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Abstract
We construct and analyze a model network of the pyloric rhythm of the crustacean stomatogastric
ganglion consisting of an oscillator neuron that inhibits two reciprocally inhibitory follower neurons.
We derive analytic expressions that determine the phase of firing of the follower neurons with respect
to the oscillator. An important aspect of the model is the inclusion of synapses that exhibit short-
term synaptic depression. We show that these type of synapses allow there to be a complicated
relationship between the intrinsic properties of the neurons and the synapses between them in
determining phase relationships. Our analysis reveals the circumstances and ranges of cycle periods
under which these properties work in concert with or independently from one another. In particular,
we show that phase maintenance over a range of oscillator periods can be enhanced through the
interplay of the two follower neurons if the synapses between these neurons are depressing. Since
our model represents the core of the oscillatory pyloric network, the results of our analysis can be
compared to experimental data and used to make predictions about the biological network.

Keywords
oscillator; phase plane; central pattern generator; synaptic depression

1 Introduction
Neuronal networks responsible for the generation of rhythmic motor activity often operate over
a broad range of frequencies [18]. In many such oscillatory central pattern generating (CPG)
networks the relative activity phase between groups of neurons remains fixed despite large
variations in network frequency [6,10,11,13,14,25]. Hence, in face of changes in network
frequency, the time delay between the active states of these neuron groups must be adjusted
proportionally with the network cycle period. Yet, the biological mechanisms underlying such
adjustments are largely unknown. Previous modeling studies have addressed the question of
phase determination in neuronal networks. There is a large literature on weakly coupled
oscillators (see [8] for example) in which the phase relationship between neurons is obtained
through methods of averaging. In studies of the lamprey CPG, the phase between neurons is
explicitly constrained within the model [5], allowing the authors to investigate what
mechanisms are consistent with the constraint. Work on understanding the inter-segmental lag
in the crayfish CPG has focused on the interaction between weak and strong coupling [15,
30].

In previous work, we have suggested that short-term synaptic depression helps promote phase
maintenance in feed-forward networks. We showed that depression in the feed-forward
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inhibitory synapse from an oscillator to a follower neuron allows the phase to be fairly constant
over a large range of cycle periods [17] and that intrinsic ionic currents such as the transient
potassium A current can act synergistically with synaptic depression to extend the range of
phase maintenance [4]. In the current study, we focus on a CPG neuronal network to examine
phase maintenance of follower neurons in a three-cell network in which a pacemaker neuron
imposes the network oscillations on two follower neurons coupled with reciprocally inhibitory
synapses (inset of Fig. 1). The questions of interest center on the synaptic and intrinsic
mechanisms that control the activity phase of the follower neurons and their dependence on
cycle frequency. This network is modeled after the pyloric network of the crustacean
stomatogastric ganglion which consists of an oscillatory pacemaker group of neurons AB and
PD and four sets of follower neurons [20]. The pacemaker AB and PD neurons are always co-
active, due to strong electrical coupling, and inhibit all follower neurons which, in turn, become
active in two distinct (but sometimes overlapping) intervals in each cycle, thus producing a tri-
phasic rhythm (Fig. 1A). Previous experimental studies have shown that the activity phases of
all neurons in this network are relatively well maintained, despite large variations (0.5–2 Hz)
in cycle frequency [13,14].

In this study, we use the AB neuron as the representative of the pacemaker group and the
follower neurons LP and PY as representatives of the follower neurons active in two distinct
phases. The other pacemaker neuron type PD two follower neuron types IC and V D, which
are co-active with LP and PY, respectively, are not included in our model. Thus, in our model,
AB sends feed-forward inhibition to LP and PY while the latter two neurons reciprocally inhibit
one another.

We use phase-plane analysis to derive a set of equations that can be numerically solved at any
value of the period to determine the phase relationship between AB and the follower neurons.
As we vary the cycle period of AB, we investigate how the activity phases of LP and PY changes.
The analysis allows us to determine the role of each of the neurons and the synapses between
them in setting their activity phases. In particular, we show that when all synapses exhibit short-
term depression, there are multiple control mechanisms for setting the phases. These control
mechanisms may work in concert or be completely independent from one another. We show
that as the cycle period changes, the control of the network phase relationships shifts between
different sets of parameters associated with the neurons and their synapses. Our results,
therefore, indicate that synaptic depression within the pyloric network provides a natural
mechanism to help the network maintain the observed phase relationships among its different
neurons despite large changes in the cycle period.

The mathematical techniques that we employ are motivated by geometric singular perturbation
theory in which a difference in time scales is exploited to reduce a high-dimensional model to
low-dimensional sub-systems that are more amenable to analysis [21]. We utilize this idea to
project the dynamics of the neurons in their silent state onto a two- or three-dimensional phase
space. Analyzing the ensuing dynamics in these phase spaces then makes it possible to
analytically determine how long each neuron spends in its silent state, thereby allowing us to
calculate the phase of each neuron. In parallel, we numerically solve the full set of model
equations to see how these numerical solutions compare with those obtained from the analytic
reduction method.

