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Abstract

What evolutionary forces shape genes that contribute to the risk of human disease? Do similar
selective pressures act on alleles that underlie simple vs. complex disorders? [1-3]. Answers to these
questions will shed light on the origin of human disorders (e.g., [4]), and help to predict the population
frequencies of alleles that contribute to disease risk, with important implications for the efficient
design of mapping studies [5-7]. As a first step towards addressing them, we created a hand-curated
version of the Mendelian Inheritance in Man database (OMIM). We then examined selective
pressures on Mendelian disease genes, genes that contribute to complex disease risk and genes known
to be essential in mouse, by analyzing patterns of human polymorphism and of divergence between
human and rhesus macaque. We find that Mendelian disease genes appear to be under widespread
purifying selection, especially when the disease mutations are dominant (rather than recessive). In
contrast, the class of genes that influence complex disease risk shows little signs of evolutionary
conservation, possibly because this category includes both targets of purifying and positive selection.

Diseases are thought to persist in human populations primarily because of a balance between
mutation, genetic drift, and natural selection, with alleles that contribute to disease introduced
by mutation, governed in part by random genetic drift, but eventually eliminated from the
population by purifying selection [5,7,8]. For simple, highly penetrant disorders, purifying
selection may be quite strong. For complex diseases, however, individual alleles may
contribute little to overall risk and be under only weakly deleterious [9]. Similarly, alleles that
cause exclusively late onset Mendelian disorders may not impose an evolutionary fitness cost
and thus may be under little or no selection.

Disease susceptibility may also arise, not from a balance between mutation and purifying
selection, but as a consequence of adaptation. For example, there is evidence of heterozygote
advantage (e.g., at -globin) and for the fixation of compensatory alleles [10] in genes that
cause Mendelian disorders, as well as indications that environmental shifts have led to changes
in selection pressures over time. In particular, at a subset of genes associated with complex
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disease risk, the susceptibility allele is ancestral, and population genetic analyses suggest that
the derived, protective allele is selectively advantageous ([3] and references therein). Finally,
alleles may be subject to balancing selection if they increase risk of one disease but decrease
risk of another, or if there are important interactions between genotype and environment. These
considerations raise the possibility that a fraction of loci that underlie contemporary human
diseases have been the target of positive, as well as purifying, selection.

To evaluate these hypotheses, the main approach has been to contrast evolutionary rates in
genes associated with Mendelian disease phenotypes to all other genes, by using D,/Ds, the
ratio of non-synonymous to synonymous substitutions. Assuming synonymous substitutions
are mostly neutral, D,/Ds reflects the proportion of amino-acid sites in a gene that reach
fixation, so are not deleterious. Thus, (1-D,/D,) is often thought of as an estimate of the
evolutionary constraint acting on a gene (an underestimate if adaptations are frequent), which
reflects the extent of purifying selection and, to a lesser extent, its strength.

To date, results of comparisons between disease and “non-disease” genes have been
conflicting: Two studies found significantly lower D,/Dg in genes that cause Mendelian disease
than other genes [8,11], two found significantly higher values [12,13], and one found no
significant difference [14]. These divergent answers may be due to the reliance of most studies
on the OMIM database. Although OMIM is the most exhaustive publicly available resource,
phenotypic information is sometimes outdated, and is not entered in a standard format,
rendering automated searches unreliable (see Suppl. Information 1). A second limitation may
be the use, in a subset of papers, of human-rodent comparisons, as it is hard to estimate D,/
Dq reliably for such distantly related species. In addition, many genes classified as non-disease
may nevertheless be under strong and widespread purifying selection, reducing the power to
detect a difference between categories [8].

To overcome these limitations, we created a hand-curated version of OMIM (hereafter
hOMIM), including only highly penetrant diseases caused by a mutation in an autosomal or
X-linked gene (see Methods). Since the vast majority of mutations currently known to underlie
simple diseases are in exons, we focused on the coding regions, assessing levels of constraints
by estimating D,/Dg between human and rhesus macaque. This Old World Monkey last had a
common ancestor with humans over 25 Mya [15], long enough for the comparison to be
informative, but short enough for the estimates of D/Dg to be reliable, and for the two species
to be more likely to share similar pathophysiologies. Finally, we used a classification of
essential genes in mice to identify a subset of genes not currently associated with human disease
but which are nonetheless likely to be conserved in mammals [16].

