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ERp44 mediates thiol-dependent retention in the early secretory
pathway, forming mixed disulphides with substrate proteins
through its conserved CRFS motif. Here, we present its crystal
structure at a resolution of 2.6 Å. Three thioredoxin domains—a,
b and b0—are arranged in a clover-like structure. A flexible
carboxy-terminal tail turns back to the b0 and a domains,
shielding a hydrophobic pocket in domain b0 and a hydrophobic
patch around the CRFS motif in domain a. Mutational and
functional studies indicate that the C-terminal tail gates the CRFS
area and the adjacent hydrophobic pocket, dynamically regulating
protein quality control.
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quality control
EMBO reports (2008) 9, 642–647. doi:10.1038/embor.2008.88

INTRODUCTION
The endoplasmic reticulum (ER) contains many chaperones and
enzymes, providing a unique environment for oxidative folding,
other post-translational modifications and the quality control of
secretory proteins (Sitia & Braakman, 2003). Oxidative protein
folding proceeds through protein-driven disulphide interchange
relays, with protein disulphide isomerase (PDI) having a crucial
role (Ellgaard & Ruddock, 2005). ERp44 is a member of the PDI
family and is composed of an amino-terminal thioredoxin (Trx)
domain a, endowed with a CRFS motif, followed by two redox
inactive Trx-like domains, b and b0, and contains a carboxy-
terminal ER retrieval signal. Consistent with its role in folding and
transport in the secretory pathway (Anelli et al, 2002, 2003, 2007),

ERp44 is induced during ER stress and abundantly expressed in
secretory tissue cells (www.hpr.se).

The existence of numerous PDI members in the early secretory
apparatus with various numbers, redox potential and arrange-
ments of Trx-like domains suggests subtle specificities in their
functions (Maattanen et al, 2006). Having a CRFS motif, ERp44
cannot be an efficient oxidoreductase. However, the absence of
the second cysteine allows longer-lived mixed disulphides to be
formed, a characteristic compatible with its role in quality control.
ERp44 contributes to retain Ero1a and Ero1b intracellularly, the
two rate-limiting factors in PDI oxidation (Mezghrani et al, 2001),
by forming mixed disulphides through Cys 29 in its CRFS motif
(Otsu et al, 2006). Similarly, ERp44 forms transient disulphides
with immunoglobulin M subunits (Anelli et al, 2002, 2003, 2007),
adiponectin (Wang et al, 2007) or formylglycine-generating
enzyme (FGE; Mariappan et al, 2008), regulating their transport.
In addition to its crucial role in thiol-mediated retention and
quality control, ERp44 interacts with inositol 1,4,5-trisphosphate
receptor type I, inhibiting its Ca2þ channel activity (Higo et al,
2005). These crucial regulatory roles prompted us to investigate
the structure of ERp44. So far, among eukaryotic enzymes
catalysing oxidative folding, full-length three-dimensional struc-
tures are available for yeast PDI (yPDI; Tian et al, 2006), and
isolated domains of human PDI (hPDI; Gruber et al, 2006) and
ERp57 (Kozlov et al, 2006). Here, we describe the crystal structure
of human ERp44 (ERp44) at 2.6 Å, the first complete structure of a
mammalian PDI family member. Biochemical and functional
analyses of wild type and mutants suggest a regulatory role for the
C-terminal tail (C-tail) in regulating substrate binding and release.

RESULTS AND DISCUSSION
Overall structure of ERp44
ERp44 was crystallized into space group P3121. The crystal
structure of a selenomethioninyl derivative was solved and refined
to 2.6 Å with 87% residues traced clearly into electron density
maps (supplementary Table S1 online). The overall structure
resembles a clover composed of three domains—a, b and b0—and
a C-tail, which bridges domains b0 and a, resulting in a compact
appearance (Fig 1A). Domains a, b and b0 all share the Trx fold
(babababba) with some distinctive variations (Fig 1B). Domain a
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(residues 1–112) lacks the first b strand and comprises a four-
stranded central b-sheet (b1, b2, b4 and b5) flanked by two
a-helices (a1 and a3, a2 and a4) on each side, and one additional
b-strand (b3) between a3 and b4. Domain b (residues 113–215)
has two segments (residues 119–130 and 170–177) at the
corresponding loci of the two canonical a-helices with poor
electron density for modelling. Finally, b0 (residues 216–325) has
three additional 310 helices (Z1, Z2 and Z3). The C-tail (residues
326–377) is flexible and mainly composed of random coils in
addition to one short strand b16 (residues 369–370), which is
antiparallel to b3 in domain a, and two short 310 helices: Z4
(residues 326–328) and Z5 (residues 358–360) filling the cavity
lined by helices a7 and a9 in domain b0 (Fig 1A).

ERp44 contains six cysteine residues (29, 63, 160, 212, 272
and 289) with Cys 272 and Cys 289 forming a disulphide bond in
domain b0 (Fig 1A,B). The short distance (4.3 Å) between Cys 160
and Cys 212 in domain b suggests a strong potential to form a
covalent linkage, which was found in the structure of an ERp44
crystal soaked in 1 mM glutathione/0.2 mM glutathione disulphide
(data not shown). This disulphide bond is likely to be present
in vivo, which is consistent with our previous observations (Anelli
et al, 2002, 2003).

