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Understanding protein interactions has broad implications for the
mechanism of recognition, protein design, and assigning putative
functions to uncharacterized proteins. Studying protein flexibility
is a key component in the challenge of describing protein interac-
tions. In this work, we characterize the observed conformational
change for a set of 20 proteins that undergo large conformational
change upon association (>2 Å C� RMSD) and ask what features of
the motion are successfully reproduced by the normal modes of the
system. We demonstrate that normal modes can be used to
identify mobile regions and, in some proteins, to reproduce the
direction of conformational change. In 35% of the proteins studied,
a single low-frequency normal mode was found that describes well
the direction of the observed conformational change. Finally, we
find that for a set of 134 proteins from a docking benchmark that
the characteristic frequencies of normal modes can be used to
predict reliably the extent of observed conformational change. We
discuss the implications of the results for the mechanics of protein
recognition.

conformational selection � elastic network model � induced fit �
protein interactions � protein recognition

Proteins are not static, and many undergo substantial rear-
rangements upon binding to other molecules (1). Such

changes are central to protein function (2). The limitations of our
understanding of conformational change impact markedly on
our ability to model such changes. A successful approach to
modeling protein flexibility, one of the key current challenges in
developing protein–protein docking algorithms, would have
far-reaching consequences for the fields of drug design and
function prediction.

The initial lock-and-key description of protein interaction,
first introduced by Fischer in 1894 (3), did not account for
conformational change and has since been modified, beginning
with Koshland’s induced fit hypothesis in 1958 (4). However, a
range of studies including molecular dynamics (picosecond–
nanosecond time scales), NMR, and single-molecule FRET
experiments (microsecond–millisecond time scales) (5–7), have
questioned the extent to which conformational change can be
considered induced by the binding partner.

An alternative mechanism is conformational selection, where
the native state of the protein exists in an ensemble of confor-
mations, with the partner binding selectively to a specific con-
formation, thus shifting the equilibrium toward the binding
conformation (8). An elaboration, proposed by Grunberg et al.
(9), describes a three-stage process consisting of (i) independent
diffusion of the receptor and ligand each subject to conforma-
tional f luctuations, (ii) an encounter between the receptor and
ligand leading to a series of microcollisions that may result in the
formation of a recognition complex, and (iii) either dissociation
of the encounter complex or formation of the bound complex
with possible further conformational changes resulting from
induced fit. An important question to address is, therefore, to
what extent the intrinsic thermal motion, rather than induced fit,
is responsible for conformational change.

Here, we use normal modes, which are related to the thermal
motion of individual proteins, to gain insights into the nature of
conformational change in protein–protein interactions. The
model used to calculate the normal modes considers C� atoms
only; thus, the conformational change we predict is associated
with backbone, and not side-chain, motion. We explore features
of the observed conformational change for a set of proteins and
contrast these with features of motion predicted by normal-mode
analysis (NMA). Specifically, for a set of 20 protein structures
[taken from the protein–protein docking benchmark 2.0 (10)]
that are observed to undergo large conformational change upon
complexation, we assess the success of normal modes at locating
mobile regions and describing the direction of conformational
change. Then, for a large benchmark set of proteins with diverse
conformational change, we show that normal-mode analysis can
provide a powerful guide as to whether a protein will undergo
substantial conformational change upon association. This infor-
mation would be useful to the protein docking community, which
at present can consistently predict only the interactions of fairly
rigid proteins correctly (11). Our protocol will allow the assess-
ment of whether a rigid-body approach to docking is likely to be
successful. Finally, insights gained into the dynamics of proteins
are interpreted within the framework for protein recognition.

NMA. Normal modes of vibration are simple harmonic oscilla-
tions characterizing the dynamics of the system around an energy
minimum (12). Each mode describes a state of the system where
all particles are oscillating with the same characteristic fre-
quency. The dynamic behavior of most systems of physical
interest may be approximated by a linear combination of normal
modes.