Results and Discussion

Analysis of hOMIM genes

We first compared rates of protein evolution among genes in hOMIM (see Methods), with the
prediction that, all else being equal, genes in which mutations solely cause late-onset disorders
should be less conserved than those in which mutations cause earlier onset disorders. We further
expected that if weak purifying selection is common (i.e., if the selection coefficients acting
on homozygotes are often in the range -8 < Ngs < 0, where N is the effective population size)
[7,11], genes in which mutations cause recessive disorders should have higher D,/Dg than those
in which mutations lead to dominant disorders (e.g., Figure 8 in [17]). We therefore tabulated
information about the age of onset of the disorder and the mode of inheritance from OMIM
entries (see Methods), then assessed whether it predicts the evolution of genes underlying
simple disorders. Since the entire coding region is used to test these predictions, a key
assumption is that the mode of inheritance and age of onset of disease alleles are predictive of
these attributes for other mutations in the same gene.

Curr Biol. Author manuscript; available in PMC 2009 June 24.
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As expected, most Mendelian disorders with a known genetic basis are early onset, with only
a small set manifesting themselves after age 40 (Figure 1). Overall, 45.3% of the disease
phenotypes are recessive; the data further suggest that early onset disorders are more likely to
be recessive, and late onset disorders dominant, but these findings may also reflect
ascertainment bias (e.g., the greater difficulty of mapping loci underlying early onset, dominant
disorders).

Considering human-rhesus macaque divergence, we found no evidence that genes in which
mutations cause earlier onset disorders have lower D,/Dg than if the age of onset is late in life
(Supplementary Table 1). This could simply reflect lack of power, since we have data on very
few genes (14) that cause exclusively late onset disorders; alternatively, mutations in the genes
may have pleiotropic effects, or the age of onset may have been earlier in the past [18].

In contrast, we found a highly significant effect of the mode of inheritance on conservation
levels of the protein (p < 1073; see Supplementary Information 1): D,/Ds values tend to be
higher in genes with recessive disease mutations (median = 0.184, n = 452) than those with
dominant disease mutations (median = 0.084, n = 294), and intermediate in X-linked genes
(median =0.138, n = 64) (Figure 2; see also [19]). This association could reflect a confounding
factor. In particular, the mode of inheritance is known to vary markedly among GO functional
categories (e.g., Supplementary Table 2; see Methods for details). However, the mode of
inheritance remains a highly significant predictor of D,,/Dg after controlling for this and other
possible covariates (Supplementary Table 3).

We then combined human polymorphism and human-rhesus macaque divergence data to
estimate the fraction of amino-acid sites that are not strongly deleterious, ». We also estimated
the selection coefficient acting on homozygote mutations in disease genes, y (assuming a fixed
selective effect); this value can be thought of as a summary of the pooled polymorphism and
divergence data for genes in a given category (see Methods). As shown in Figure 3, there
appears to be more widespread and stronger purifying selection on genes associated with
dominant rather than recessive disease phenotypes.

of genes associated with simple vs. complex diseases

Next, we compared conservation levels of genes in hOMIM to those of genes in which
mutations are associated with cancer or contribute to other complex disease susceptibility,
genes for which knock-outs are inviable or sterile in mouse [16] (hereafter “essential genes”),
and genes not known to influence disease risk (see Methods). Comparisons of D,/Dg suggest
that, as a class, proteins that are essential in mouse and those in which mutations are associated
with cancer evolve slowest (Figure 4; median Genome D,,/Dg=0.077 and 0.061, respectively).
In turn, the coding regions of hOMIM genes tend to be slightly, but significantly, more slowly
evolving than genes not associated with disease (median Genome D,,/Dg = 0.133 vs. 0.139,
respectively; see Supplementary Table 1 for p-values).

