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Abstract
Sequencing of multiple related species followed by comparative genomics analysis constitutes a
powerful approach for the systematic understanding of any genome. Here, we use the genomes of
12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of
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functional element shows characteristic patterns of change, or ‘evolutionary signatures’, dictated by
its precise selective constraints. Such signatures enable recognition of new protein-coding genes and
exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including
abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and
structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and
functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and
post-transcriptional regulatory motifs, and predict individual motif instances with high confidence.
We also study how discovery power scales with the divergence and number of species compared,
and we provide general guidelines for comparative studies.

The sequencing of the human genome and the genomes of dozens of other metazoan species
has intensified the need for systematic methods to extract biological information directly from
DNA sequence. Comparative genomics has emerged as a powerful methodology for this
endeavour1,2. Comparison of few (two–four) closely related genomes has proven successful
for the discovery of protein-coding genes3–5, RNA genes6,7, miRNA genes8–11 and
catalogues of regulatory elements3,4,12–14. The resolution and discovery power of these
studies should increase with the number of genomes15–20, in principle enabling the systematic
discovery of all conserved functional elements.

The fruitfly Drosophila melanogaster is an ideal system for developing and evaluating
comparative genomics methodologies. Over the past century, Drosophila has been a pioneering
model in which many of the basic principles governing animal development and population
biology were established21. In the past decade, the genome sequence of D. melanogaster
provided one of the first systematic views of a metazoan genome22, and the ongoing effort by
the FlyBase and Berkeley Drosophila Genome Project (BDGP) groups established a systematic
high-quality genome annotation23–25. Moreover, the fruit-fly benefits from extensive
experimental resources26–28, which enable novel functional elements to be systematically
tested and used in the evaluation of genetic screens29,30.

The fly research community has sequenced, assembled and annotated the genomes of 12
Drosophila species22,31,32 at a range of evolutionary distances from D. melanogaster (Fig.
1a, b). The analysis of these genomes was organized around two complementary aims. The
first, described in an accompanying paper32, was to understand the evolution of genes and
chromosomes on the Drosophila phylogeny, and how it relates to speciation and adaptation.
The second goal, described here, was to develop general comparative methodologies to
discover and refine functional elements in D. melanogaster using the 12 genomes, and to
investigate the scaling of discovery power and its implications for studies in vertebrates (Fig.
1c).

Here, we report genome-wide alignments of the 12 species (Supplementary Information 1),
and the systematic discovery of euchromatic functional elements in the D. melanogaster
genome. We predict and refine thousands of protein-coding exons, RNA genes and structures,
miRNAs, pre- and post-transcriptional regulatory motifs and regulatory targets. We validate
many of these elements using complementary DNA (cDNA) sequencing, human curation,
small RNA sequencing, and correlation with experimentally supported transcription factor and
miRNA targets. In addition, our analysis leads to several specific biological findings, listed
below.

• We predict 123 novel polycistronic transcripts, 149 genes with apparent stop-codon
readthrough and several candidate programmed frameshifts, with potential roles in
regulation, localization and function of the corresponding protein products.
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• We make available the first systematic prediction of general RNA genes and structures
(non-coding RNAs (ncRNAs)) in Drosophila, including several structures probably
involved in translational regulation and adenosine-to-inosine RNA editing (A-to-I
editing).

• We present comparative and experimental evidence that some miRNA loci yield
multiple functional products, from both hairpin arms or from both DNA strands,
thereby increasing the versatility and complexity of miRNA-mediated regulation.

• We provide further comparative evidence for miRNA targeting in protein-coding
exons.

• We report an initial network of pre- and post-transcriptional regulatory targets in
Drosophila on the basis of individual high-confidence motif occurrences.

Comparative genomics and evolutionary signatures
Although multiple closely related genomes provide sufficient neutral divergence for
recognition of functional regions in stretches of highly conserved nucleotides16,17,33,
measures of nucleotide conservation alone do not distinguish between different types of
functional elements. Moreover, functional elements that tolerate abundant ‘silent’ mutations,
such as protein-coding exons and many regulatory motifs, might not be detected when
searching on the basis of strong nucleotide conservation.

Across many genomes spanning larger evolutionary distances, the information in the patterns
of sequence change reveals evolutionary signatures (Fig. 2) that can be used for systematic
genome annotation. Protein-coding regions show highly constrained codon substitution
frequencies34 and insertions and deletions that are heavily biased to be multiples of three3
(Fig. 2a). RNA genes and structures tolerate substitutions that preserve base pairing35,36 (Fig.
2b). MicroRNA hairpins show a characteristic conservation profile with high conservation in
the stem and mutations in loop regions10,11 (Fig. 2c). Finally, regulatory motifs are marked
by high levels of genome-wide conservation3,4,12–14, and post-transcriptional motifs show
strand-biased conservation12 (Fig. 2d, e).

We find that these signatures can be much more precise for genome annotation than the overall
level of nucleotide conservation (for example, Fig. 3a).

Revisiting the protein-coding gene catalogue
The annotation of protein-coding genes remains difficult in metazoan genomes owing to short
exons and complex gene structures with abundant alternative splicing. Comparative
information has improved computational gene predictors5, but their accuracy still falls far short
of well-studied gene catalogues such as the FlyBase annotation, which combines computational
gene prediction37, high-throughput experimental data38–42 and extensive manual
curation23. Recognizing this, we set out not only to produce an independent computational
annotation of protein-coding genes in the fly genome, but also to assess and refine its already
high-quality annotations43.

Our analyses of D. melanogaster coding genes are based on two independent evolutionary
signatures unique to protein-coding regions (Fig. 2a): (1) reading frame conservation (RFC)
3, which observes the tendency of nucleotide insertions and deletions to preserve the codon
reading frame; and (2) codon substitution frequencies (CSF, see Supplementary Methods 2a),
which observes mutational biases towards synonymous codon substitutions and conservative
amino acid changes, similar to the non-synonymous/synonymous substitution ratio KA/KS

34
and other methods44–46.

Stark et al. Page 4

Nature. Author manuscript; available in PMC 2008 November 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Assessing and refining existing gene annotations
We first assessed the 13,733 euchromatic genes in FlyBase47 release 4.3. Using the above
measures, we defined tests that ‘confirmed’ genes supported by the evolutionary evidence,
‘rejected’ genes inconsistent with protein-coding selection, or ‘abstained’ for genes that were
not aligned or with ambiguous comparative evidence (Supplementary Methods 2a). Of the
4,711 genes with descriptive names, we confirmed 97%, rejected 1% and abstained for 2%,
whereas the same criteria applied to 15,000 random non-coding regions ≥300 nucleotides
rejected 99% of candidates and confirmed virtually none (Table 1). Together, these results
illustrate the high sensitivity and specificity of our criteria.