NMA has been used for more than three decades to study
protein flexibility, with early work focusing on �-polypeptides
(13), glucagon (14), and trypsin inhibitor (15–17). Historically,
NMA was hindered by the mathematical form of the Coulombic
and van der Waals potentials. However, a framework proposed
by Tirion (18), where the standard potential was replaced by a
simple pairwise Hookean potential between atoms within a
specified connectivity cutoff Rc of each other, has proved
accurate in reproducing normal modes. The success of this
elastic network model indicates that motions predicted by NMA
are robust to the models and force fields used.
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NMA has many limitations such as use of the harmonic
approximation, neglect of solvent damping, and an inability to
model energy barriers and multiple minima (19–21). Further-
more, the trajectory of protein motion will rarely be in a straight
line, and therefore an otherwise correctly predicted initial
direction of motion might deviate noticeably from the observed
conformational change (22). Despite these limitations, many
studies have found agreement between features of the motion
predicted by NMA and the observed or simulated conforma-
tional change of one or a small number of proteins (23–30). A
number of large-scale studies have assessed the success of
normal modes at describing protein motion as defined by the
database of macromolecular movements (31). The database
identifies putative motions if two or more substantially different
structures are available from the Protein Data Bank (PDB).
Tama et al. (32) found that, for half of the 20 proteins studied,
there was a single mode, most often one of the lowest three,
corresponding substantially with the observed conformational
change. Gerstein’s group (22, 33) has shown that the observed
motion lies most often in the direction of two modes, and that
the direction of motion is predicted most accurately for atoms
that move the most. A further study has looked specifically at
conformational change on association for four protein–protein
systems, finding in all cases that the motions predicted by NMA
correlate well with the observed conformational change, al-
though in three of the four cases, additional rearrangements,
attributed to possible induced fit effects, are required (34).

Recent studies have utilized this agreement between normal
modes and observed motion in a number of applications. For
example, normal modes have been used in docking refinement,
where all six cases in one study showed improvement in RMSD
after refinement along 5–10 of the lowest-frequency modes (35)
and in flexible docking (36–38), where the success has been
more varied. Coarse-grained normal modes have also been
shown to be useful for the prediction of functional sites (39).

Theory. The vectors calculated in NMA describe the direction
and relative magnitude of each atom’s motion. The overall scale
of motion is not defined and depends on the conditions of the
system, e.g., temperature. In cases where the range of masses is
small, the energetic cost of displacing the system by one unit
along its eigenvector depends largely on the frequency of the
mode (40). Because each mode is assigned kBT of energy, as
dictated by the equipartition theorem, the atomic fluctuations
will be greatest for low-energy modes.

The atomic fluctuations are given by:

��xi
2� �

kBT
m �

j�1

3N�6 aij
2

�j
2 , [1]

where ��xi
2� is the time-averaged square displacement of atom i,

�j is the frequency of mode j, aij is the displacement of atom i
under mode j, and N is the number of residues (41, 42). All atoms
are assigned mass m. Thus, the lower the mode frequency, the
larger is its general contribution to the displacement of atoms.
This relationship between mode frequency and the range of
atomic motion during thermal fluctuations is central to our
interpretation.

The RMSD of a protein is taken as the root of the average
square displacement over all N C� atoms. Hypothesizing that
conformational change is driven by thermal motion, we can
define a measure of predicted RMSD as:

RMSDpredicted � � 1
N �

j�1

3N�6 1
� j

2 , [2]

where we have used the normalization condition

�
i�1

N

aij
2 � 1.

Theoretically, from Eq. 1, the exact magnitude of motion can be
defined. However, this would require careful estimation of the
spring constant and mass parameters. To avoid this, we consider
only relative sizes of mode magnitudes to devise a measure of
relative predicted flexibility using the same value for the spring
constant for all proteins.

Results
The high-flexibility dataset contains 20 proteins that are ob-
served to undergo large conformational change upon complex-
ation (�2 Å C� RMSD). Using this dataset, we investigated the
extent to which the thermal motion of proteins, as modeled by
NMA, could provide insights into the general nature of confor-
mational change.