The paper is organized as follows. In section 2, we derive the model set of equations and
describe the dynamics of synaptic depression. Section 3 contains results with section 3.1
containing the derivation of the firing times and subsequent subsections discussing the role of
each of the synapses within the network. Section 4 contains a Discussion in which we address
some of the modeling assumptions and implications for the biological network.
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2 Model
The network we are studying consists of three neurons, AB, LP, and PY. A schematic of the
network architecture is shown in Fig. 1 together with biological and simulation voltage traces
of these neurons. AB is the pacemaker neuron of the pyloric network. It oscillates at frequencies
that lie between 0.5 and 2.0 Hz [24]. The activity of the pacemaker AB neuron is taken for
simplicity to be a square-wave. In particular, we denote the time that AB is active by TAB and
the time it is inactive by Tinactive. Therefore the period of AB satisfies P = TAB + Tinactive. LP
and PY are the follower neurons of the pyloric network. We are mostly interested in the burst
envelope of these neurons so we use Morris-Lecar type equations to model their activity [22].
The equations to describe the activity of LP and PY without synaptic connectivity are:

(1)

(2)

where x is PY or LP. vx is the voltage of neuron x, Ix in an applied current, gleak,x is the
conductance of the leak current, Eleak,x is the reversal potential of the leak current, and wx is
the recovery variable of K+. The functions m∞, w∞, and τ∞ are sigmoidal functions of voltage
and are given in the Appendix. Recent experiments by Rabbah et al [27] showed that the delay
in firing of PY relative to firing of LP is due to intrinsic properties of the neurons. Thus, in the
silent state, we choose τw,LP (vLP ) < τw,PY (vPY ) so that PY has a a slower intrinsic decay rate
than LP.

We denote the right-hand side of (1) by f(vx, wx). The vx- and wx-nullclines associated with (1)
and (2) are the set of points {(vx, wx): f (vx, wx = 0} and {(vx, wx): wx = w∞(vx)}. The former is
cubic shaped, the latter is sigmoidal. We assume that for both LP and PY, these nullclines
intersect at a stable fixed point along the right branch of the cubic nullcline. Thus in the absence
of input, both LP and PY tend to a high-voltage fixed point.

LP and PY receive inhibitory synaptic inputs from AB and also from one another. The synapses
are modeled to be depressing meaning that the strength of the synapse weakens as the frequency
of the pre-synaptic neuron increases. The equations to model the activity of LP and PY are:

(3)

(4)

(5)

(6)

In the above equations, ḡAB, ḡPY and ḡLP are the maximal conductances of the AB, PY and
LP synapses, respectively, while sAB, sPY and sLP are the associated gating variables. Einh is
the reversal potential of the synapses that is chosen so that all synapses are inhibitory.

Our model for the synapses is similar to that in [17] where each synapse has a gating variable
sx and another variable dx that measures the extent of synaptic depression of the synapse. Both
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variables follow piecewise continuous linear kinetics. They are coupled at discrete moments
of time whenever a pre-synaptic cell becomes active. When this occurs, sx is set equal to the
current value of dx; see Fig. 2. At all other times the equations for the each of the synaptic
variables are:

(7)

(8)

(9)

(10)

(11)

(12)

For example, when AB enters its active state, we set sAB = dAB and then let dAB and sAB evolve
according to (7) and (8). vT is the activation threshold of the synapses. When vAB < vT, dAB
increases to d̂AB(Tinactive) (recovery from depression) with rate 1/τα where d̂AB(Tinactive) is an
increasing function of Tinactive given by

(13)

In this equation, P1 determines the half-activation time of d̂AB and x1 determines the steepness
of d̂AB. This relationship models the dependency of recovery from depression on the cycle
period of activity and is used to provide a better approximation of the two time scales of
recovery observed in the pyloric synapses [3]. Once vAB goes above threshold (AB becomes
active), sAB is set to dAB and then decreases at a rate of 1/τζ where τζ is a large parameter. While
vAB remains above threshold, dAB decreases towards 0 with time constant 1/τβ representing the
depression of the AB synapse. Once vAB goes below threshold, sAB decreases to 0 with rate 1/
τκ. As the inactive phase of AB increases, the synapse has more time to recover from depression
and thus dAB has more time to increase towards d̂AB(Tinactive).

Similarly, we let

(14)

where TLP refers to the length of time LP is active. Note that TLP is a priori unknown, but will
be determined below. d̂PY (P; TPY ) can also be modeled using a sigmoid similar to d̂AB where
TPY refers to the length of time that PY is active. For simplicity, however, we set d̂PY = 1.

In some cases that we will examine, the synapses from AB to LP and PY will be non-depressing.
In these cases, the strength of the AB synapses will be independent of period. Whenever AB
becomes active, we will set sAB = 1 instead of dAB.
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The mathematical effect of inhibition is to lower the vx–nullcline of the post-synaptic cell in
the (vx; wx) phase space. Consider LP for example. Before it receives inhibition from the
pacemaker AB, LP lies at a high-voltage fixed point. The inhibition from AB turns on quickly
and causes this fixed point to disappear, thereby allowing LP to return to its silent state.
Depending on the strength of the AB inhibition (which due to depression is period dependent),
the vLP - and wLP -nullclines may intersect either on the middle or left branch of the cubic. In
the former case, LP will be able to leave the silent state due to its intrinsic properties, while in
the latter LP will remain in the silent state until the AB inhibition decays; Fig. 3. The general
effect of PY inhibition on LP and of AB and LP inhibition on PY is similar.

