, and reflection) of
the locally embedded points. It is possible to find such weights
if k; = p + 1. In fact, for k; > p + 1, there is an infinite number
of ways in which the weights can be chosen. In practice, we
choose the least-square solution, i.e., that with minX;Z 1W,-%,-/.. This
prevents certain weights from becoming too large and keeps the
weights balanced in magnitude. We rewrite Eqs. 1 and 2 in matrix
notation as

Riwi = b,

whereb = (0,...,0, )T €RPLw; = (Wi, Wii, - . ., Wi, )T, and

R;is a (p + 1) X k; matrix, whose first p rows are the relative
coordinates, and the last row is the all ones vector
x,«l—x,- x,»z—x,« P ¢

R, = Yi, = Yi Vi, 7 )i

i, — Xi

Vi, = Vi
1 1 o 1

It can be easily verified that the least-squares solution is
w; = R/ (RR])"'b.

Note that some of the weights may be negative. In fact, negative
weights are unavoidable for points on the boundary of the convex
hull of the set.

The computed weights W;; (j = 1, ..., k;) are assigned to the
ith row of W, whereas all other N — k; row entries, including the
diagonal element W, are set to zero. This procedure of locally
rigid embedding is repeated for everyi = 1,..., N, each time
filling another row of the weight matrix W. Therefore, it takes
O(N) operations to complete the construction of the weight
matrix W, which ends up being a sparse matrix with XN nonzero
elements, where k = 1/N3Y| k; is the average degree of the
graph (i.e., the average number of neighbors). Both the least-
squares solution and the local embedding (MDS or SDP) are
polynomial in k;, so repeating them N times is also O(N).

Next, we examine the spectrum of . Observe that the all ones
vector 1 = (1, 1,..., 1)7 satisfies

w1=1 [3]

because of Eq. 2. That is, 1 is an eigenvector of W with an
eigenvalue A = 1. We will refer to 1 as the trivial eigenvector. If
the locally rigid embeddings were free of any error (up to
rotations and reflections), then the p coordinate vectors x =
e, %2 - - x50y = GLYy2, - -, yn)T, - . . are also eigenvectors
of W with the same eigenvalue A = 1

Wx=x, Wy=y, [4]

This follows immediately from Eq. 1 by reading it one coordinate
at a time,

N N
Z Wix; = x;, 2 Wiy = yis

j=1 j=1
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Thus, the eigenvectors of W corresponding to A = 1 give the
sought coordinates, e.g., (x;, y;) for p = 2. It is remarkable that
the eigenvectors give the global coordinates x and y despite the
fact that different points have different local coordinate sets that
are arbitrarily rotated, translated, and, perhaps, reflected with
respect to one another.

Note that Wis not symmetric, so its spectrum may be complex.
Although every row of W sums up to 1, this does not prevent the
possibility of eigenvalues N> 1, because W is not stochastic,
having negative entries. Therefore, we compute the eigenvectors
with eigenvalues closest to 1 in the complex plane.

A symmetric weight matrix S with spectral properties similar
to W can be constructed with the same effort (per D. A.
Spielman, private communication). For each point 7, compute
an orthonormal basis W, 1, . . ., Wix,_, € Rk+1 for the nullspace
of the (p + 1) X (k; + 1) matrix R;

X, Xip Xi, Xiy,
e R g
I TR
In other words, we find w;; that satisfy
Rw,;=0, j=1,....k—p,

and

- - _ T 1=

<Wi,j1, Wi,jz> = {0 j1#Jj»
The symmetric product S; = Ej’-":’f Wi’jwi’{} of the nullspace with
itselfis a (k; + 1) X (k; + 1) positive semidefinite (PSD) matrix.
We sum the N PSD matrices S; i = 1, ..., N) to form an N X

N PSD S by updating for each i only the corresponding (k; + 1) X
(ki + 1) block of the large matrix

§=2 2wl [61

where w;; € RV is obtained from w;; by padding it with zeros.
Similar to the nonsymmetric case, it can be verified that the p +
1 vectors 1, x, y, . . . belong to the nullspace of S

S$1=0, Sx =0, Sy =0.

In fact, because the global graph of N points is rigid, any vector
in the nullspace of S is a linear combination of those p + 1 vectors
(the previous construction of W may not enjoy this nice property,
i.e., it is possible to create examples for which the dimension of
the eigenspace of Wis greater than p + 1). In rigidity theory, we
would call S a stress of the framework (1).