Fig. 1 illustrates the relationship between the observed motion
and the motion predicted by NMA for ecotin (1ecz). This profile
is typical for a protein where there is good agreement between
the low frequency modes and observed conformational change.

Global Features of Conformational Change. The observed RMSD
upon complexation for the high-flexibility dataset varies be-
tween 2.1 and 14.1 Å, with an average of 3.8 Å. The RMSD
measured over the binding-site atoms is, on average, 1.2 times
that measured over the entire protein. Ten proteins were char-
acterized by the software DynDom (25, 43) as undergoing
dynamic domain deformation implying quasi-rigid body motion
between domains. DynDom’s definitions often coincided with
structural definitions of domains based on interresidue contacts
(44). DynDom did not assign domain definitions for the remain-
ing 10 proteins.

The collectivity (K) of observed motion, which reflects the
number of atoms moving together, varies from 0.07 to 0.75, with
an average value of 0.45. A low collectivity might characterize a
small loop movement, compared with large-scale concerted
movement for those proteins with high collectivity. A correlation
of 0.65 is found between the observed collectivity and that
predicted by the lowest frequency mode (P value 0.002). Fur-
thermore, the average values for the observed and predicted
collectivity are 0.40 and 0.38, respectively. Thus, the low fre-
quency modes are not overestimating the collective character of
observed motion.

Particularly low collectivity for the lowest mode is observed in
four proteins. Closer inspection of all four reveals that the
predicted motion is localized to weakly connected terminal
regions. Excluding these proteins increases the correlation to
0.79. A additional three of the remaining four proteins where the
predicted and observed collectivity differ by �40% contain
missing residues, which are likely to prejudice the predicted or
observed collectivity.

Location of Conformational Change. The correlation function Cj
measures the agreement between the locations of displacements
of the conformational change and the mode j (see Fig. 2). The
average Cj for the lowest mode is 0.35, rising to 0.63 if one takes
the maximum Cj of the lowest 20 modes for each protein. For 12
proteins, the Cj for the lowest mode is �0.2; assuming normality
and independence, a correlation of �0.2 is highly significant for
a 200-residue protein (t test).

The mobility over the binding site was investigated for both the
observed motion and that predicted by normal modes. In many
proteins, the binding site was observed to have both rigid and
highly flexible regions. Fig. 3 compares the observed motion
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over the binding with the motion predicted by NMA for three
sample proteins. Splitting the binding site into core and periph-
ery residues, we find that for five of the proteins, the observed
motion of the peripheral residues is more than twice that of the
core, in agreement with other studies (45, 46).

Describing the Direction of Motion. The overlap Oj measures the
agreement between the direction of the conformational change
and mode j. The average Oj of the lowest mode is 0.24, rising to
0.54 if one takes the maximum Oj of the lowest 20 modes for each
protein. The maximum Oj over the 20 lowest modes is with one
of the lowest three modes in 12 proteins. Seven proteins are
found to have an Oj of �0.6 with one of the lowest three modes.
These results agree with another study (32) that observed a
maximum Oj of �0.6 in the lowest three modes in 7 of 20
proteins. We assessed the significance of our results by compar-
ing the maximum Oj of the three lowest-frequency modes to that
of three randomly selected higher-frequency modes. For 85% of
proteins, the difference in overlaps was found to be statistically
significant at the 95% level. Additionally, the mode with the
greatest Oj is also found to be the mode with the greatest
correlation Cj for eight proteins.

When considering the binding site only, the average Oj of the
lowest mode with the conformational change rises to 0.38, with
an average of 0.65 for the maximum of the lowest 20 modes.

The unbound protein structures can be optimally perturbed
along a single low-frequency mode to produce an altered struc-

ture that is closer to the bound coordinates. For proteins with Oj
�0.6 in one of the three lowest modes, applying an optimal
perturbation gives an average decrease of 37% in the RMSD
with the unbound structure. An additional problem for docking
applications would be choosing the ‘‘correct’’ mode; although the
maximum Oj of the lowest 20 modes for each protein was, on
average, 0.54, this is reduced to 0.43 and 0.36 when considered
the average of the best two and best three modes, respectively.
However, a study of eight complexes has shown that small
improvements in RMSDs can lead to limited improvements in
docking performance (47).