The polymorphism data further suggest widespread purifying selection on amino-acid sites in
these gene categories (Figure 4). Notably, in all three sets of genes, non-synonymous variants
are at significantly lower frequency than synonymous sites (see Supplementary Figure 2). A
similar conclusion emerges when combining polymorphism and divergence data to estimate
selection parameters @ and y (Figure 3). Thus, our findings lend further support to the
hypothesis that proteins underlying Mendelian disease or associated with human cancers
evolve primarily under purifying selection.

While a model of mutation-selection balance was also proposed for genes that influence
complex disease risk [7], this group does not show evidence for more conservation than non-
disease associated genes. Instead, it tends to have a higher D/Dq ratio (median Genome D/
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Dg = 0.203) than hOMIM or other genes, consistent with one of the earlier reports for human-
mouse [14]. This difference between genes associated with complex vs. Mendelian diseases is
still significant after correction for GO categories, and after exclusion of genes associated with
immune response (the median Genome Dy/Dy after exclusion is 0.172; see Methods and
Supplementary Figure 1).

In polymorphism data, the allele frequencies of amino-acid variants in genes that influence
complex disease susceptibility tend to be higher than in other categories of genes, including
genes not associated with disease (Figure 4). Moreover, among genes associated with complex
disease susceptibility, allele frequencies do not differ significantly between amino-acid and
silent variants (Supplementary Figure 2). These findings do not appear to be explained solely
by the ascertainment bias of complex disease gene discovery or the smaller number of genes
in this category (see Supplementary Information 1). Together, they suggest that genes
associated with complex disease susceptibility tend to be under less pervasive purifying
selection than other classes of essential or disease genes. In further support of this conclusion,
the estimate of w is higher for genes associated with complex disease risk than for Mendelian
or even for non-disease associated genes, as is the estimate of the selection coefficient, y
(Figure 3).

Why would this be the case? Two (non-mutually exclusive) explanations are that: (i) A
substantial fraction of “other genes”, although not known to be essential in mouse or to be
associated with human disease, are in fact under widespread and strong purifying selection. In
contrast, alleles that contribute exclusively to complex diseases tend to explain only a small
proportion of disease risk [9] and to be late onset in their effects, so they may have little fitness
consequences. If so, changes in genes associated with complex disease risk may be under very
weak, if any, purifying selection. (ii) Genes that influence complex disease susceptibility
include loci under widespread purifying selection, but are also enriched for targets of positive
selection, thus appearing to be less conserved when considered as a class. For example, if we
consider all candidate loci evaluated for evidence of selection by Sabeti et al. [20], there appears
to be an enrichment for targets of selection among genes associated with complex disease risk
relative to Mendelian disease genes: 8.3% (6 out of 72) genes fall in the empirical 5% tail of
the distribution of at least one statistic in at least one population, when only 1.1% of genes in
hOMIM do (p = 4.74x10%, by a two-tailed FET). Complex disease mapping is in its infancy,
so that it is too early to distinguish reliably between hypotheses -- especially as the genes that
have been found to date are likely an unrepresentative subset (see Methods). Nonetheless,
existing data raise the possibility that, while simple disorders are generally well described by
models of purifying selection, complex disease susceptibility is tied, at least in part, to
evolutionary adaptations.

Hand-curating OMIM

Our goal was to create a list of all genes that contribute to human diseases with a simple genetic
basis. To do so, we used the Online Mendelian Inheritance in Man database (OMIM,;
http://www.ncbi.nIm.nih.gov/entrez/query.fcgi?db=OMIM). OMIM is the most exhaustive,
publicly available repository of information about human disease phenotypes. However, it
suffers from a number of limitations: for example, entries do not have a standard format, and
outdated information is supplemented with new data, rather than replaced. Moreover, while
most phenotypic entries are Mendelian, or at least have a simple genetic basis, a non-negligible
fraction of entries are clearly complex in etiology (e.g., autism). These features make automated
queries highly unreliable.