The CRFS motif in domain a
The a domains of ERp44 and yPDI can be superimposed with a
root mean square deviation (r.m.s.d.) of 1.1 Å for 103 structurally
homologous Ca atoms (Fig 2A). The domains differ in the active
site motif: CRFS (residues 29–32) in ERp44 instead of the
canonical CXXC in yPDI. In ERp44 the Cys 29 sulphydryl is
within hydrogen-bonding distance to the side-chain hydroxyl of
Ser 32, in the equivalent position of Cys 64 in yPDI, and the
hydroxyl of Thr 369 in the C-tail (Fig 2B). The side chain of Arg 30
extends at the surface and shows high flexibility in the crystal
structure. Phe 31 occupies the equivalent position of His 63 in
yPDI and forms one part of a hydrophobic patch around the CRFS
motif, together with Met 34, Pro 37, Ile 38, Val 45 and Val 100.
The other part of the hydrophobic patch is formed by the highly
conserved Trp 28, together with Ala 70, Ile 75, Tyr 78, Pro 79,
Leu 81 and Tyr 94 on the other side of the CRFS motif. The latter is
similar to the hydrophobic patch surrounding the CGHC motif in
yPDI but is shielded by the C-tail (Fig 2C). The resulting
contiguous hydrophobic patch around the CRFS could be
involved in client protein binding, as in PDI (Tian et al, 2006).

Similar to other Trx family members (Tian et al, 2006), residue
Pro 79 in the cis conformation neighbouring the CRFS motif
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Fig 1 | Overall structure of human ERp44. (A) Stereo ribbon view of the structure of ERp44. The dotted lines denotes the regions (residues 51–53,
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(Fig 2A) could be important for maintaining the substrate binding
ability and reactivity of the active site. Much attention has been
paid to buried salt bridges that are formed by Glu 55/Gln 87 in
yPDI (Tian et al, 2006), Asp 26/Lys 57 in Trx (Carvalho et al, 2006)
and Glu 24/Lys 58 in DsbA ( Jacobi et al, 1997), for their possible
role in regulating the redox state of the N-terminal cysteine in
CXXC active sites. However, the corresponding residues in
ERp44 (Asn 23 and Arg 60) do not form a salt bridge (Fig 2A);
therefore, the special residue environment around the CRFS
motif might specifically modulate the binding of physiological
partner proteins.

A hydrophobic pocket in domain b0 shielded by the C-tail
In both hPDI and yPDI, the b0 domain is thought to be a primary
substrate binding site (Klappa et al, 1998; Tian et al, 2006). A
similar hydrophobic pocket in ERp44 is shown by superposition of
the b0 domains of ERp44 and yPDI with an r.m.s.d. of 1.8 Å against
95 aligned Ca atoms (Fig 3). In ERp44, this pocket is formed by
three strands (b12, b13 and b14) flanked by two helices (a7 and
a9) with a diameter of approximately 16 Å, a depth of about 5 Å
and a solvent-accessible surface area of about 200 Å2. The upper
portion of this pocket is composed of Ile 219, Gly 224, Phe 234,
Ala 270, Phe 275, Pro 278 and Phe 297, and the lower part is
composed of Ile 236 and Phe 238, with Ala 293 at the bottom (Fig 3).
Sequence alignment based on the structures of ERp44 and yPDI
indicated high similarity of the residues composing the hydrophobic
pocket (supplementary Fig S1 online). The hydrophobic pocket
in domain b0 and the adjacent hydrophobic patch in domain a

(supplementary Fig S2 online) might act as a docking site for ERp44
substrates. However, this region is partly covered by the C-tail
extending from domain b0 to domain a (Fig 3). The Z5 helix of the
C-tail settles onto the hydrophobic pocket similar to a lid, with
Phe 358 and Leu 361 providing additional anchors (Fig 3), which
might reduce the accessibility to client proteins. The importance of
hydrophobic interactions is supported by the observation that non-
covalent interactions between ERp44 and FGE can mediate ER
retention (Mariappan et al, 2008). Hence, the hydrophobic surface
in domain b0 of ERp44 shows strong structural analogies to the
binding site of yPDI, but its accessibility is limited by the observed
conformation of the C-tail.

Removal of the C-tail increases ERp44 activity
To analyse whether the C-tail could have a regulatory role in
substrate binding, we analysed a panel of mutants. As shown in
Fig 4A, wild-type ERp44 showed little reductase, oxidase or
isomerase activities. Replacing Ser 32 by a cysteine or transplant-
ing CGHC (the PDI active motif) for CRFS did not significantly
restore enzyme activities. Compared with the full-length counter-
parts, however, the ERp44D(331–377) deletion mutant showed a
significant increase (about fivefold) in enzyme activities, which is
consistent with a regulatory role of the tail.