Predicting the Extent of Motion. We now focus our attention on the
main dataset of 134 proteins and investigate the ability of normal
modes to predict the extent of conformational change upon
complexation. Fig. 4 shows the full eigenvalue spectrum for each
protein in the main dataset plotted in order of increasing
predicted flexibility. The striking feature is that the proteins
observed as having high flexibility (�2 Å C� RMSD) are
concentrated in the top 40% of the plot. A Wilcoxon rank-sum
test shows the predicted flexibilities of the flexible and rigid
proteins to be drawn from different populations with a signifi-
cance value of 0.0003. Thus, we see that low-frequency modes are
generally a prerequisite for a protein to undergo a large con-
formational change. Furthermore, the proteins undergoing sub-
stantial conformational change have, on average, a lowest mode
whose frequency is 2.5 times lower than those that undergo
limited conformational change (�1 Å).

Fig. 1. Picture of protein inhibitor ecotin (1ecz) as cartoon (A), colored by the amplitude of the lowest frequency mode (with the scale blue to red representing
small to large amplitude respectively) (B), colored by extent of observed conformational change upon complexation with trypsin (with the scale blue to red
representing small to large displacement, respectively) (C), and amplitude of the three lowest frequency (nontrivial) modes and observed conformational change
amplitude along the length of the protein (D).

Fig. 2. Plots of maximum correlation (Cj) and overlap (Oj) for the high-flexibility dataset. Both quantities were calculated by using all residues assessing the
lowest 20 nontrivial modes only. The mode number (with which the maximum correlation/overlap is found) is printed in the bar for each protein.
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This result was found to be robust to varying the connectivity
cutoff, with lengths of 8, 10, and 14 Å resulting in similar
predictive power. Ranking the proteins by lowest-frequency
mode is also highly predictive [see supporting information (SI)
Fig. S1].

The cutoffs provided depend on characteristics of the normal
mode program, particularly the spring constant. Details of the
program and parameters used to produce these plots are given
in Materials and Methods. Raw data are supplied in Tables S1–S6.

A correlation might be expected between mode frequency and
protein size given that large proteins are more capable of
collective motion. In our results, protein size was also predictive
of conformational change but less reliably than mode frequency
(Wilcoxon test), with proteins undergoing large conformational
change found throughout the whole range of possible sizes (Fig.
S2). This fact, together with the theoretical basis for mode
analysis, has led us to select mode frequencies over protein size
for our predictive framework.

An analysis of those proteins with large conformational
change shows that there is no significant difference between the
distributions of predicted flexibility for those proteins with, and
those without, dynamic domains (as defined by DynDom—see
Materials and Methods) (Wilcoxon test) i.e., the method is not
specifically predicting dynamic domain motion. Although agree-
ment between the conformational change and lowest mode
direction (as described by Oj) is better for those proteins with
dynamic domains (Wilcoxon test, P value 0.05), no significant
difference remains when considering the maximum Oj of the
lowest 20 modes.

Three proteins are predicted to be highly flexible but undergo
only limited conformational change (�1 Å). For 1jvm (KCSA
potassium channel), missing coordinates for some residues in the
unbound conformation could have led to over-prediction of
mobility. For 1i49 (arfaptin) and 1fqi (regulator of G protein

signaling 9), missing coordinates in the bound conformation
could have led to an underestimation of true flexibility.

Proteins with multiple interaction partners may display large
variation in the extent of conformational change that they
undergo with each partner. For example, the RMSD for actin
(1ijj), varies between 0.89 and 2.72 for its four interaction
partners in the dataset. Because the available repertoire of
complexed structures may be incomplete, it is possible that
proteins in our dataset that do not follow the trend may follow
it in other interactions not included in this dataset.