We will not carry out a formal singular perturbation analysis in this paper. Instead, we will
assume that the wx, sx and dx variables evolve more slowly than the vx variables while the
trajectory is away from the branches of a cubic nullcline. This can be achieved by taking the
time constants associated with those variables to be large and will allow us to project the
dynamics of the neurons while they are near the left branch of a cubic onto a lower dimensional
phase space; see [1,4] for related examples. Simulations of our model are done using the
software package XPPAUT [9]. Numerical solutions of equations (25) and (26), below, were
obtained using MATLAB. Parameter values are given in the Appendix.

3 Results
We describe the tri-phasic pyloric rhythm starting with the onset of AB activity at t = 0 as shown
in Fig. 1. AB remains active for time TAB during which time both LP and PY are silent. At t =
t1, LP becomes active for a time length TLP. During this time, it inhibits PY. At t = t2, PY
becomes active and inhibits LP enough to return LP to the silent state. PY stays active for a
time length TPY. After one period P = TAB + Tinactive, AB again becomes active, inhibiting
PY and LP and the cycle continues. We define φLP = t1/P and φPY = t2/P as the phase at which
LP and PY fire with respect to the onset of AB activity. The main goal of this paper is to
determine these two quantities as a function of P, and to show what effect synaptic depression
has on these two phases. Throughout this paper, we shall change P by changing the time
Tinactive while keeping TAB fixed; see the Discussion for comments on how changing period
in different ways affects the results.

To determine φLP and φPY, we must determine t1, t2, TLP and TPY. However the latter two
quantities obey TLP = t2 − t1 and TPY = P − t2. Thus we need only determine two equations for
the remaining unknowns t1 and t2. To calculate these times we first must understand how LP
and PY evolve in their silent state, and what causes them to have a chance to jump to the active
state. Consider first LP in the case where only AB inhibition is present. In the vLP – wLP phase
plane, inhibition lowers the vLP –cubic nullcline. As LP evolves in the silent state, the synapse
from AB decays, causing the cubic nullcline to rise slowly back toward its original location.
LP can jump to the active state when it reaches a local minimum of any of the slowly rising
cubics. These local minima form a one-dimensional LP-jump curve in (vLP, wLP ) space; labeled
j.c. in Fig. 4A.

Another way to visualize this is in the (wLP, sAB) phase space; Fig. 4B. When projected into
this phase space, the trajectory moves down and to the left. In addition to the LP-jump curve,
there exists a curve of fixed points, labeled fp.c.. These points are not true fixed points of the
system, but rather are points along which the vLP – and wLP –nullclines intersect

, but where . A typical trajectory in this phase space will transition to the
active state when it reaches the jump curve. Let us now add in the PY inhibition to LP. In this
case, LP must potentially wait for both the AB and PY inhibitions to decay in order to jump to
the active state. The local minima of the associated cubics now form a two-dimensional jump
surface (j.s.) and the fixed points form a two-dimensional surface (fp.s.) as shown in the
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(wLP, sAB, sPY ) phase space in Fig. 4C. Similarly, there exists a two-dimensional PY -jump
surface resulting from the slow decay of the AB and LP synapses to PY and a two-dimensional
surface of fixed points.

Let us assume that AB becomes active at t = 0 and that both LP and PY are in their silent state.
LP is the first to reach its jump surface, primarily because of the assumption that when the
neurons are below threshold, τw,LP (vLP ) < τw,PY (vPY ). Assume that the jump surface is a
plane and can be expressed by the linear relationship:

(15)

Note that if ḡPY = 0, (15) reduces to the equation for a one-dimensional linear jump curve as
in [4]. The constants M1 and  are both positive and can be determined from the ḡPY = 0
case. The former is related to the slope of the LP-jump curve; the latter is related to the level
of inhibitory synaptic input needed to make the vLP -nullcline tangent to the wLP -nullcline;
see figure 4B. We now calculate the value at time t1 of the three dynamic variables explicitly
represented in (15). The first is the easiest. Since AB is taken to be a periodic square wave
function (with period P = TAB + Tinactive), the value of the depression variable dAB will also be
periodic. Using this fact, it is straightforward to find from (7) that the maximal value of dAB
occurs at the onset of AB activity and is given by

(16)

Note that dmax,AB(P ) is an increasing function of Tinactive. At the time that AB becomes active
sAB is set equal to dmax,AB and then decays according to (8). Thus sAB(TAB) = dmax,AB(P)
e−T

AB/τζ. During the time that AB is silent, sAB decays with time constant τκ, so

(17)

Note that the case when AB is not depressing can be considered by simply setting dmax,AB ≡
1. We next calculate sPY (t1). Since the tri-phasic rhythm is assumed to be periodic, we similarly
find that

(18)

This maximum occurs at the onset of the PY burst. Note that dmax,PY depends on TPY where
this term is to be determined by t2 (TPY = P − t2). Utilizing the activity of the previous cycle
of a periodic solution, t = 0 corresponds to the end of a PY burst. Therefore sPY (0) = dmax,PY
e−TPYτ2 and at time t1

(19)

Finally, we determine wLP (t1). When PY becomes active (during the previous cycle) assuming
ḡPY > 0, LP returns to the silent state with a value we denote wLP.LP stays in the silent state
for time TPY + t1 = P − (t2 − t1). Assuming that w∞(LP ) ≈ 0 near the left branches of the vLP
nullcline and that τw,LP (vLP ) is a constant denoted by τw,LP, we find

(20)
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We can now substitute equations (17)–(20) into (15). Note however that if ḡPY = 0, then LP
stays in the active state until AB becomes active and (20) is replaced by wLP (t1) = ŵLP
e−t1/τw,LP.