Applying the same criteria to the 9,022 genes lacking a descriptive name (genes designated
only by a CG identifier, referred to hereafter as CGid-only genes), our tests accepted 87%,
rejected 5% (414 genes) and abstained for 8%. This provides strong evidence that most CGid-
only genes encode proteins, but also suggests that they may be less constrained20,32 and/or
may include incorrect annotations. Indeed, on manual review, 222 (54%) of the 414 rejected
CGid-only genes were re-categorized as non-protein-coding or deleted (of which 55 were due
to genomically primed clones), 73 (18%) were flagged as being of uncertain quality, and the
remaining 119 (29%) were kept unchanged (Fig. 3b). Some of these are probably rapidly
evolving protein-coding genes, but others may also prove to be non-protein-coding genes or
spurious; in fact, none of these had any functional gene ontology (GO) annotation48.

In addition, we proposed specific corrections and adjustments to hundreds of existing transcript
models, including translation start site adjustments (Supplementary Fig. 2b), alternative splice
boundaries (Supplementary Fig. 2b), recent nonsense mutations (Supplementary Fig. 2c) and
alternative translational reading frames43.

Identifying new genes and exons
To predict new protein-coding exons, we integrated our metrics into a probabilistic algorithm
that determines an optimal segmentation of the genome into protein-coding and non-coding
regions (Fig. 3a) on the basis of whole-genome sequence alignments of the 12 fly species
(Supplementary Methods 2a). Our genome-wide search predicted 1,193 new protein-coding
exons, mostly in euchromatic regions annotated as intergenic (43%), intronic (26%), or 5′/3′
untranslated region (UTR; 23%) in FlyBase annotation release 4.3.

We manually reviewed 928 of these predictions according to FlyBase standards23
(Supplementary Methods 2a), leading to 142 new gene models (incorporating 192 predictions)
and 438 revised gene models (incorporating 562 predictions) (Fig. 3b). In parallel, we tested
184 predictions (126 intergenic, 58 intronic) by directed cDNA sequencing using inverse
polymerase chain reaction (inverse PCR) of circularized full-length clones49–51 (Fig. 3c),
which validated 120 targeted predictions (65%) and an additional 42 predictions not directly
targeted but contained within the recovered transcripts. Predictions in intergenic regions
yielded 88 full-length cDNAs, providing evidence for 50 new genes and modification of 39
gene models. Predictions within introns of existing annotations yielded 32 full-length cDNAs,
of which only 18 (56%) represent new splice variants of the surrounding gene, whereas the
remaining 14 revealed nested or interleaved gene structures. This provides additional evidence
that such complex gene structures are not rare in Drosophila23.

Overall, 83% of the 948 predicted exons that we assessed by manual curation or cDNA
sequencing were incorporated into FlyBase, resulting in 150 new genes and modifications to
hundreds of existing gene models. Finally, the 245 predictions that we did not assess were in
non-coding regions of existing transcript models, or were already included in FlyBase
independent of our study. In an independent analysis52, we predicted 98 new genes on the
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basis of inferred homology to predicted genes in the informant species32, of which 63%
matched the above predictions.

Discovering unusual features of protein-coding genes
Our analysis also predicted an abundance of unusual protein-coding genes that call for follow-
up experimental investigation. First, we found open reading frames with clear protein-coding
signatures and conserved start and stop sites on the transcribed strand of annotated UTRs,
indicative of polycistronic transcripts23,53,54. These include 73% of 115 annotated dicistronic
transcripts and 135 new candidate cistrons of 123 genes (Supplementary Fig. 2b).

Second, we predicted that 149 genes undergo stop codon readthrough, with protein-coding
selection continuing past a deeply conserved stop codon (Fig. 3d), in some cases for hundreds
of amino acids. It is unlikely that these genes are selenoproteins, as they appear to lack SECIS
elements that direct selenocysteine recoding55–58. Other mechanisms may instead be at work,
such as regulation of ribosomal release factors59, A-to-I editing39,60,61, alternative splicing,
or other less-characterized mechanisms62. In fact, these genes are significantly enriched in
neuronal proteins (P =10−4), which frequently undergo A-to-I editing63.

Third, we found four genes in which CSF signatures abruptly shift from one reading frame to
another in the absence of nearby intron–exon boundaries or insertions and deletions (Fig. 3e).
These are suggestive of conserved ‘programmed’ frameshifts64, which are thought to be rare
in eukaryotes.

Overall, our results affected over 10% of protein-coding genes, and will be available in future
releases of FlyBase. They also suggest that several types of unusual protein-coding gene
structure may be more prevalent in the fly than previously appreciated.

RNA genes and structures
Several comparative approaches to RNA gene identification have been developed6,7,65 that
recognize their characteristic properties: compensatory double substitutions of paired
nucleotides (for example, A•U↔C•G), structure-preserving single-nucleotide mutations
involving G•U base pairs (G•U↔G•C and G•U↔A•U), and few nucleotide substitutions
disrupting functional base pairs (Fig. 2b). To predict new structures, we applied EvoFold7 in
highly conserved segments of the 12 Drosophila species and focused on high-stringency
candidates with strong support by compensatory changes (Supplementary Methods 4).

Our search led to 394 predictions, recovering 68 known RNA structures (primarily transfer
RNA genes) in 0.02% of the genome (570-fold enrichment). The novel candidates consisted
of 177 structures in intergenic regions (54%), 103 in introns (32%), 36 in 3′ UTRs (11%) and
10 in 5′ UTRs (3%). In addition, we predicted 200 structures in protein-coding regions
(Supplementary Methods 3). Notably, 75% of 3′ UTR structures and 80% of 5′ UTR structures
were predicted on the transcribed strand, suggesting that they are frequently part of the
messenger RNA. In contrast, only 47% of intronic structures are on the transcribed strand,
suggesting that they are largely independent of the surrounding genes.