A single protein with large conformational change, 2nip
(nitrogenase iron protein), lies in the lower 40% of the plot for
the predicted flexibility. Interestingly the second lowest mode of
this protein displays very good agreement with the direction of
observed conformational change (Oj � 0.83). This may suggest
amplification of the mode during induced fit or even a resonance
phenomenon produced by interaction with its large binding
partner.

CAPRI Targets. The critical assessment of prediction of interac-
tions (CAPRI) experiment provides periodic assessment of the
protein docking field by using a series of blind targets (48). We
apply our method to all suitable CAPRI targets up to target 27.
Again, we find that the method is highly predictive with no
proteins that undergo large conformational change found in the
lowest 45% of the plot (Fig. S3).

Discussion
Our results show that nearly all proteins with observed large
conformational change undergo substantial thermal motion in
isolation as predicted by NMA. With only one exception, our
proteins that have a limited range of thermal motion according
to NMA do not undergo substantial conformational change
upon association. Thus, large conformational changes, whether
due to induced fit or thermal motion, require an appropriate
level of intrinsic f lexibility.

Our results are consistent with the conformational selection
model, which requires proteins that exhibit substantial confor-
mational change upon complexation to be intrinsically f lexible.
This mechanism is supported by other studies where the un-
bound protein was found to sample conformations close to the
bound form (5–7, 34). However, our analysis shows that for only
approximately one-third of the proteins with a large conforma-
tional change upon association, do the direction and location of
motion along one of the lowest normal modes agree well with the
observed conformational change. This suggests that, in the
majority of interactions with substantial conformational change,
the bound conformation is substantially altered during the final
stage of the recognition process.

Our analysis finds that the observed mobility varies over the
binding site. This is consistent with work which suggest that the
binding site has ‘‘dual character’’ with regard to mobility (49).
Other studies have highlighted as relatively immobile catalytic

Fig. 3. Proteins 14-3-3 protein �/� (A), importin-�-FXFG nucleoporin complex
(B), and horse plasma gelsolin (1qjb, 1f59, and 1d0n, respectively) (C). The
protein is colored in yellow except for the binding site, which is either colored
by observed conformational change or relative amplitude of normal-mode
motion. The scale blue to red represents small to large displacement,
respectively.

Fig. 4. All mode frequencies are shown for each protein in the dataset. Proteins are ranked by predicted flexibility (see Eq. 2). The spectrum for each protein
is colored according to extent of conformational change.
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residues (50), hot spots (51), and anchor residues (where certain
side chains are found to sample their bound form) (46). Com-
bining these observations, a picture emerges wherein flexible
regions that prevent binding due to steric hindrance, traverse
recognition-compatible conformations during their low fre-
quency thermal motions. This description suggests a promising
avenue for flexible docking by identifying conformational sub-
spaces that are particularly worth searching, namely those tra-
versed by the lowest modes. Furthermore the ability to identify
f lexible regions allows localized intelligent ‘‘softening’’ of shape
complementarity or electrostatic scoring functions.

The results from this work suggest that a composite model is
necessary to describe the diversity of conformational change
observed during molecular recognition. Here, we provide evi-
dence highlighting the importance of intrinsic thermal motion in
the protein recognition problem.

Materials and Methods
Normal Mode Calculation. The C�-only elastic network model is implemented
with a cutoff of 12 Å by using available software (pdbmat and diagrtb) (52).
Details of parameter settings are provided in Tables S1–S6. All point masses are
set to the same fixed value (52). The six normal modes that correspond to
rigid-body rotations and translations of the system are discarded. Mode
vectors are normalized to one.

Definitions. The binding site is the set of residues containing at least one atom
within 5 Å of an atom in the other component in the complex structure.
Binding-site residues are split into core and periphery according to relative
solvent-accessible area being �10% and �10%, respectively.

The conformational change vector �r is the displacement required to move
from the unbound to the bound coordinates after superposing the bound
structure on the unbound structure such as to minimize the C� RMSD.