To find a second equation relating the times t1 and t2, we use a linear approximation for the
PY -jump surface:

(21)

Similar to before,

(22)

To calculate sLP (t2), we note that LP becomes active at t = t1. Thus independent of the value
of sLP prior to t1, sLP (t1) = dmax,LP, where

(23)

LP remains active until time t2 which implies

(24)

Similar to before wPY (t2) = ŵPY exp(−t2/τw,PY ) where τw,PY is the time constant for PY activity
in its silent state. We can now substitute into (21) to obtain the following two equations for
t1 and t2:

(25)

(26)

Note that TPY = P − t2, and if ḡPY = 0 then TLP = P − t1, while if ḡPY > 0 then TLP = t2 − t1.

Equations (25) and (26) can be solved numerically to obtain t1 and t2. In specific parameter
regimes, certain terms on the left-hand side of the above equations become small and an analytic
estimate for t1 and t2 becomes possible. Our goal for the remainder of the paper is to use (25)
and (26) to understand how φLP = t1/P and φPY = t2/P depend on the parameters in these
equations. We shall check this for several cases; when the LP and PY inhibition is absent
(section 3.1), when LP to PY inhibition is added (section 3.2), when PY to LP inhibition is
present (section 3.3), and when both reciprocal synapses are present (section 3.4).

3.1 Phase determination with no synapses between LP and PY
When the synapses between LP and PY are removed, we set ḡLP = 0 and ḡPY = 0 in equations
(25) and (26). Then t1 and t2 (and, therefore φLP and φPY ) are determined by the properties of
the AB synapses and the intrinsic properties of the neurons. In this case, the dependence of
φLP on P has been previously shown by Manor et al [17], and that of φPY is similar.

If the AB synapses onto LP and PY are not depressing, then φLP and φPY both decay like 1/P
since (25) and (26) are no longer period dependent. For each cell, this decay is controlled either
by τκ the time constant of decay of the AB synapses and ḡAB the maximal conductance of the
synapse or by the cell’s own intrinsic time constant of decay in the silent state, τw,LP or
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τw,PY. The situation changes dramatically when the AB synapses are depressing. Following the
results of Manor et al [17], with an appropriate choice of parameters, both sets of parameters
can control the phase curves, each doing so at different ranges of periods. In particular, when
τκ is large enough so that the synaptic decay is slower than the rate at which wPY and wLP decay
on the left branches of their respective nullclines, phase maintenance is enhanced. In Fig. 5A,
we can see that for 500 < P < 650, φLP and φPY decrease. In this range of periods, the synapses
from AB to LP and PY are largely depressed and, consequently, do not significantly contribute
to the time at which LP and PY fire. Here the first terms on the left-hand sides of (25) and (26)
are close to zero, the second terms are absent (ḡPY = ḡLP = 0) and therefore the third terms
alone determine t1 and t2. Thus in this range, phase is mostly determined by the intrinsic
dynamics of LP and PY. In the range 650 < P < 1000, the AB synapse increasingly recovers
from depression (dmax,AB gets larger; Fig 5B). As a result the synaptic properties take over
control for setting φLP and φPY in this range. For P > 1000, the AB synapse has maximally
recovered from depression causing dmax,AB to saturate. Now the first terms on the left-hand
sides of (25) and (26) take longer to decay then the third terms (since τκ is large enough). Thus
the synapses from AB determine the firing times. However, as the period increases, the phase
decreases like 1/P since the value of dmax,AB in the first terms will eventually saturate;
dmax,AB →1 as P →∞ [17]. These three regimes combine together to cause the phase curve to
be cubic in shape. Thus, although a constant phase is not perfectly achieved, phase-maintenance
is better than when the AB synapse is non-depressing where φLP and φPY decay like 1/P.

3.2 The effect of LP to PY inhibition on φPY
We now explore how the presence of the LP to PY synapse affects φPY. We show that the
inclusion of the LP to PY synapse leads to another way to control the phase of PY activity. In
(25) and (26), we let ḡPY = 0 while setting ḡLP to a positive value. When the synapse from
LP to PY is present, each time LP is active, it provides further inhibition to PY. In order for
PY to fire, the LP inhibition must also decay. Therefore, the additional time it now takes for
PY to fire is determined, in part, by the the size of ḡLP sLP and the rate at which sLP decays.
Using equation (26), we can determine over which parameter regimes the LP to PY synapse
significantly contributes to φPY. For example, suppose τ4, the time constant of decay of the
sLP synapse when LP is active, is small enough, or that ḡLP, the maximal conductance of this
synapse is small. Then the term ḡLP sLP is insignificant and, therefore the LP to PY synapse
does not significantly affect t2. However, if τ4 is not so small compared with τK and τw,PY, and
if ḡLP is big enough, then the LP inhibition will more significantly contribute to φPY