Known and novel types of RNA genes
Of the 177 predicted intergenic structures, 30 were detected in a tiling-array expression
study42. This fraction (17%) is significantly above that for all conserved intergenic regions
(12%, P =0.007), but lower than that of known intergenic ncRNAs (21%), suggesting that these
candidates may be of lower abundance, temporally or spatially constrained, or might include
false positives. Two predictions were expressed throughout development, one extending the
annotation of a previously reported but uncharacterized ncRNA66 and the other probably
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representing a novel type of ncRNA. The predictions also included nine novel H/ACA-box
small nucleolar RNA candidates in introns of ribosomal genes, known to frequently contain
small nucleolar RNAs that guide post-transcriptional base modifications of ncRNAs67.

Likely A-to-I editing structures
Many of the 48 intronic candidates on the transcribed strand and many of the 200 hairpins in
coding sequence are probably involved in A-to-I editing or post-transcriptional regulation (Fig.
4a). Hairpins in coding sequence were associated with 11 of the 157 known editing sites (120-
fold enrichment) and both intronic and coding-sequence hairpins showed a strong enrichment
for ion-channel genes (6%, P =0.007 and 10%, P =2×10−12, respectively), known to be frequent
editing targets. Editing is known to occur at multiple sites in the same gene63, and we find an
additional 10 hairpins in known editing targets, as well as 40 additional hairpins clustered in
18 genes not previously known to be edited (for example huntingtin68, which harbours four
predicted hairpins, more than any other gene). Intronic predictions also showed the highest
abundance of compensatory substitutions: for example, Resistant to dieldrin (Fig. 2b)
contained a 26-base-pair (bp) intronic hairpin flanked by exons known to be edited69 with a
striking 16 compensatory changes, lodestar showed one hairpin with 11 compensatory
changes, and Inverted repeat-binding protein showed one hairpin with 10 compensatory
substitutions (Fig. 4b).

Likely regulatory UTR structures
We predicted 38 structures in 3′ UTRs, a density twofold higher than the genomic average,
whereas fewer than 10 such examples are currently known70. A considerable fraction of these
lies in regulatory genes (14 out of 38; P =10−4), including several transcriptional regulators
(for example, cas, spen and Alh), the tyrosine phosphatase PTP-ER and the translation initiation
factor eIF3-S8. This suggests that many regulatory genes may themselves be regulated post-
transcriptionally through these structures.

3′ UTR structures were also enriched for genes involved in mRNA localization (3 out of 38,
P =2.7 ×10−4), including oo18 RNA-binding protein (orb) and staufen (stau), both of which
contain double-stranded RNA-binding domains, are involved in axis specification during
oogenesis, and interact with the mRNA of maternal effect protein oskar. The hairpin in orb is
known to be important for mRNA transport and localization71, whereas the highly similar
stau hairpin has not been previously described to our knowledge.

The ten structures found in 5′ UTRs probably contain binding sites for factors that regulate
translation. For example, the fly homologue of yeast ribosomal protein RPL24 contains a
hairpin structure overlapping its start codon (Fig. 4c). This is interesting in light of high
conservation upstream of the start codon in yeast ribosomal proteins3,4, and findings that
ribosomal proteins bind to their mRNAs and control translation in prokaryotes72,73.

Conserved RNA structures in roX2 recruit MSL
In an independent study74, we searched for conserved regions in the non-coding roX1 and
roX2 (RNA on the X) genes to gain insights into their function. Both RNAs are components of
the MSL (Male-specific lethal) complex and are crucial for dosage compensation in male flies,
inducing lysine 16 acetylation of histone H4, leading to upregulation of hundreds of genes on
the X chromosome75. We identified several stem-loop structures with repeated sequence
motifs (for example, GUUNUACG), and found that tandem repeats of one of these were
sufficient to recruit MSL complexes to the X chromosome and to induce acetylation of lysine
16 of histone H4. Although this structure could not fully rescue roX-deficient males, our results
suggest that it mediates MSL recruitment during roX2-dependent chromatin modification and
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dosage compensation, illustrating the power of evolutionary evidence for directing
experimental studies.

Prediction and characterization of miRNA genes
Focusing on specific classes of RNA genes markedly increases the accuracy of RNA gene
prediction, reviewed in refs 35, 76 and illustrated here for Drosophila miRNA genes. The
common biogenesis and function of miRNAs77 lead to evolutionary and structural signatures
(Fig. 2c) that can be used for their systematic de novo discovery8–11. Using such signatures
in the 12 fly genomes (Supplementary Methods 4a, b), we predicted 101 miRNAs78
(Supplementary Table 4d), which include 60 of the 74 verified Rfam miRNAs (81%), while
spanning less than 0.006% of the fly genome (13,500-fold nucleotide enrichment).

Comparison of our predictions with high-throughput sequencing data of short RNA libraries
from different stages and tissues of D. melanogaster78,79 revealed that 84 of the 101
predictions (83%), including 24 of the 41 novel predictions (59%), were authentic miRNA
genes (Fig. 5a and Supplementary Table 4d). An independent computational method79 had 20
of its 45 novel predictions validated when used across six Drosophila species. Additional
candidates may represent genuine miRNAs whose temporal or spatial expression pattern does
not overlap with the surveyed libraries.

Several of the validated miRNAs were on the transcribed strand of introns or clustered with
other miRNAs. For example, mir-11 and mir-998 (the vertebrate homologue of which,
mir-29, has been implicated in cancer80) were both found in the last intron of E2f, and might
be involved in cell-cycle regulation (Fig. 5b). Notably, two predictions overlapped exons of
previously annotated protein-coding genes that were independently rejected above (Fig. 5c),
providing an explanation for the previously observed transcripts of these annotations and
highlighting the importance of specific signatures for genome annotation.

High-throughput sequencing data discovered an additional 50 miRNAs not found
computationally79,81, thereby illustrating the limitations of purely computational approaches.
Some of these had precursor structures not seen previously for animal miRNAs, including
unusually long hairpins79 and hairpins corresponding to short introns (mirtrons)81,82. The
remaining were often less broadly conserved or showed unusual conservation properties.

Signatures for mature miRNA annotation
The exact position of 5′ cleavage of mature miRNAs is important, because it dictates the core
of the target recognition sequence83–85. This leads to unique structural and evolutionary
signatures, including direct signals, present at the 5′ cleavage site, and indirect signals,
stemming from the relationship of miRNAs with their target genes (Supplementary Methods
4a, c). Combined into a computational framework78, these signatures predicted the exact start
position in 47 of the 60 cloned Rfam miRNAs (78%), and were within 1 bp in 51 cases (85%).
The method disagreed with the previous annotation in 9 of the 14 Rfam miRNAs that were not
previously cloned, of which 6 were confirmed by sequencing reads78,79, leading to marked
changes in the inferred target spectrum (Fig. 5d). Prediction accuracy was significantly lower
(41% exact, 61% within 1 nucleotide) for novel miRNAs, which, however, also showed less
accurate processing in vivo78,79.