Curr Biol. Author manuscript; available in PMC 2009 June 24.
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We therefore decided to create a hand-curated summary of the OMIM database (hereafter
referred to as hOMIM), consisting of a list of (gene, phenotype) pairs, together with phenotypic
information about the mode of inheritance and age of onset. A description of how the list was
constructed is provided in Supplementary Information 1, and the list is available in
Supplementary File A. This process yielded a list of 1685 unique (gene, phenotype) pairs for
examination, corresponding to 1039 distinct genes. To run our analyses, we excluded
phenotypes that were clearly complex or caused by triplet repeat expansions; 1613 (gene,
phenotype) pairs remained.

In our analysis of Mendelian disease genes, we also tried using a smaller list of OMIM (gene,
phenotype) pairs compiled independently by Jimenez-Sanchez et al. (2001) [21] using slightly
different criteria; the qualitative conclusions were the same (results not shown).

List of genes that contribute to complex disease susceptibility

To create a list of genes that influence complex disease susceptibility, we relied on two sources.
First, we used compilations in three surveys of association studies [2,22,23]. To create a more
stringent set of genes, we used only genes for which the associations had been replicated at
least once, or where a meta-analysis supported the original association (i.e., bolded entries in
Table 2 of [22], as well as entries in Table 2 in ref [23] and Table 1 in ref [2]). Second, we
tabulated results from genome-wide association studies of complex disease susceptibility
published by June 7, 2007 (see Supplementary Materials B for references). Of the associations
reported in these studies, we retained only cases in which the association had been replicated,
and where a specific candidate gene had been identified by investigators. From these sources,
we found 72 genes associated with complex diseases but are not known to cause Mendelian
diseases (i.e., not included on our hand-curated version of OMIM), of which 46 met our more
stringent criteria. In our analysis, we considered genes that contribute to both complex disease
risk and Mendelian diseases as Mendelian disease genes.

In addition, we analyzed a set of 363 genes in which mutations are associated with cancer
susceptibility (http://www.sanger.ac.uk/genetics/CGP/Census/germline_mutation.shtml), as
well as a set of genes for which knock-outs were inviable or sterile in mice[16] (downloaded
from http://www.umich.edu/~zhanglab/download/Liao_ MBE2006_update/essential.txt).
When comparing classes of genes, we classified genes that belong to multiple categories in the
following order of priority: hOMIM, complex, cancer, essential, other, so that genes are only
in “other” category if not associated with any type of disease and not known to be essential in
mouse. We also ran the D,/Dg analyses excluding the genes that belonged to multiple categories
and the results were unchanged (not shown).

GO categories and patho-physiologies

In order to examine the functional annotation of genes, we used the gene ontology (GO)
database (http://www.geneontology.org/). Specifically, we retrieved the (level 2) GO
assignment of each gene by examining the specific GO terms with which each gene is
associated, as determined by EBI (http://www.ebi.ac.uk/). We then located each of these terms
on the overall directed acyclic graph (DAG) structure of GO, and traced back to their ancestral
terms at this level of annotation. Both the EBI annotations of the genes and the entire DAG
structure were downloaded from the database site on September 215, 2006. In one analysis,
we excluded genes associated with immune response, by removing all genes that are associated
with the immune system process ontology (GO:0002376) or with any of its subontologies. We
also used the pathophysiology classifications of Huang et al. (2004) [13]. This information was
available for 99% and 77% of the genes in hOMIM, respectively, for 93% and 28% of genes
associated with a complex disorder, and for 96% and 7% of genes in which mutations are

Curr Biol. Author manuscript; available in PMC 2009 June 24.


http://www.sanger.ac.uk/genetics/CGP/Census/germline_mutation.shtml
http://www.umich.edu/%E2%88%BCzhanglab/download/Liao_MBE2006_update/essential.txt
http://www.geneontology.org/
http://www.ebi.ac.uk/

1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Blekhman et al. Page 6

associated with cancer. The GO categories for each gene are available in Supplementary
Materials C.

Human coding sequences

The Refseq collection of human transcripts was downloaded from
ftp://ftp.ncbi.nih.gov/refseq/H_sapienssrmRNA_Prot on March 18th, 2006. For each gene on
our list, we examined all records corresponding to it and selected the longest coding sequence
for the gene. In the case of IGKC, Ig kappa chain C region, which does not have a record in
refseq, we used the coding sequence in Genbank record BC073791.1.