The period dependence of the LP synapse and the rates of depression and recovery also play
a role in setting phase. For example if the time constant of recovery from depression of the
LP synapse (τc) is very small, then the synapse will recover quickly and will largely be period
independent. Similarly, if the depression time constant τd is small, then the synapse will be
ineffective at suppressing its post-synaptic target. More interestingly, depending on the value
of parameters, the the LP to PY synapse can work in concert with or independently of the AB
synapse to effect PY firing. Figure 6A shows graphs of the φLP, φPY and dmax,LP for different
choices of the parameter P2, the half activation of the strength of the LP to PY. The dashed line
traces show the case when P2 = 570 (note the half-activation of the AB synapse P1 = 870 in all
cases), the dotted line traces when P2 = 870 and the solid traces when P2 = 1770. In the latter
case, the length of the LP interburst (t1 = P − TLP ) never becomes large enough to cause the
LP to PY synapse to gain strength. Thus dmax,LP = 0 (Fig. 6B) and φPY looks as it would if
ḡLP = 0. When the parameter P2 is lowered to 870, then the LP to PY synapse does strengthen
around P = 1380 (dotted traces) because P − TLP becomes larger than P2. Here, the synapse
becomes strong in a range of periods for which the AB synapse is already saturated. Thus it
controls φPY quite independently of the AB to PY synapse. When, P2 = 190 (dashed traces),
the LP to PY synapse works in concert with the AB to PY synapse to delay PY firing. Here the
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phase curve has a single local maximum that is larger in value than when the LP to PY synapse
is absent. Numerical simulations of the full set of equations using XPPAUT yield similar results
(not shown). As P → ∞, the value of dmax,LP tends to d ^LP [1 − exp(− (P − TLP )= τc)] since
TLP → ∞ as can be seen from equations (14) and (23). Thus dmax,LP is bounded away from one
and thus the LP to PY synapse never fully recovers.

3.3 The role of PY to LP inhibition on φLP and φPY
Next we address what effect the synapse from PY to LP has on the phase of LP and PY. Again
depending on the parameters, there are many possibilities that can be considered. However we
shall take a cue from the biological system and study one important subcase. It is known that
the PY to LP synapse is initially strong, depresses very quickly and also decays very quickly
once PY becomes silent [16]. From these results, we conclude that the primary role of the PY
to LP synapse is to end the firing of LP and return it to its active state. This simple role, however,
has a dramatic affect on both φLP and φPY. First, the knocking down of LP to its silent state by
PY means that at small periods, φLP decreases. In particular, for small values of P, the AB
synapse is weak and does not play a big role in setting t1, which is set mainly by the intrinsic
properties of LP. Once LP is on the left branches of its vLP nullcline, wLP begins to decay before
AB becomes active. Thus when AB next becomes active, LP is much closer to the jump surface
than it would have been had it been knocked down to the silent state by AB, Fig. 7. Thus the
remaining time that LP must now spend evolving toward the jump surface is much smaller in
the presence of the PY synapse than in its absence. Therefore t1 is significantly smaller and
φLP decreases. At large P, however, the AB synapse is stronger and continues to dominate the
determination of t1. This is especially true if we choose τ1, the time constant of decay of the
PY to LP inhibition to be small.

The second effect of the presence of the PY to LP synapse is to strengthen the LP to PY synapse.
This is because the presence of the PY to LP synapse causes LP to have a shorter active duration
than when this synapse is absent. Note that when ḡPY = 0 (the PY to LP inhibition is absent),
TLP = P − t1, whereas when ḡPY > 0 (the PY to LP inhibition is present), TLP = t2 − t1 because
the PY inhibition ends the LP burst. Thus LP spends a larger fraction of its period in the silent
state, which, in turn increases both terms of equation (23) allowing dmax,LP to increase with
P, Fig. 8. Moreover, since TLP is bounded as P → ∞, dmax,LP→ 1 in this limit. Therefore
independent of the value of P2, the LP to PY synapse will play a role in setting the PY phase.
Thus, the effect of PY inhibition is to strengthen the inhibition that it itself receives! The
ramifications of this are explored in the next section.

3.4 Reciprocal inhibition between LP and PY
The above results indicate that the inhibitory synapses between the two pyloric neurons LP
and PY can play a role in enhancing the ability of the neurons to achieve phase maintenance.
Indeed, we have seen that the LP to PY synapse can control PY phase in a range of periods for
which the AB synapses to LP and PY are already saturated, and thus are no longer period
dependent. Therefore, it is natural to consider cases in which the AB inhibition is both non-
depressing and depressing.