New insights into miRNA function and biogenesis
We predicted targets for all conserved miRNAs identified by high-throughput sequencing79
searching for conserved matches to the seed region (similar to ref. 86) evaluated using the
branch length score (Supplementary Methods 5a), a new scoring scheme described below.
Whereas the resulting miRNA targeting network changed substantially79, we found that the
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novel and revised miRNAs shared many of their predicted targets with previously known
miRNAs, resulting in a denser network with increased potential for combinatorial
regulation78,79.

For ten miRNA hairpins, the mature miRNA and the corresponding miRNA star sequence
(miRNA*, the small RNA from the opposite arm of the hairpin) both appeared to be functional:
both reached high computational scores and were frequently sequenced78,79, often exceeding
the abundance of many mature miRNAs (Supplementary Table 4e). The Hox miRNA
mir-10 showed a particularly striking example of a functional star sequence (Fig. 5e): both
arms showed abundant reads, high scores and highly conserved Hox gene targets78,79,
suggesting a key role in Hox regulation.

In addition, for 20 miRNA loci, the anti-sense strand also folded into a high-scoring hairpin
suggestive of a functional miRNA78 (Supplementary Table 4f). Indeed, sequencing reads
confirmed that four of these anti-sense hairpins are processed into small RNAs in vivo79. Thus,
a single genomic miRNA locus may produce up to four miRNAs, each with distinct targets.

Regulatory motif discovery and characterization
Regulatory motifs recognized by proteins and RNAs to control gene expression have been
difficult to identify due to their short length, their many weakly specified positions, and the
varying distances at which they can act87,88. Recent studies have shown that comparative
genomics of a small number of species can be used for motif discovery3,4,12–14, on the basis
of hundreds of conserved instances across the genome (Fig. 2d). Many related genomes should
lead to increased discovery power, but also pose new challenges, arising from sequencing,
assembly, or alignment artefacts, and from movement or loss of motif instances in individual
species.

To account for the unique properties of regulatory motifs, we developed a phylogenetic
framework to assess the conservation of each motif instance across many genomes89. Briefly,
we searched for motif instances in each of the aligned genomes, and based on the set of species
that contained them, we evaluated the total branch length over which the D. melanogaster motif
instance appears to be conserved (Supplementary Methods 5a, b), which we call the branch
length score (BLS). We used BLS for the discovery of novel motifs (this section) and for the
prediction of individual functional motif instances (next section).

Predicted motifs recover known regulators
To discover motifs, we estimated the conservation level of candidate sequence patterns with a
motif excess conservation (MEC) score compared to overall conservation levels in promoters,
UTRs, introns, protein-coding exons and intergenic regions (Supplementary Methods 5a).

Our search in regions with roles in pre-transcriptional regulation resulted in 145 distinct motifs
(Table 2), obtained by collapsing variants across 83 motifs discovered in promoters, 35 in
enhancers, 20 in 5′ UTRs, 35 in core promoters, 30 in introns and 84 in the remaining intergenic
regions. Motifs discovered in each region showed similar properties and large overlap: 66
(46%) were discovered independently in at least two regions and 40 (28%) in at least three,
consistent with shared regulatory elements in these regions90.

The 145 discovered motifs match 40 (46%) of the 87 known transcription factors in
Drosophila (Supplementary Table 5c) compared to 8% expected at random (P =1 ×10−20).
Several of the non-discovered known motifs are involved in early anterior–posterior
segmentation of the embryo, consistent with reports that they are largely non-conserved91;
indeed, 74% of these did not exceed the conservation expected by chance in promoter regions.
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Other non-discovered motifs often lacked characteristics expected for transcription factor
motifs, suggesting that some may be spurious: 49% were unusually long (>10 nucleotides)
compared to 23% of recovered ones, and showed only one or a few total instances genome-
wide, suggestive of individual regulatory sites rather than motifs.

Tissue-specific and functional enrichment of novel motifs
The discovered motifs showed strong signals with respect to embryonic expression patterns
(Fig. 6a). Overall, 75 (52%) were either enriched or depleted in genes expressed in at least one
tissue, compared to 59% of known motifs and 3% of random controls. Motif depletion may
represent either specific repressors for individual tissues, or activators excluded from these
tissues. Motif depletion was found more generally in ubiquitously expressed genes (30% of
discovered and 34% of known motifs compared with 1% expected at random), similar to
findings for in vivo binding sites92, and probably reflecting less complex regulation. We also
found significant motif enrichment in groups of genetically interacting genes (collected by
FlyBase) that often function in common developmental contexts or signalling pathways, genes
of metabolic pathways (Kyoto Encyclopedia of Genes and Genomes, KEGG93), and genes
with shared functions (GO).

In total, 68% of discovered and 70% of known motifs were enriched or depleted in one of the
functional categories (14% random). Noteworthy examples include motif ME93 (GCAACA),
which was more highly enriched in neuroblasts (P =4 ×10−12) than either of the two well-
known regulators of neuroblast development, prospero and asense (P =4 ×10−5 and 2 ×10−7,
respectively). Similarly, motifs ME89 (CACRCAC), ME11 (MATTAAWNATGCR) and
ME117 (MAAMNNCAA) were highly enriched in malpighian tubule (P =4 ×10−7), trachea
(P =4 ×10−5) and surface glia (6 ×10−7), respectively, in each case ranking above motifs for
factors known to be important in these tissues (Supplementary Table 5c). These presumably
correspond to as-yet-unknown regulators for these tissues.

Exclusion, clustering and positional constraints
A large number of motifs were depleted in coding sequence (57% of discovered versus 57%
of known and 10% of random motifs, P =3 ×10−18) and in 3′ UTRs (30% versus 22% and 0%,
P =4 ×10−11), suggesting specific exclusion similar to in vivo binding92.

Many of the intergenic or intronic instances occurred in clusters, a property of motifs that has
been used to identify enhancer elements91,94–96. We assessed increased conservation of
motifs when found near other instances of the same motif (whether conserved or not, to correct
for regional conservation biases), and found significant multiplicity for 19% of the discovered
motifs (compared to 24% of known and 4% of random motifs).