Next, we compared ERp44 and ERp44D(331–377) for their
ability to suppress the aggregation of denatured rhodanese during
refolding on dilution. ERp44 showed no chaperone activity; by
contrast, ERp44D(331–377) suppressed aggregation as effectively
as hPDI (Fig 4A; supplementary Fig S3 online). Both the rate and
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extent of rhodanese aggregation decreased with the increase in
the concentrations of ERp44D(331–377) (supplementary Fig S4
online). Also, ERp44D(331–377) bound to Ero1a in vitro more
efficiently than ERp44 (Fig 4B). The deletion mutant also bound
to Ero1a and Ig-m chains more efficiently when expressed in
HeLa cells (supplementary Fig S4 online). However, it showed
similar stability, detergent solubility and circular dichroism
patterns (supplementary Fig S5 online), and bound to the
ER–Golgi intermediate compartment marker 53 with a similar
efficiency (supplementary Fig S4 online), excluding gross
structural alterations.

Further evidence for a regulatory role of the C-tail originates
from the effects of two point mutations, T369C and T369A.
ERp44T369C showed an impaired binding to Ero1a in vitro;
pretreatment with dithiothreitol partly restored binding, suggesting
that an intramolecular bond is formed between Cys 29 and
Cys 369 that locks the tail and impedes substrate binding. By
contrast, ERp44T369A, unable to form a hydrogen bond with
Cys 29, bound to Ero1a more efficiently, which is in line with an
increased accessibility of the CRFS motif and the hydrophobic
surfaces (Fig 4B). In addition, T369A efficiently prevented
rhodanese aggregation (Fig 4A; supplementary Fig S3A online).
Thus, shielding of client protein binding by the C-tail occurs in
solution and is not an artefact of crystallization.

To confirm the in vitro data, we expressed the mutants in
human cell lines. Removal of the C-tail or replacing Thr 369 by
alanine increased significantly the fraction of ERp44 that
forms mixed disulphides with endogenous proteins in HeLa cells
(Fig 4C), as well as in human embryonic kidney (HEK)293 or
human hepatocellular liver carcinoma (HepG2) cells (data not
shown). These data also suggest that in living cells the flexible tail
dynamically hampers the reactivity of ERp44 with its endogenous
client proteins (supplementary Fig S2 online), perhaps restricting
its specificity. In this respect, an interesting analogy is found in
yeast Ero1, the flexible loop of which regulates electron fluxes
(Sevier & Kaiser, 2007). It will be of interest to identify the
mechanisms that control the ERp44 tail movements.

Concluding remarks
Although ERp44 interacts with substrates through mixed dis-
ulphide bonds (Anelli et al, 2002, 2003; Otsu et al, 2006),
hydrophobic interactions are important in aligning Cys 29 to target
cysteines in the client proteins. Our findings suggest a role of the
ERp44 C-tail in regulating substrate binding and release during
protein quality control in the early secretory apparatus.

METHODS
Crystallization. The complementary DNA encoding ERp44
(accession code CAC87611) without signal sequence (Anelli et al,
2002) was subcloned into pGEX-6P-1 (Amersham, Buckinghamshire,
UK) at BamHI and XhoI sites (also for the template of all the
mutations (Fig 4A)) and expressed in BL21 (DE3) plysS (Novagen,
San Diego, CA, USA). After removing the glutathione S-transferase
(GST) tag, the purified protein was methylated using borane-
dimethylamine complex (Aldrich, St Louis, MO, USA; Liu et al,
2005) and crystallized in 20 mM Tris–HCl (pH 7.5), 1.2 M
disodium succinate and 0.1% N-dodecyl-b-D-maltopyranoside at
290 K by using hanging-drop vapour diffusion. Methylation does
not affect binding of ERp44 to Ero1a (data not shown).
Selenomethioninyl derivatives were prepared as described pre-
viously (Doublie, 1997).
Structural determination. Crystals were soaked in 3.3 M sodium
formate with 0.5 M disodium succinate for 2 h for dehydration and
flash-frozen in liquid nitrogen. One single-wavelength anomalous
diffraction data of selenomethioninyl derivate crystal was
collected at 100 K (l¼ 0.9790 Å) to 2.6 Å at the beamline BL5A
of Photon Factory, Japan. Data processing is described in the
supplementary information online. All figures for surfaces,
ribbons, balls and sticks were generated with Pymol (http://
pymol.sourseforge.net) and/or BobScript 2.6b (Esnouf, 1997).
Activity determination. Thiol protein reductase activity was
assayed as described previously (Ke et al, 2006) and isomerase
and oxidase activities were assayed according to Wilkinson et al
(2005) at 25 1C. The relative activity was calculated as (A�A0)/
(A1�A0)� 100%, where A is the activity of ERp44 protein, A1 the
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activity of recombinant hPDI (Li et al, 2006) and A0 the activity
of blank in the absence of protein. Chaperone activity was
determined as described previously (Song & Wang, 1995).
Analysis of mixed disulphides between ERp44 and endogenous
client proteins. HeLa, HEK293 and HepG2 cell lines were
obtained from ATCC (Manassas, VA, USA), transfected and
analysed as described previously (Anelli et al, 2002, 2003).
Coordinates. The structure has been deposited with the Protein
Data Bank (accession code 2R2J).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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