When the AB synapse is non-depressing (dmax,AB ≡ 1), and the inhibition between LP and PY
is absent, φLP and φPY decrease like 1/P. In order for the synapse from LP to PY to be able to
create a range of periods over which φPY increases, dLP must increase as the period increases.
Similarly, dPY must increase as the period increases in order to create a range of periods over
which φLP increases. Let us first consider dmax,LP as given by equation (23). This term will
increase as period increases so long as LP spends increasingly longer times in the silent state.
As P increases, even though the time t1 need not increase the time P − TLP will. To understand
this, recall that one role of the PY inhibition to LP is to return the latter to the silent state at an
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earlier stage than AB would have. This is independent of depression of either the AB or PY
synapses. Thus the LP to PY synapse will have a chance to recover for more time and thereby
will strengthen. A stronger LP to PY synapse delays PY firing and thus increases φPY. In Fig
9A, we show an example of this; panel A1 is obtained by solving the full set of equations
numerically with XPPAUT, while panel A2 is obtained by solving (25) and (26) with
MATLAB. In particular, the LP to PY synapse becomes strong when P − TLP > P2(= 1140).
In this range, the value of the synaptic and depression time constants associated with the LP
synapse play an increasingly larger role in setting PY phase. If the time constant of LP to PY
synaptic decay is chosen to be large relative to the time constant of decay of the AB synapse,
then the LP synapse can increase the phase of PY for a range of periods larger than P2. For
very large values of P, the LP synapse will fully recover from depression and will not be able
to further increase the delay of PY firing. Thus for large P, we expect φPY to decay like 1/P as
shown in the figure.

A delay in PY firing has the added effect of strengthening the PY to LP synapse provided that
this synapse is also depressing, as PY spends more time in the silent phase. This can have a
very subtle effect on the LP phase. At first glance, the PY to LP synapse does not appear to do
much to help LP phase be constant, instead almost all of this work falls on AB. However PY
does put LP in a position so that at small periods, the intrinsic controlled LP phase is much
closer to the larger period AB-synaptically controlled LP phase. Moreover at these larger
periods where the AB synapse is strengthening, increases in strength of the PY to LP synapse
can induce changes in the LP phase. This is because this synapse can now complement the
AB to LP synapse to keep the LP neuron near the jump surface for a longer time, thereby
delaying LP firing. This subtle effect, however, does not dramatically affect the LP phase since
the time constant of decay of the PY to LP synapse is small. Thus its effect will have worn off
by the next LP cycle. This is consistent with the biological system where the PY to LP synapse
is a strong, short lasting one whose main effect is to terminate LP firing [16].

In summary, when the AB input is non-depressing, the depression of the LP to PY synapse can
still be utilized to improve phase maintenance of PY. However the phase of LP is still mostly
determined by the AB synapse and basically decays like 1=P.

When the reciprocal inhibition between LP and PY is present and the AB synapses are
depressing, the complexity of the network is increased. However, the dynamics of LP and
PY can be understood based on the results of sections 3.1–3.3. As discussed above, depending
on parameters, various synaptic or intrinsic parameters play a role in setting phase at different
intervals of period. Let us focus on the case where P2 > P1 (P2 = 1470 and P1 = 870). In this
case, both φLP and φPY can have several local maxima and minima and, in particular, can have
good phase maintenance over a large range of periods. Figure 9B shows one such case where
φLP varies between .35 and .45 and φPY varies between .6 and .7 for P 2 [500; 2400]. These
curves can be parsed into three distinct intervals. At small periods, the AB, LP and PY synapses
are weak and play little role in setting phase. Here intrinsic parameters of LP and PY, namely
τw,LP and τw,PY, are more important; only the last term of the left hand side of equations (25)
and (26) is large. At intermediate periods, the AB synapse strengthens while the LP and PY
synapses remain weak. Here, the time constant of AB synaptic decay, τk, is the most important
parameter in setting phase. The first term on the left hand side of (25) and (26) is dominant.
Finally, at larger P, the AB synapse has saturated and plays no additional role in setting phase.
Instead, at these periods the LP and PY synapses have strengthened enough to be important.
In particular, the inhibition from PY to LP allows LP to spend more time in the silent state,
thereby strengthening the LP to PY synapse. This strengthened synapse in turn delays PY firing,
increasing its phase, and strengthening the PY to LP synapse. The time constants of decay
between the LP and PY reciprocal synapses play the most important role of setting phase for
large P. In this case, the first and second terms on the left hand side of (25) and (26) are large,
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but the first terms decay more quickly then the second terms. Thus the control of phase for
large P is most strongly controlled by time constants associated with the reciprocal LP and
PY synapses.

The importance of the PY to LP synapse in redirecting the role of the LP to PY synapse can
not be overstated. In particular, when the PY to LP synapse is absent, the LP to PY synapse
strengthens only as a result of the effect of the delay to firing induced by the AB to LP synapse.
The LP to PY synapse is only effective in a range of periods that depends closely on the AB to
LP synapse; see section 3.2 and the relationship between the parameters P1 and P2. However,
when the PY to LP synapse is present, the LP to PY synapse can act much more independently.
Namely, it can strengthen in a range of periods that is largely independent of any effects of the
AB induced delay, and therefore can affect the PY phase curve in a range of periods that is
different than the AB synapse does. In particular, in order for the LP synapse to strengthen, the
value of P2, the half-activation of the depression and recovery term associated with dLP need
not be related to P1, the half-activation associated with dAB.

