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Iron deficiency is extraordinarily common. Iron deficiency anemia is the single most common
deficiency world-wide (1). Within the vascular compartment, iron is primarily contained in
hemoglobin and in storage forms such as ferritin and hemosiderin (2). Iron is also present in
tissue-specific forms such as myoglobin. Less commonly considered is iron’s vital role in
enzymes such as the respiratory cytochromes, cytochrome P-450, nitric oxide (NO) synthases,
tyrosine hydroxylase providing for catecholamine synthesis, and carotid body oxygen sensors
(2). These are present throughout the blood and body and are essential for life. Such
“specialized” iron increases and decreases with the amount of iron storage forms and can
precede overt iron deficiency (3). A decrease in iron stores usually precedes and predicts future
overt iron deficiency anemia even as early as at birth where it relates to the level of maternal
iron stores (4). Decreased ferritin is the usual perinatal predictor but its predictive ability is
hampered by its role as an acute phase reactant (5). Thus, in this issue of The Journal, Baumann-
Blackmore et al (6) have compared a newer tool for measuring iron status, Cord Blood Zinc
Protoporphyrin/Heme Ratio, which is insensitive to inflammatory stimuli yet correlated with
ferritin in the neonate without inflammation. Although the paper does not directly relate
measures of neonatal iron stores to anemia or to diminished iron stores later in life, such
relationships have already been established (7). The present observations offer an important
and sensitive new tool to the assessment of iron stores in the neonatal period.

Once iron deficiency is present, what are its pathophysiological consequences? It is perhaps
redundant to state that aerobic metabolism depends on the delivery of oxygenated blood to the
tissues. Oxygen delivery depends on hemoglobin-oxygen carrying capacity, cardiac output and
its distribution, and oxygen extraction at tissue level (8). Anemia enhances oxygen extraction
through a variety of mechanisms including tissue-level hypoxia, lactate, acidosis, and CO2 -
mediated oxygen mobilization from hemoglobin as well as an increase in 2,3 DPG and a shift
of the oxygen dissociation curve (9). Assuming distribution and utilization at the tissue level
remains unimpaired or even enhanced in iron deficiency, the rate at which oxygen is delivered
to the tissues becomes limiting.

The reduced hemoglobin-oxygen carrying capacity of iron deficiency anemia is compensated
by an increase in cardiac output (10). How this is accomplished remains incompletely
understood although metabolites such as lactate, adenosine, and hydrogen ions can produce an
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metaboreflex response that selectively increases sympathetic outflow to the heart increasing
contractility (11). Peripheral vasoconstriction, largely the province of the arterial baroreflex,
is essentially unaffected as is the peripheral sympathetic response to orthostasis (12). Increasing
cardiac contractility by itself cannot produce much of an increase in cardiac output. Increased
cardiac output in iron deficiency anemia is dependent on cardiac afterload and increased venous
return to the heart. Reduced viscosity (13) due directly to decreased hematocrit cannot entirely
account for the low systemic resistance observed in iron deficiency anemia.

In recent years it has been demonstrated that both non-autonomic vasodilation and structural
remodeling (14) with increased arterial diameter are related to increased blood flow and shear
stress. This is sustained by the elaboration of substances released from the vascular
endothelium, specifically nitric oxide (NO) (15). NO production is increased by shear stress.
However, of greater importance, hemoglobin is the preeminent scavenger of NO (16). Cell-
free hemoglobin as might occur during hemolysis (17) functions as an almost bottomless sink
for NO. However, under ordinary circumstances hemoglobin is encapsulated within red blood
cells and therefore NO removal is constrained. Iron deficiency anemia can increase nitric oxide
production in adolescents (18) and greatly reduce its removal by virtue of decreased
hemoglobin. Iron stores also scavenge NO. Reducing iron stores by chelation also improves
NO-related endothelial function (19). In particular, plasma ferritin concentrations relate
directly to nitric oxide mediated vasodilation and endothelial function even in the absence of
specific hemoglobin alterations (20,21).

Which brings us to consider the paper by Jarjour and Jarjour (22). They performed a
retrospective study which demonstrated an association between decreased serum ferritin and
simple vasovagal faint. Although the majority of their subjects were not overtly anemic (11%
vs 0% of non-simple faint subjects), there was a significant increase in the prevalence of low
iron storage (57% vs 17%) and marked reduction of serum ferritin (27 vs 46 μg/L).
Observations of apparent efficacy of iron therapy in children with decreased iron stores and
breath holding spells, which may be an infantile form of acute orthostatic intolerance, are
entirely consistent with these observations. Also, erythropoietin has been used with success
for years in the treatment of relatively refractory forms of orthostatic intolerance, autonomic
dysfunction and simple faint (23). The current study suffers from the deficits of retrospection,
and from the lack of healthy volunteer control subjects. Yet, it is a valuable observation,
pointing to a potentially crucial and simple clinical relationship between iron deficiency and
fainting and indicating a simple means by which patients with simple faint might be improved
through iron supplementation. Currently, these conclusions remain speculative.

Scientific Significance – Simple Faint and Nitric Oxide?
Why is this observation scientifically important? To date, the pathophysiology of simple faint
remains elusive (24). The authors suggest that low iron may affect the metabolism of
catecholamines, or that peripheral vasodilation prevents compensatory orthostatic
vasoconstriction. Neither possibility works well because resting and upright norepinephrine is
proportionate to vasoconstriction in fainters (25) while epinephrine increases in response to
hypotension (26). Anemia fails to prevent effective upright vasoconstriction (12).

I propose an alternate explanation: The splanchnic circulation is the single largest reservoir of
blood in the body (27). Work from our laboratory (28) and others (29) have shown that
splanchnic pooling caused by persistent and posturally resistant splanchnic vasodilation is
strongly associated with orthostatic intolerance including vasovagal faint. Evidence suggests
preferential splanchnic vasodilation in anemia (30), and NO is increased while nitric oxide
synthesis is upregulated in simple faint (31) and in other forms of orthostatic intolerance
(32). Seen in this context the dual effects of vasodilation and nitric oxide excess caused by
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reduced iron stores with or without anemia are highly consistent with experimental
observations on the nature of simple faint. The study by Jarjour and Jarjour comprises a vital
connecting piece to our understanding of simple faint in otherwise “normal” adolescents.
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