The correlation Cj of mode j with the observed conformational change is a
measure of agreement between the magnitudes of the displacements of the
observed conformational change and the mode j (32) and is defined:

Cj �
1
N

�
i�1

N

	Aij � �Aj�
	�Ri � ��R�


		Aj
		�R

, [3]

where Aij and �Ri are the magnitudes of displacement for the ith atom for the
jth normal mode and the observed conformational change, respectively. N is
the number of atoms. �Aj� and ��R� represent the average displacements. 	(Aj)
and 	(�R) represent the corresponding root mean square values.

The overlap Oj describes the similarity between the direction of observed
conformational change and the jth normal mode of the protein (29). It is defined:

Oj �

��
i�1

N

aij��ri�
��

i�1

N

aij
2 �

i�1

N

�ri
2�1/2 , [4]

where �ri is the vector describing the observed conformational change be-
tween the bound and unbound structures for atom i and aij is the ith atom’s

displacement in the jth mode. A value of unity means that �ri and aij are in the
same direction.

Here, we are comparing a direction valid only in the infinitesimal neigh-
borhood of an energy minimum to one determined by the displacement
vector between two experimental structures. For larger conformational
changes, errors are likely to be substantial. More sophisticated measures have
been developed for considering large rigid-body domain movements where
the normal mode vectors are compared with infinitesimal conformational
change vectors (53). The conformational changes considered there were, on
average, substantially larger than ours, with only 2 of 12 proteins with RMSD
�5 Å compared with 17 of 20 in the high-flexibility dataset. Furthermore, their
study observed an improvement of �10% for 4 of 12 proteins (cumulative
overlap of lowest 12 modes). Because the overlap of only a small number of pro-
teins may therefore have significantly improved, and given the method is appli-
cable only to rigid-body domain motion, we used the simpler methodology.

The collectivity K describes the number of highly mobile atoms for a
particular displacement vector and can be calculated for an observed confor-
mational change or as below, to summarize the collective character of a
particular mode (54). The collectivity of mode j is defined:

Kj �
1
N

exp� ��
i�1

N

aij
2log aij

2� . [5]

Proteins with Klowest � 0.03 are excluded from the main dataset; the motions
associated with these low-collectivity modes are related to weakly connected
terminal regions of dubious relevance to the binding process (52).

DynDom. DynDom requires a set of coordinates and displacement vectors (in
this case, calculated by using a least squares best fit of the unbound and bound
coordinates). Potential dynamic domains are identified from clusters of rota-
tion vectors; domains are established only if they possess a minimum inter- to
intradomain motion ratio (25, 43).

Protein Datasets. The two datasets of proteins are subsets of protein–protein
docking benchmark 2.0 (10). The main dataset is defined as the 134 proteins
from the docking benchmark where both unbound and bound structures
were available, with those proteins with a very low collectivity mode excluded.
The high-flexibility dataset is defined as the 20 benchmark proteins with C�

RMSD �2 Å. This categorization reflects the expected tractability by using
current protein–protein docking algorithms (11); specifically, by using an
in-house docking program 3D-Garden (55), �80% of proteins with a confor-
mational change �2 Å were not successfully docked (no structure in top 10 of
scores within 3.5 Å of theoretically best RMSD). Details of all datasets, along
with many results, are found in Tables S1–S6.

The methods presented here are highly sensitive to the quality of the PDB
files used in the analysis. We considered excluding proteins with low-quality
PDB entries, such as those with missing coordinates in the unbound or bound
structures or conflicting biological unit information; ultimately it was too
difficult to establish satisfactory inclusion criteria that would leave us with a
dataset of sufficient size.

The CAPRI dataset was formulated from all rounds of the CAPRI experiment
up to target 27 where the crystal structures have been made publicly available
for the bound and unbound structures (excludes target 24). We excluded
proteins where the unbound and bound were the same (�0.1 Å RMSD). As
before, we excluded those proteins with low collectivity in their lowest-
frequency mode.
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