In addition, 15 of the discovered motifs (10%) were significantly enriched near transcription
start sites (compared to 14% of known and 1% of random motifs). Several were enriched at
precise positions and preferred orientations (Fig. 6b), including close matches to several known
core promoter motifs involved in transcription initiation97. For example, ME5
(STATAWAWR), which matches the TATA-box motif, displayed a sharp peak on the
transcribed strand, 27 nucleotides upstream of the transcription start site. Similarly, ME120
(TCAGTT), corresponding to the known initiator motif (Inr) strongly peaked directly on the
transcription start site, and ME54 (RCGYRCGY), which matches a known downstream
promoter element (DPE), peaked 30 nucleotides downstream of the transcription start site.

Regulatory motifs involved in post-transcriptional regulation
We also used BLS/MEC to discover motifs involved in post-transcriptional regulation, and
developed methods to distinguish motifs acting at the DNA level, motifs acting at the RNA
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level and motifs stemming from protein-coding codon biases (Supplementary Methods 5a).
Motifs acting post-transcriptionally at the RNA level generally showed highly asymmetric
conservation12, as functional instances can only occur on the transcribed strand. Indeed, 71 of
90 motifs (79%) discovered in 3′ UTRs showed strand-specific conservation (compared with
only 3% of 5′ UTR motifs and 5% of intron motifs, suggesting that these act primarily in pre-
transcriptional regulation).

Overall, 33 motifs discovered in 3′ UTRs were complementary to the 5′ end of Rfam miRNAs,
recovering 72% of known miRNAs (68% of 5′ unique miRNA families). An additional 21
motifs matched to 5′ ends of novel miRNAs predicted above, of which 12 were validated
experimentally78,79, and 3 motifs matched uniquely to miRNA star sequences, all of which
were abundantly expressed in vivo (Supplementary Table 4e).

We found 33 additional motifs in 3′ UTRs that were apparently not associated with miRNAs.
MO40 (TGTANWTW) closely matches the Puf-family Pumilio motif98. MO32 (AATAAA)
corresponds to the polyadenylation signal and displays both very strong conservation and a
sharply defined distance preference with respect to the end of the annotated 3′ UTR (P
=10−69). Finally, several motifs (for example, MO24 =TAATTTAT; MO94 =TTATTTT) are
variants of known AU-rich elements, which are known to mediate mRNA instability and
degradation99.

MicroRNA targeting in protein-coding regions
Protein-coding regions can also harbour functional regulatory motifs, such as exonic splicing
regulatory elements100. However, motif conservation is difficult to assess within protein-
coding regions because of the overlapping selective pressures. Indeed, the most highly
conserved nucleotide sequence patterns of length seven (7mers) in coding sequence showed
strong reading-frame-biased conservation, suggesting that they reflect protein-coding
constraints rather than regulatory roles at the DNA or RNA level (Fig. 6c).

MicroRNA motifs, which function at the RNA level, instead showed high conservation in all
three reading frames, suggesting that they are specifically selected within coding regions for
their RNA-level function. Indeed, previous studies have shown that miRNA motifs in coding
regions are preferentially conserved in vertebrates86, that they can lead to repression in
experimental assays101,102, and that they are avoided in genes co-expressed with the
miRNA103. Frame-invariant conservation allows us to demonstrate the coding-region
targeting of individual miRNAs, and also enables the de novo discovery of miRNA motifs in
coding regions. Using frame-invariant conservation, we recovered 11 miRNA motifs within
the top 20 coding-region motifs (Supplementary Table 5g), whereas using overall conservation
required several hundred candidates to recover 11 miRNA motifs.

Moreover, 7mers complementary to different positions in the mature miRNA show a distinctive
conservation pattern indicative of functional targeting in coding regions (Fig. 6d) and similar
to that found in 3′ UTRs12,83 (correlation coefficient 0.96). Finally, 6mers complementary to
miRNA 5′ ends were depleted in coding exons of anti-target genes (Supplementary Fig. 5f),
similar to findings for these genes’ 3′ UTRs103,104. Overall, these results, together with
findings in vertebrates86,101–103, suggest that important miRNA targets have been
overlooked by many target prediction methods105 that have traditionally focused exclusively
on 3′ UTR sequences.

Prediction of individual regulator binding sites
Previous methods for regulatory motif discovery3,4,12–14 integrated conservation
information over hundreds of motif instances across the genome, leading to an exceedingly
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clear signal for motif discovery even if many of these instances are only marginally conserved.
In contrast, the reliable identification of individual motif instances has been hampered by lack
of neutral divergence and would require many related genomes15–19. In the absence of such
data, previous studies have relied on motif clustering91,94–96 or other sequence
characteristics106 to predict regulatory targets or regions.

With the availability of the 12 fly genomes, we inferred high-confidence instances of regulatory
motifs by mapping the BLS of each motif instance to a confidence value (Supplementary
Methods 5a). This value represents the probability that a motif instance is functional, on the
basis of the conservation level of appropriate control motifs evaluated in the same type of
region (promoter, 3′ UTR, coding, and so on). Because the number of conserved instances
decreases much more rapidly for control motifs than for real motifs, the many genomes allowed
us to reach high confidence values for many transcription factors and miRNAs, even at
relatively modest BLS thresholds (Fig. 2e).

Conserved motif instances identify functional in vivo targets
We found that increasing confidence levels selected for functional instances for both
transcription factor and miRNA motifs: the normalized fraction of transcription factor motif
instances within promoter regions rose from 20% to 90%; that of miRNA motif instances within
3′ UTRs rose from 20% to 90%; and the fraction of miRNA motif instances on the transcribed
strand of 3′ UTRs rose from 50% (uniform) to 100% (Fig. 7a); in each case selecting the regions
and strands where the motifs are known to be functional.

We further assessed how predicted motif instances compared with in vivo targets in promoter
regions, defined experimentally (without comparative information). We used a set of high-
confidence direct CrebA targets107 and three genome-wide chromatin immunoprecipitation
(ChIP) data sets for Snail, Mef2 and Twist92,108,109, and in each case found that the
enrichment between conserved motif instances and known in vivo regions increased sharply
for increasing confidence values (Fig. 7b).