Estimates of human-rhesus macaque D,/Dg

For divergence data, we used human-rhesus macaque alignments taken from 10,376 1:1:1
orthologous alignments between human, chimp, and rhesus[24], kindly provided by Adam
Seipel at Cornell University. We estimated D,/Ds for each gene using the PAML package
[25], with the default parameters for nuclear DNA. We excluded cases where synonymous
divergence was 0, and set D/Dg to 0 when non-synonymous divergence was 0. This set of
estimates is referred to throughout as the “genome D,/Ds” values. To map the genes to those
on our compilations of disease associations, we used all known gene symbols and aliases from
the kgAlias table at the UCSC Genome Database. Genes from the Cornell dataset for which
we could not find a symbol were not included in the analysis.

These data only provided alignments for 50% of genes in hOMIM. To increase the number of
Mendelian and complex disease genes for which we could estimate D,/Ds, we also built our
own alignments. For this purpose, unassembled sequence of the rhesus macaque genome was
downloaded on February 17!, 2006 from http://www.hgsc.bcm.tmc.edu/projects/rmacaque!/;
for details on how orthology was determined, see Supplementary Information. Each human
gene sequence was aligned to its rhesus macaque ortholog using the GAP program [26]. Using
the translation of the coding sequence of the human gene, we retained only positions
corresponding to whole codons. If an insertion in rhesus macaque sequence occurred within
codons, the codons affected by the insertion were removed, as were codons where the rhesus
macaque sequence contained a stop codon. We used the PAML package [25] to estimate the
D, /Dy ratio for the resultant pairs of aligned orthologous sequences. Only genes for which the
rhesus macaque sequence covered at least 50% of the human sequence were included in the
analyses. This process yielded D/Dg information for 952 hOMIM genes, 65 genes associated
with complex diseases, and 326 genes in which somatic mutations are associated with cancer
susceptibility. The D,/Dg estimates for all genes analyzed are available in Supplementary
Materials D.

Human polymorphism data

We analyzed polymorphism data from two resequencing efforts, the NIEHS SNPs
(http://egp.gs.washington.edu/) and SeattleSNPs (http://pga.gs.washington.edu/) databases
(on August 21, 2006). We analyzed European samples and African (or African-American)
samples separately. Sub-Saharan African populations do not appear to have experienced a
recent bottleneck, in contrast to European populations (e.g., ref [27]), so that their allele
frequencies may be closer to mutation-selection balance. On the other hand, much of the
anecdotal evidence for selection on genes associated with complex disease risk is in Europeans

(e.g., [28]).

In addition, we analyzed the resequencing polymorphism data in the Applera dataset [11], a
genome-wide resequencing effort, considering European-American or African-American
samples separately. We also ran the same analyses pooling all population samples, and the
qualitative conclusions were unchanged (results not shown). The Applera project also
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sequenced a chimpanzee to infer the ancestral state, and we used their inference to construct a
derived frequency spectrum (see below). We mapped the Applera dataset genes to genes in
our lists of Mendelian and complex disease genes as described for the rhesus genome
consortium alignments. We used the set of non-synonymous polymorphisms to calculate
Tajima's D [29], a summary of the (folded) allele frequency spectrum known to be sensitive
to the effects of purifying selection [29]. To do so, we excluded SNPs with small sample sizes
(<10 individuals) and more than 10% missing data, as well as genes with 0 non-synonymous
polymorphisms. The following formula was used to calculate Tajima's D for each gene:

M

71,‘—1
— — i n; .
D=Z(H”(i) — H“.(,'))/W H;r(,'):Tllzpi(l - Pi)vew(i)zl/anivanizz 1/k
=1 , where i =1, njisthe sample
size at site i, and pj is the allele frequency at site i. W was defined following Tajima (1989)

[29], as: W= Ve1S+exS (S — 1) where

2
2 Cr Nmax+2 a2 . 1 2(nmax " +Nmax +3)
e=— e1=—,c=by — —+—2,61=b1 - —by=———
ajtas a a1 Nmax aj ai max(Mmax — 1)
)
Nmax—1 Nmax—1
Amax + 1
b= ——m= ) 1/Ra= ) 1/k
3(max — 1)

k=1 k=1 , S is the number of segregating sites, and Npay is
the maximum sample size over all sites. The Tajima's D values are available in Supplementary
Materials D.