4 Discussion
Central pattern generating (CPG) networks are often driven by pacemaker neurons that set the
network frequency and the influence the firing times of follower neurons via feed-forward
synapses [7]. Nonetheless, the dynamics of these networks are often modulated or controlled
by mechanisms that are downstream from the feed-forward inputs. Even in small networks,
the dynamics resulting from the interactions among the rhythmically active neurons can be
surprisingly complicated. We have analyzed a simplified network, modeling the pyloric CPG
of the crustacean stomatogastric ganglion. Our results build on our previous studies that
examined the effect of short-term synaptic depression, a common property of many synapses,
on the activity phase of a follower neuron in a two-cell feed-forward network [4,17].

In this study we focused on a three-cell network, consisting of a pacemaker neuron AB that
produces feed-forward inhibitory synapses on two follower neurons LP and PY. The follower
neurons also have reciprocally-inhibitory synaptic connections thus producing feedback
interactions in the network. We examined the mechanisms that determine the activity phase of
LP and PY in face of changes in network frequency. Our analysis demonstrates that phase
constancy is enhanced when the synapses between neurons are depressing. As a result, the
PY and LP neurons can keep a relatively constant phase over a four-fold change in the network
cycle period, consistent with the experimental findings of Hooper [13].

Mathematical analysis carried out in lower dimensional phase spaces allowed us to understand
how different combinations of parameters can affect the activity phase of follower neurons in
different ranges of the cycle period. It also revealed a number of interesting facts about how
the dynamics of the network evolve. For example, it has traditionally been thought that the
primary role of the PY to LP synapse is simply to return LP to its silent state [27]. Our analysis
now demonstrates that an additional effect of this synapse is to strengthen the LP to PY synapse
by causing LP to spend more time in its silent state, allowing for recovery from short-term
depression. This effect occurs whether or not the PY to LP synapse is depressing, thus indicating
that the plasticity of this synapse may not be so critical to the proper functioning of the network.

4.1 Role of synaptic depression
Many synaptic connections in CPGs exhibit short-term depression [19,23,26]. Our results show
that synaptic depression can play a variety of potential roles in setting the phases of the follower
LP and PY neurons. First, the feed-forward synapses from AB to both LP and PY allow the
intrinsic properties of these follower neurons to determine phase at small periods where the
AB synapses are weak. At intermediate cycle periods, these same synapses strengthen and
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become more effective in the control of the activity phases. Second, the depression in the LP
to PY synapse allows the PY phase to be determined by this synapse in different ranges of
periods. If the LP synapse strengthens in the same range of periods as the AB synapses, then
these two work in concert to determine PY phase. If not, the LP to PY synapse can work
independently of the AB to PY synapse to influence the phase of PY activity. As a consequence,
even if the AB synapse is non-depressing, the LP to PY synapse can still promote phase
constancy of φPY (to be better than 1/P) in some range of periods. Third, as shown in section
3.4, depression in the PY to LP synapse can also have a small but subtle effect on the LP phase.
Thus, changes in the cycle period of the pacemaker neuron AB may not directly affect AB’s
synapses, yet result in changes in downstream synapses that the pacemaker does not directly
target. This provides another set of candidate mechanisms that can affect the phase of the
follower neurons.

4.2 Consequences of model assumptions
The primary modeling assumption made here is that the individual spikes within a burst are
not of large relevance in determining the phase relationships of neurons. Synapses in the
stomatogastric ganglion have both a spike-mediated and a non-spike-mediated (graded)
component whose strength depends on the slow oscillatory waveforms of the presynaptic
neuron [12]. When action potentials, and therefore spike-mediated transmission, is blocked by
bath application of tetrodotoxin, a tri-phasic rhythm characteristic of the pyloric network
activity can be generated by applying various modulatory substances [2]. Thus, the simplified
Morris-Lecar type models and graded synapses used provide a good first-order approximation
of the activity of the pyloric network, in particular the envelope of the slow oscillations (as in
Fig. 1) and its underlying synaptic mechanisms. We note that our model of short-term
depression was chosen to match known biological results. In particular, equations (13) and
(14) are used specifically to model the longer time scale associated with recovery of pyloric
synapses [3,28]. The specific form of these synapses is important to our results in that changes
to parameters associated with these equations (as in Fig 6) may lead to deterioration of phase
maintenance. We also chose the time constants of the various synaptic connections to mimic
known biological facts. For example, the time constants associated with the PY to LP synapse
were chosen to make it strong, fast decaying and fast depressing consistent with published
experimental results [16].

The other major modeling assumption is that the jump surfaces in the silent states of LP and
PY are planes. This assumption allowed us to analytically derive (25) and (26). The results
shown in Fig. 9 validate this assumption as they show a very good qualitative agreement
between phase curves obtained from (25) and (26) with those obtained by numerically solving
the full set of equations. This qualitative agreement occurs despite the fact that our analytic
reduction effectively ignores the behavior of the neurons when they are active and only records
their w values at the moment they return to the silent state.