We also found that a large fraction of motif instances in experimentally determined target
regions was conserved (Fig. 7c): 76% of motif instances in direct CrebA targets and 90% of
motif instances in experimentally supported miRNA targets104,110 were recovered at 60%
confidence. Although many of the miRNA targets stem from comparative predictions and are
expected to be well conserved, their high recovery rate illustrates the increased sensitivity of
the BLS measure compared to perfect conservation (Supplementary Fig. 7d). Similar results
were found for motifs in known enhancers that were determined to be bound by ChIP (‘ChIP-
bound’): 65% of Mef2 motifs, 65% of Snail motifs and 25% of Twist motifs were conserved
(Fig. 7c).

ChIP-determined and conservation-determined targets show similar enrichment
To determine whether ChIP-bound motifs that lack conservation are biologically meaningful,
we studied their enrichment in muscle gene promoters. We found that motifs that were both
bound and evolutionarily conserved showed very strong correlation with muscle genes for all
three factors: Mef2 showed eightfold enrichment, Twist showed sevenfold enrichment and
Snail, a mesodermal repressor, showed threefold depletion for muscle genes. However, when
only non-conserved sites were considered, the correlation dropped significantly to 1–2-fold
for all three factors, suggesting that non-conserved ChIP-bound sites may be of decreased
biological significance (Fig. 7d).

We also used the correlation with muscle genes to compare ChIP-on-chip and evolutionary
conservation as two complementary methods for target identification (Fig. 7d). We found that
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the enrichment of conservation-inferred targets was consistently higher than the enrichment of
ChIP-inferred targets for each of the three factors. Finally, we assessed the functional
significance of motif instances that were only found by the conservation approach, specifically
excluding those in ChIP-bound regions, and found that these were also enriched in the same
functional categories as ChIP-bound sites with comparable or higher functional correlations
(Fig. 7d). This suggests that the additional conserved instances are indeed functional, probably
reflecting the higher coverage of conservation-based approaches, which are not restricted to
the experimental conditions surveyed, or that they may be bound in vivo yet missed by ChIP-
on-chip technology111,112.

In an independent study113 we compared several strategies for the prediction of motif instances
and cis-regulatory modules and found that using the 12 fly genomes led to substantial
improvements. In another study, we reported the recovery of conserved motifs for several
known regulators, including Suppressor of Hairless, in genes of the Enhancer of split
complex114.

A regulatory network of D. melanogaster at 60% confidence
Having established the accuracy of conserved motif instances, we present an initial regulatory
network for D. melanogaster at 60% confidence (Supplementary Fig. 5i), containing 46,525
regulatory connections between 67 transcription factors and 8,287 genes, and 3,662
connections between 81 cloned miRNAs (clustered in 49 families with unique seed sequences)
and 2,003 genes.

The distribution of predicted sites per target gene is highly nonuniform and indicative of
varying levels of regulatory control. Genes with the highest number of sites appeared to be
enriched in morphogenesis, organogenesis, neurogenesis and a variety of tissues, whereas
ubiquitously expressed genes and maternal genes with housekeeping functions had the fewest
sites104. Interestingly, transcription factors appeared to be more heavily targeted than other
genes, both by transcription factors (10 sites versus 5.5 on average, P =10−15) and by miRNAs
(2.3 versus 1.8 miRNAs, P =5 ×10−5). Moreover, genes with many transcription factor sites
also had many miRNA sites, and conversely, genes with few transcription factor sites also had
few miRNA sites (P =10−4 and P =7 ×10−3, respectively).

Several of the predicted regulatory connections have independent experimental support
(Supplementary Table 5h), including direct regulation of achaete by Hairy115, of giant by
Bicoid116, of Enhancer of split complex genes by Suppressor of Hairless117, and of
bagpipe by Tinman (known to cooperate in mesoderm induction and heart specification118).
More generally, when tissue-specific expression data were available, we found that on average
46% of all targets were co-expressed with their factor in at least one tissue (Supplementary
Fig. 5i), which is significantly higher than expected by chance (P =2 ×10−3).

Scaling of comparative genomics power
Theoretical considerations and pilot studies on selected genomic regions showed that the
discovery power of comparative methods scales with the number and phylogenetic distance of
the species compared16–20,46,119,120. We extended these analyses by investigating the
scaling of genome-wide discovery power using evolutionary signatures for each class of
functional elements (Fig. 8), on the basis of the recovery of known elements using different
subsets of informant species (at a fixed stringency).

We found that recovery consistently increased with the total number of informant species, and
that multi-species comparisons outperformed pairwise comparisons within the same
phylogenetic clade. When we examined subsets of informants with similar total branch length
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(for example, several close species versus one distant species), multi-species comparisons
sometimes performed better (protein-coding exons, ncRNAs), comparably (motifs), or worse
(miRNAs) than pairwise comparisons. This complex relationship between total branch length
and actual discovery power probably reflects imperfect genome assemblies/alignments,
characteristics of each class of functional elements, and the specific methods we used. For
example, ncRNA discovery probably benefits from observing more compensatory changes
across more genomes, whereas miRNA discovery may be more sensitive to artefacts in low-
coverage genomes, given the expected high conservation of miRNA arms.

As expected, longer elements were easier to discover than shorter elements. Long protein-
coding exons (>300 nucleotides) were recovered at very high rates even with few species at
close distances (leaving little room for improvement with additional species). In contrast, more
informant species and larger distances were crucial for recovering short exons, miRNAs and
regulatory motifs.

Notably, the optimal evolutionary distance for pairwise comparisons to D. melanogaster also
seemed to depend on element length: for long protein-coding exons, the best pairwise informant
was the closely related D. erecta, for exons of intermediate lengths D. ananassae, and for the
shortest exons the distant D. willistoni (Supplementary Table 7a). Distant species were also
optimal for other classes of short elements (ncRNAs, miRNAs and motifs, Fig. 8b–d). This
suggests that a small number of species at close evolutionary distances may generally allow
the discovery of long elements, possibly including clade-specific elements, whereas short
clade-specific elements may not be reliably detectable without many genomes at close
distances.

Finally, we investigated the effect of alignment choice on our results (Supplementary Fig. 8).
We found high similarity between different alignment strategies for longer elements (>93%
agreement for exons), whereas shorter elements showed larger discrepancies between
alignments (81% and 59% agreement for miRNA and motif instances, respectively).

Although factors such as genome size, repeat density, pseudogene abundance and physiological
differences might confound a simple analogy to the vertebrate phylogeny based on neutral
branch length (Fig. 1c), our results suggest that comparisons spanning marsupials, birds and
reptiles may prove surprisingly useful for biological signal discovery in the human genome.