From the computational point of view, we remark that, if
needed, the eigenvector computation can be done in parallel. To
multiply a given vector by the weight matrix W (or §), the storage
of W (S) is distributed between the N points, such that the ith
point stores only &; values of W (S) together with k; values of the
given vector that correspond to the neighbors.

Multiplicity and Noise

The eigenvalue A = 1 of W (or 0 for S) is degenerate with
multiplicity p + 1. Hence, the corresponding p + 1 computed

eigenvectors ¢%,¢',. .. ,¢? may be any linear combination of 1,
X,y,.... We may assume that ¢° = 1 and that (¢/, 1) = 0 for
j=1,...,p. We now look for a p X p matrix A that represents

the linear transformation from the original coordinate set r; =
(%Y ... ) to the eigenmap ¢ = (db'yd%,...)
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US Cities

Fig. 1.

Locally Rigid Embedding: no noise
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Locally rigid embedding of US cities. (Upper Left) Map of 1,097 cities in the United States. (Upper Right) The locally rigid embedding obtained from

clean local distances. (Lower Left) LRE with 1% noise. (Lower Right) LRE with 10% noise. Cities are colored by their x coordinate.

ri:Ad)i’ fori=1,...,N.

The squared distance between r; and 7; is
dizj = H”i - "j”2 = (¢; — d)j)TATA(Cf)i - d);) [7]

Every pair of points for which the distance d;; is known gives a
linear equation for the coefficients of the matrix A” 4. Solving
that equation set results in A7 4, whose Cholesky decomposition
yields A (up to an orthogonal transformation).

The locally rigid embedding incorporates errors when the
distances are noisy. The noise breaks the degeneracy and splits
the eigenvalues. If the noise level is small, then we still expect the
first p nontrivial eigenvectors to match the original coordinates,
because the small noise does not overcome the spectral gap

min|1 — A/,
Ai#1

where A; are the eigenvalues of the noiseless W. For higher levels
of noise, the noise may be large enough so that some of the first
p eigenvalues cross the spectral gap, causing the coordinate
vectors to spill over the remaining eigenvectors.

Singer

To overcome this problem, we allow A to be p X m instead of
p X p, with m > p, but still m << N. In other words, every
coordinate is approximated as a linear combination of the m
nontrivial eigenvectors ¢!, ..., ¢, whose eigenvalues are the
closest to 1. We replace Eq. 7 by a minimization problem for the
m X m PSD matrix P = AT A

min ), [(d; — ¢)"P($; — &) — A2, [8]

i~j

where the sum is over all pairs i =~ j for which there exists a
distance measurement A;. The least-squares solution for P is
often not valid, when it ends up not being a PSD matrix or when
its rank is >p. It was shown in ref. 15 that the optimization
problem (Eq. 8) with the PSD constraint P > 0 can be formulated
as SDP by using the Schur complement lemma. The matrix A4 is
reconstructed from the singular vectors of P corresponding to
the largest p singular values.

Numerical Results

We consider a dataset of n = 1,097 cities in the United States,
see Fig. 1 (Upper Left). For each city, we have distance mea-
surements to its 18 nearest cities (k; = k = 18). For simplicity,
we assume that the (}) distances between the neighboring cities

PNAS | July 15,2008 | vol. 105 | no.28 | 9509

APPLIED
MATHEMATICS



Lo L

P

2N

0.015 0.015 0.03
0.01 1 0.01f 0.02 [
0.005 1 0.005¢ 0.01
0 0 0

E—— |
01234567829

01234567829

0123456789

Fig. 2. Numerical spectrum of W for different levels of noise: Clean distances (Left), 1% noise (Center), and 10% noise (Right).

are also collected, so that MDS is used to locally embed the
neighboring cities. We tested the locally rigid embedding algo-
rithm for three different levels of multiplicative Gaussian noise:
no noise, 1% noise, and 10% noise. That is, A; = d;[1 + N(0,8%)],
with 8 = 0,0.01,0.1. We used SeDuMi (30) for solving the SDP
(Eq. 8).

The behavior of the numerical spectrum for the different noise
levels is illustrated in Fig. 2, where the magnitude of 1 — A; for
the 10 eigenvalues that are closest to 1 is plotted. It is apparent
in the noiseless case that A = 1 is degenerated with multiplicity
3 corresponding to 1, x, y. Note that the spectral gap is quite
small. The LRE finds the exact configuration without introduc-
ing any errors as can be seen in Fig. 1 (Upper Right).