We also calculated the frequency spectrum for each gene by creating 20 bins of allele
frequencies (<5%, 5-10% etc...) and tabulating the number of alleles in each bin. We then
created an “average frequency spectrum” for each category (e.g., autosomal dominant) by
summing the number in each bin over all genes in that category (effectively concatenating all
genes in a given category).

Statistical analyses

To assess whether the distributions of a statistic (D,/Dg or Tajima's D) differed between two
groups of genes (e.g., those in which mutations cause autosomal dominant vs. autosomal
recessive disorders), we used a Kolmogorov-Smirnov test. Details are provided in
Supplementary Materials 1. To test whether Dn/Dg or Tajima's D predicted the odds of
belonging in a given category, we performed logistic regressions using the R function glm with
the binomial() parameter (www.r-project.org). A p-value was calculated using the anova
function. To examine the selective pressures acting on amino-acid variants, we calculated the
mean derived allele frequency for synonymous and for non-synonymous SNPs for each gene.
To assess if they differed, a Wilcoxon matched-pairs signed-rank test was performed on the
two paired value lists using the wilcox.test() function in R, considering only genes that had
both synonymous and non-synonymous SNPs in the sample.

Estimates of y and w

We estimated two selection parameters, y and o, using a Bayesian method (mkprf) that relies
on the entries of a McDonald-Kreitman table [11]. The parameter y = 2N¢s (where Ng is the
effective population size) is the scaled selection coefficient acting on homozygous carriers of
amino-acid mutations. In turn, o = log(br/6s) is a measure of constraint on amino-acid
mutations (cf. [30]): 6r and B are estimates of the effective rate of replacement and silent
mutations, so that their ratio indicates what fraction of amino-acid mutations can contribute to
polymorphism (i.e., is not strongly deleterious).

The mkprf approach uses the number of synonymous and non-synonymous polymorphisms
with humans and the number of synonymous and non-synonymous fixed differences between
species (here, human and rhesus macaque). Attractive features of the method are that it uses
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information from polymorphism and divergence jointly, and depends only on the number of
polymorphisms, not their frequency, so should be insensitive to possible ascertainment bias
effects on the frequency spectrum of genes associated with complex disease. We relied on the
polymorphism data from the Applera project, pooling population samples; more details are
provided in Supplementary Information 1. Specifically, we summed the entries of the MK
tables for all genes within a category (e.qg., all genes associated with complex disease
susceptibility), excluding X-linked genes (see [11] for details). This approach assumes a fixed
selection coefficient across mutations and all genes, effectively averaging over the distribution
of selective effects of mutations that contribute to polymorphism or divergence. This highly
restrictive assumption makes the absolute value of y difficult to interpret; however, its ordering
across categories is meaningful for a wide variety of distributions of selection coefficients (see
Supplementary Materials). Moreover, y can also be thought of not as a parameter estimate but
as asummary of the pooled MK tables for each category, thereby capturing similar information
to the odds ratio (see Figure 3). For all genes, we assumed a dominance coefficient h = %, but
we note that, other than in the case of over-dominance (i.e., h>1), this assumption does not
affect estimates of the selection coefficients acting on homozygotes [17].

The allele frequency spectrum at genes associated with complex disease

In analyzing the allele frequency at genes associated with complex disorders, it is important
to note a number of ascertainment biases. Indeed, genes known to influence complex disease
risk have mainly been identified by association studies, so are likely to harbor at least one
common allele [5]. We ran resampling analyses to assess the possible effect of this
ascertainment bias on Tajima's D and found it to be relatively minor (see Supplementary
Information 1), while the effects on D,/Dg and estimates of y from the mkprf method are
expected to be negligible (see above).