Discussion
Our results demonstrate the potential of comparative genomics for the systematic
characterization of functional elements in a complete genome. Even in a species as intensely
studied as D. melanogaster, our methods predicted several thousand new functional elements,
including protein-coding genes and exons, novel RNA genes and structures, miRNA genes,
regulatory motifs, and regulator targets. Our novel predictions have overwhelming statistical
support, often surpassing that of known functional elements, and are additionally supported by
experimental evidence in hundreds of cases. The common underlying methodology in this
study has been the recognition of specific evolutionary signatures associated with each class
of functional elements, which can be much more informative for genome annotation than
overall measures of nucleotide conservation. These signatures are general and are immediately
relevant to the analysis of the human genome and more generally of any species.

In addition to the many new elements, we gained specific biological insights and formulated
hypotheses that we hope will guide follow-up experiments. We found 149 genes with potential
translational readthrough, showing protein-like evolution downstream of a highly conserved
stop codon, and possibly encoding additional protein domains or peptides specific to certain
developmental contexts. We also found several candidate programmed frameshifts, which
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might be part of regulatory circuits (as for ODC/Oda 64) or help expand the diversity of protein
products generated from one mRNA, similar to their role in prokaryotes121. We also presented
evidence of miRNA processing from both arms of a miRNA hairpin and from both DNA strands
of a miRNA locus in some cases, potentially leading to as many as four functional miRNAs
per locus. As miRNA/miRNA* pairs are expressed from a single precursor and thus co-
regulated, whereas sense/anti-sense pairs are expressed from distinct promoters, the use of both
arms or both strands provides compelling general building blocks for higher-level miRNA-
mediated regulation.

The newly discovered elements did not dramatically increase the total number of annotated
nucleotides. Known and predicted elements explain 42% of nucleotides in phastCons
elements33, compared to 35.5% for previous annotations (Supplementary Fig. 6), an 18%
increase (mostly owing to conserved motif instances). The remaining phastCons elements and
independent estimates based on transcriptional activity42 would suggest that a much higher
fraction of the genome may be functional (Supplementary Fig. 6). Although it is possible that
these estimates are artificially high and that we are in fact converging on a complete annotation
of the fly genome, they might instead indicate that much remains to be discovered, which may
require the recognition of as-yet-unknown classes of functional elements with distinct
evolutionary signatures.

Our results also allowed us to compare and contrast evolutionary and experimental methods
for the recovery of functional elements, particularly for the identification of regulator targets.
We found that comparative genomics resulted in many functionally meaningful sites for
transcription factors Mef2, Twist and Snail outside ChIP-bound regions, probably representing
targets from diverse conditions not surveyed experimentally. Similarly, ChIP resulted in many
additional sites outside those recovered by comparative genomics: some of these may have
been replaced by functionally equivalent non-orthologous sequence, rendering them apparently
non-conserved in sequence alignments122–124; others may have species- or lineage-specific
roles, thus lacking sufficient signal for their comparative detection; finally, some bound sites
may be biochemically active yet selectively neutral125. It is worth noting, however, that ChIP-
bound motifs that were not conserved showed decreased enrichment in muscle/mesoderm
development where the factors are known to act, suggesting that potential lineage-specific roles
may lie outside the regulators’ conserved functions. To resolve these questions, comparative
genomics studies would benefit greatly from experimental studies in several related species in
parallel.

Overall, comparative genomics and species-specific experimental studies provide
complementary approaches to biological signal discovery. Comparative studies help pinpoint
evolutionarily selected functional elements across diverse conditions, whereas experimental
studies reveal stage- and tissue-specific information, as well as species-specific sites.
Ultimately, their integration is a necessary step towards a comprehensive understanding of
animal genomes.