Adding 1% noise breaks the degeneracy and splits the eigenval-
ues, and because of the small spectral gap, the coordinates spill over
the fourth eigenvector. Therefore, for that noise level, we solved the
minimization problem (Eq. 8) with P being a 3 X 3 matrix (m = 3).
The largest singular values of Pwere 101.7,42.5, and 0.13, indicating
a successful two-dimensional embedding.

When the noise is increased more, the spectrum changes even
further. We used m = 7 for the noise level of 10%. The largest
singular values of the optimal P were 76.6, 8.3, 2.0, and 0.002,
which implies that the added noise effectively increased the
dimension of points from two to three. The LRE distorts
boundary points but does a good job in the interior.

Algorithm

In this section, we summarize the various steps of LRE that
should be taken to find the global coordinates from a dataset of
vertices and distances by using the symmetric matrix S.

1. Input: A weighted graph G = (V, E, A), §; is the measured
distance between vertices i and j, and /U= N is the number
of vertices. G is assumed to be locally rigid.

2. Allocate memory for a sparse N X N matrix S.

3. Fori =1to N
(a) Set k; to be the degree of vertex i.

(b) i1, ..., i are the neighbors of i: (i, j;) EEforj =1,...,

(c) Use SDP or MDS to find an embedding ;, 7, ..., r; of

Ll eeny e

(d) Form the (p + 1) X (k; + 1) matrix R; following Eq. 5.

(e) Compute an orthogonal basis Wiy, ..., Wix—p, for the
nullspace of R;.

(f) Update S < S + Efgf’w,-,.,wfj. (W;,; are obtained from w;;
by zero padding.).

I,

4. Compute m + 1 eigenvectors of S with eigenvalues closest to
0: ¢o, b1, . .., b, Where &y is the all-ones vector.

5. Use SDP as in Eq. 8 to find coordinate vectors x, . .
linear combinations of ¢, ..., ¢p.

., Xpas
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Summary and Discussion

We presented an observation that leads to a simple algorithm for
finding the global configuration of points from their local noisy
distances under the assumption of local rigidity. The LRE
algorithm that uses the matrix W is similar to the LLE algorithm
(24) for dimensionality reduction. The input to LLE are high-
dimensional data points for which LLE constructs the weight
matrix W by repeatedly solving overdetermined linear equation
systems. In the global positioning problem the input is not high-
dimensional data points, but rather distance constraints that we
preprocess (using MDS or SDP) to get a locally rigid low-
dimensional embedding. Therefore, the weights are obtained by
solving an underdetermined system (Eqs. 1-2) instead of an over-
determined system. The LRE variant that uses the symmetric
matrix S is similar to the MLLE algorithm (25) in the sense that
it uses more than a single weight vector, taking all basis vectors
of the nullspace into account in the construction of S.

The assumption of local rigidity of the input graph is crucial
for the algorithm to succeed. It is reasonable to ask whether or
not this assumption holds in practice and how the algorithm can
be modified to prevail even if the assumption fails to hold. These
are important research questions that remain to be addressed.
Even if a few vertices have corresponding subgraphs that are not
rigid (nonlocalizable), so their weights are not included in the
construction of the stress matrix S, the matrix S may still have a
nullspace of dimension three. This can happen if the nonlocalizable
vertices have enough localizable neighbors. Still, the algorithm fails
when there are too many nonlocalizable vertices. For such nonlo-
calizable vertices, one possible approach is to consider larger
subgraphs, such as the one containing all two-hop neighbors (the
neighbors of the neighbors), hoping that the larger subgraph would
be rigid. A different approach may be to consider smaller sub-
graphs, hoping that the removal of some neighbors would make the
subgraph rigid. This is obviously possible if the vertex is included in
a triangle (or some other small simple rigid subgraph) but at risk
that the small subgraph would be too small to be rigidly connected
to the remaining graph. It is not clear which approach would work
better and requires numerical experiments. However, this is beyond
the scope of the current article. There are many other interesting
questions that follow from both the theoretical and algorithmic
aspects, such as proving error bounds, finding other suitable
operators for curves and surfaces, and dealing with specific con-
straints that arise from real-life datasets.
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