A second consideration is that genes first discovered to influence complex disease risk probably
have unusually large effects on the disease phenotype, which implies common alleles yet to
be discovered are likely to explain a smaller proportion of the variance. If so, one might predict
that the genes yet to be discovered will be under less selection. This said, there may also remain
unknown genes associated with complex disease risk that harbor rare alleles of large effect,
and are under relatively more conserved than genes identified to date.

Evidence for positive selection at genes associated with disease

Sabeti et al. (2006) [20] considered all genes previously reported to be under positive selection
and assessed whether patterns of polymorphism and divergence were unusual relative to
background patterns of variation in the genome. For each gene, they reported the percentiles
of the distribution of various test statistics designed to detect signatures of selection (their Table
S4). We used their criterion, considering a gene to show evidence for selection if it fell in the
5% tail of at least one statistics in at least one of the three populations. This included 6 genes
on our list of complex disease genes (out of 72), but only 11 genes in hOMIM (out of 1004).
We note that Sabeti et al. predates the publication of one of the best characterized cases of
positive selection on a gene associated with complex disease, TCF7L2 [28]. Moreover, the few
genes in hOMIM which showed evidence of selection may be unusual, as they include HFE
and BRCAL (which others have considered as associated with complex rather than Mendelian
disorders [14]), as well as genes such as G6PD and HBB, which are known to be involved in
the resistance to malaria.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Mode of inheritance and age of onset of disease phenotypes in our hand-curated version of the

OMIM database. The data are in Supplementary Materials A.
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Cumulative distributions of D/Dy (for two sets of alignments) and Tajima's D as a function
of the mode of inheritance. The value of the statistic is given on the x-axis. AR refers to
autosomal recessive and AD to autosomal dominant. In parenthesis are the numbers of genes
in each category. The distributions of D,,/Dg for AD and AR categories are significantly
different from one another, but the distributions of Tajima's D values are not (see
Supplementary Table 1). Tajima's D was calculated for amino-acid variants, using the
European population sample; when the African-American sample is used instead, the order of
AR and AD is reversed but again the distributions are not significantly different (not shown).
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Figure 3.

Estimate of two parameters, o and y, obtained from pooled polymorphism and divergence data
in different categories of genes, including those in hOMIM, those associated with complex
disease susceptibility (“complex”), with cancer (“cancer”), for which knock-outs are inviable
or sterile in mice (“essential”) and genes in none of the above categories (“other”). Genes in
hOMIM are further broken down into two categories, depending on whether mutations cause
dominant (“AD”) or recessive (“AR”) disease phenotypes. Shown are the mean and the
standard deviation of the posterior distribution estimate for each parameter. The parameter
o=log(br/6s) can be thought of as the fraction of amino-acid mutations that contribute to
polymorphismi.e., are neutral or nearly neutral (6 is the effective mutation rate at replacement
sites and 0g at synonymous sites), while vy is the selection coefficient acting on mutations in a
category of genes. The estimates are obtained by assuming one selection coefficient y for all
mutations within a category; given this unrealistic assumption, the value of the y estimate is
less informative than the ordering for the different categories (see SOM for details). Summaries
of the pooled polymorphism and divergence data for genes in each category are given in the
last panel (see Methods for details). We note that y can also be thought of not as a parameter
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estimate but as a summary of the pooled tables for each category, thereby capturing similar
information to the odds ratio (shown below).
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Figure 4.

Cumulative distributions of Dp/Dg and Tajima's D for hOMIM, genes associated with complex
disease susceptibility (“complex”), in which mutations are associated with cancer (“cancer”),
for which knock-outs are inviable or sterile in mice (“essential”’) and genes in none of the above
categories (“other”). For other details, see legend of Figure 2. The distributions of D,/Ds are
significantly different in all pairwise comparisons (at the 5% level), other than in the
comparisons of “essential” genes vs. “cancer” genes and of “other” genes vs. “complex”
disease, where significance is marginal (see Supplementary Table 1). The distributions of
Tajima's D values in the larger Applera dataset (shown here for the European samples) are
significantly different for genes associated with complex diseases vs. either hOMIM or generic
genes at the 5% level (see Supplementary Table 1); all other pairwise comparisons are also
significant, other than cancer vs. hOMIM, hOMIM vs. essential, and other vs. essential.
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