METHODS SUMMARY
The Methods are described in Supplementary Information, with more details found in the cited
companion papers for each section. The sections of the Supplementary Methods are arranged
in the same order as the manuscript to facilitate cross-referencing, with an index on the first
page to aid navigation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogeny and alignment of 12 Drosophila species
a, Phylogenetic tree relating the 12 Drosophila species, estimated from fourfold degenerate
sites (Supplementary Methods 1). The 12 species span a total branch length of 4.13
substitutions per neutral site. b, Gene order conservation for a 0.45-Mb region of chromosome
2L centred on CG4495, for which we predict a new exon (Fig. 3a), and spanning 35 genes.
Colour represents the direction of transcription. Boxes represent full gene models. Individual
exons and introns are not shown. c, Comparison of evolutionary distances spanned by fly and
vertebrate trees. Pairwise and multi-species distances (in substitutions per fourfold degenerate
site) are shown from D. melanogaster and from human as reference genomes. Note that species
with longer branches (for example, mouse) show higher pairwise distances, not always
reflecting the order of divergence. Multi-species distances include all species within a
phylogenetic clade.
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Figure 2. Distinct evolutionary signatures for diverse classes of functional elements
a, Protein-coding genes tolerate mutations that preserve the amino-acid translation, leading to
abundant conservative codon substitutions (green). Insertions and deletions are largely
constrained to be a multiple of three (grey). In contrast, non-coding regions show abundant
non-conservative triplet substitutions (red), nonsense mutations (blue) and frame-shifting
insertions and deletions (orange). b, RNA genes tolerate mutations that preserve the secondary
structure (for example, single substitutions involving G•U base pairs and compensatory
changes) and exclude structure-disrupting mutations. Matching parentheses and matching
letters of the alphabet indicate paired bases. c, MicroRNA genes, in contrast, generally do not
show changes in stem regions, but tolerate substitutions in loop regions and flanking unpaired
regions, leading to a distinctive conservation profile. Asterisks denote the number of informant
species matching the melanogaster sequence at each position. d, Regulatory motifs tolerate
local movement and nucleotide substitutions consistent with their degeneracy patterns, and
show increased conservation across the phylogenetic tree, measured as the branch length score
(BLS; Supplementary Methods 5a). e, Increasing BLS thresholds select for instances of known
motifs (black) at increasing confidence (red), as the number of conserved instances of control
motifs (grey) drops significantly faster.
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Figure 3. Revisiting the protein-coding gene catalogue and revealing unusual gene structures
a, Protein-coding evolutionary signatures correlate with annotated protein-coding exons more
precisely than the overall conservation level (phastCons track33), for example excluding highly
conserved yet non-coding elements. Asterisk denotes new predicted exon, which we validate
with cDNA sequencing (see panel c). The height of the black tracks indicates protein-coding
potential according to evolutionary signatures (top) and overall sequence conservation
(bottom). Blue and green boxes indicate predicted coding exons (top) and the current FlyBase
annotation (bottom). The region shown represents the central 6 kb of Fig. 1b, rendered by the
UCSC genome browser126. b, Results of FlyBase curation of 414 genes rejected by
evolutionary signatures (Table 1), and 928 predicted new exons. c, Experimental validation of
predicted new exon from panel a. Inverse PCR with primers in the predicted exon (green)
results in a full-length cDNA clone, confirming the predicted exon and revealing a new
alternative splice form for CG4495. d, Protein-coding evolution continues downstream of a
conserved stop codon in 149 genes, suggesting translational readthrough. e, Codon-based
evolutionary signatures (CSF score) abruptly shift from one reading frame to another within a
protein-coding exon, suggesting a conserved, ‘programmed’ frameshift.
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Figure 4. Novel RNA structures
a, New exonic RNA structure spanning 78 of 90 nucleotides of spineless exon 5. b, New
intronic RNA structure in lodestar shows 11 compensatory substitutions and 10 silent G•U
substitutions, providing strong evidence of structural selection (colours as in Fig. 2b). c, New
5′ UTR structure that overlaps the translation start site of CG6764, the fly orthologue of yeast
ribosomal protein RPL24, suggesting a potential role in translational regulation. a–c, Structure
shown corresponds to shaded region in the gene model.
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Figure 5. MicroRNA gene identification and functional implications
a, New predicted miRNA (mir-190) and its validation by sequencing reads. Total read counts
for mature miRNA (red) and miRNA* (blue) show a characteristic pattern of processing
indicative of miRNAs. Highlighted regions indicate most abundant processing products. b,
Example of clustered known (mir-11) and new (mir-998) miRNAs in the intron of cell-cycle
regulator E2f. c, Example of a new miRNA (mir-996) in the transcript of a spurious gene.
CG31044 was rejected by our protein-coding analysis, its transcript probably representing the
precursor of mir-996, with no protein-coding function. d, Revisions to the 5′ end of miR-274
and miR-263a are proposed on the basis of evolutionary evidence (for example, 7mer seed
conservation; black curve) and confirmed by sequencing reads. Changes at the 5′ end of more
than one nucleotide results in marked changes to the predicted target spectra (venn diagrams).
e, Evidence from evolutionary signals (mature score), sequencing reads and target predictions
suggests that both miR-10 and miR-10* are functional, each targeting distinct Hox genes.
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Figure 6. Regulatory motif discovery
a, Discovered motifs show enrichment (red) or depletion (blue) in genes expressed in a given
tissue (log colour range from P =10−5 enrichment to P =10−5 depletion). Bi-clustering reveals
groups of motifs with similar tissue enrichment and groups of tissues with similar motif content.
Full matrix and randomized control is shown in Supplementary Fig. 6d. b, Positional bias of
discovered motifs relative to transcription start sites (TSS). Peaks with highly specific distances
from the transcription start site (for example, first three plots) are characteristic of core
promoter elements, and broad peaks (for example, fourth plot) are characteristic of transcription
factors. For non-palindromic motifs, colours indicate forward-strand (red) and reverse-strand
(blue) instances. Curves denote the density of all instances and individual segments denote
individual motif instances, summed across groups of 50 genes (each line). c, Coding regions
show reading-frame-invariant conservation for miRNA motifs (red) and reading-frame-biased
conservation for protein motifs (grey). MEC scores are evaluated for each of the three reading
frame offsets (F1–F3) and also without frame correction (all Fs). Plots show average MEC for
all miRNA motifs and 500 top-scoring protein-coding motifs (based on MEC without frame
correction). d, Motif excess conservation (MEC) of 7mer complements at different offsets with
respect to miRNA 5′ end, averaged across all Rfam miRNAs. MEC scores evaluated in protein-
coding regions and 3′ UTRs show a highly similar profile (correlation coefficient 0.96),
suggesting similar evolutionary constraints.
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Figure 7. Identification of individual motif instances
a, Increasing confidence levels select for motif instances in regions they are known to be
functional: conserved transcription factor (TF) motifs enrich for promoters; miRNA motifs for
3′UTRs, and specifically the transcribed strand. Regions are normalized for their overall length,
measured by the number of motif instances without conservation (0% confidence baseline).
b, Increasing confidence levels select for transcription factor motif instances with experimental
support for each factor tested. c, The high fraction of experimentally supported motif instances
that are recovered at 60% confidence for transcription factors and 80% confidence for miRNAs
illustrates the high sensitivity of the BLS approach. d, Comparison of chromatin
immunoprecipitation (ChIP) and conservation in their ability to identify functional motif
instances. Motif instances that are both ChIP-bound and conserved (purple) show the strongest
functional enrichment in muscle genes for Mef2 and Twist (depletion for Snail), whereas motif
instances derived by ChIP alone (light blue) show substantially reduced enrichment levels.
Comparing the enrichment of all instances recovered by ChIP (blue) and all instances recovered
by conservation (red) suggests that the two approaches perform comparably. Even the sites
recovered by conservation alone outside bound regions (pink) show enrichment levels
comparable to ChIP, suggesting that they are also functional.
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Figure 8. Scaling of discovery power with the number and distance of informant species
a, Discriminatory power of CSF protein-coding evolutionary metric for varying exon lengths
and using different numbers of informant species. Sensitivity is shown for known exons at a
fixed false-positive rate based on random non-coding regions. Mean length is shown for each
exon length quantile. Multi-species comparisons increase discovery power, especially among
short exons. b, Recovery of known ncRNAs (among the top 100 predictions) for pairwise (blue)
and multi-species (red) comparisons. c, Recovery of cloned miRNAs (among the top 100
predictions). d, Recovery of transcription factor and miRNA motifs with instances at 60%
confidence.
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Table 1
Assessment of FlyBase euchromatic protein-coding gene annotations

Regions evaluated Total Confirm Abstain Reject*

Named genes 4,711 4,566 (96.9%) 105 (2.2%) 40 (0.8%)
CGid-only genes 9,022 7,879 (87.3%) 729 (8.1%) 414 (4.6%)
Non-coding regions† 15,564 3 (0.0%) 131 (0.8%) 15,430 (99.1%)

*
A minority of rejected genes are false rejections; see Fig. 3b and text for details.

†
Regions ≥300 nucleotides in length randomly chosen from the non-coding part of the genome (see Supplementary Methods 2a).
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