In our earlier work [17], we considered cases where P was varied either by increasing TAB
while keeping Tinactive fixed or by increasing both TAB and Tinactive but keeping the duty cycle
(TAB/P ) constant. We showed that changing the period in the feedforward AB – LP network
in either of these ways still allows the phase of LP to be controlled by either synaptic or intrinsic
parameters at different ranges of periods. In the current model, our derived formulas (25) and
(26) allow us to again consider either of those two possibilities. The same qualitative behavior
exists in both cases, namely that there are distinct ranges of period over which one set of
parameters or the other would dominate phase determination. However, the shapes of the phase
curves and their dependence on various parameters are quantitatively different in the two cases.

Mouser et al. Page 12

J Math Biol. Author manuscript; available in PMC 2008 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.3 Conclusions
Many neural networks maintain a constant relative phase in the activity patterns of participating
neurons despite changes in network frequency [6,25]. In CPGs this constraint on phase is of
special importance because the underlying neural patterns are commanded to muscles that often
have to be activated at precise phases of each cycle in order to produce meaningful behavior,
for example, locomotion [29,30]. We have built on our previous modeling results to propose
mechanisms through which synaptic dynamics, such as short-term depression, can contribute
to phase maintenance in face of changes in network frequency. Our most important findings
are that synaptic interactions among follower neurons may affect their phase in each cycle of
oscillation and that these interactions may extend the range of cycle periods for which there is
phase maintenance beyond those made possible by the dynamics of the feed-forward synapses
from the pacemaker neurons. These predictions are potentially important for understanding
mechanisms underlying phase maintenance in the pyloric network and can be experimentally
tested by manipulating the strength and dynamics of the synapses in this network using
pharmacological agents or the dynamic clamp technique.
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5 Appendix
We numerically solved equations (1)–(14) to obtain our results. In these equations m∞(vx) =0.5
(1+tanh((vx +1.2)/18)), w∞(vx) = 0.5(1+ tanh((vx −15)/5)), and τw(vx) = mx(40 − 30w∞(vx)). For
both LP and PY, Ix = 75, gleak = 2, Eleak = −60, Einh = −80, gCa = 4, ECa = 120, gK = 8, and
EK = −84. In all simulations, TAB = 300, τα = 1800, and τβ = 15.

In the case of the depressing synaptic AB input, mLP = 8.1, mPY = 8.4 and ḡAB = 1.8. When the
LP and PY synaptic inputs were present, we set ḡLP = 1 and ḡPY = 2. However, when these
synapses were not present, ḡLP and ḡPY were set equal to 0. The remaining parameter values
were as follows : τk = 1650, τc = 3300, τd = 990, τa = 2700, τb = 150, τ1 = 60, τ2 = 600, τ3 =
210, τ4 = 300, x1 = 55, x2 = 35, P1 = 570 and P2 = 1470.

When the AB synapses were not depressing, we simply set dAB ≡ 0.38. We changed mLP =
2.55, mPY = 3.15, ḡAB = 1.4, ḡLP = 13, ḡPY = 11, τk = 1200, τc = 60, τd = 60, τa = 1350, τb =
240, τ1 = 60, τ2 = 1350, τ3 = 330, τ4 = 60, P2 = 1140 and x2 = 10.

We solved equations (25) and (26) using MATLAB. We used the same set of parameter values
as we did when using XPPAUT. There are a few parameters in these equations that do not
explicitly appear in (1)–(14) that can be estimated from the geometry of the nullclines. We set
M1 = M2 = 3.12, ŵLP = ŵPY = 1. For the non-depressing case Fig. 9 A1 and A2,
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, τw, LP = 102, τw,PY = 126, and for the depressing case Fig. 9, B1 and B2,
, τw, LP = 240, τw,PY = 255.
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Fig. 1.
Voltage traces of a typical ongoing tri-phasic pyloric rhythmic activity involving the pacemaker
neuron AB and follower neurons LP and PY. Left traces show experimental recordings (Nadim,
unpublished data) and the traces on the right are the simulation of our model which provides
an approximation to the envelope of oscillations observed in the experimental traces. The
temporal parameters are marked in the model traces. The middle panel is a reduced schematic
diagram of the pyloric network, showing the cells and synapses used in the model.
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Fig. 2.
Dynamics of the synaptic and depression variables. A schematic associated with the AB
synapse is shown. At the moment (marked by arrow) AB becomes active, the s variable (solid)
is reset to the current value of d (dashed). At all other times, the two variables are decoupled
and governed by distinct sets of equations. During the time AB is active, s decays at a slow rate
and d depresses. Once AB becomes inactive, s decays at a different rate, while d recovers. The
s and d variables for the LP and PY synapses behave in a similar manner.
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Fig. 3.
The influence of AB inhibition on the dynamics of LP.A. The inhibition from AB to LP causes
LP to return to the silent state, but is too weak to affect the time that LP spends in this state.
Note the lack of intersection of the v- (solid) and w-nullclines (dotted) along the left branches.
B. The inhibition from AB is strong and creates a fixed point on the left branch of the v-nullcline.
In this case LP must wait for AB inhibition to decay, thereby allowing the stable fixed point
(lower white circle) to disappear before it can jump to the active state. White circles indicate
stable fixed points. The two v-nullclines in each case indicate no (upper) or maximal (lower)
inhibition from AB to LP. The gray curve is the LP jump curve.
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Fig. 4.
Jump curves and surfaces. A. The dynamics of LP activity in response to AB inhibition alone.
The set of local minima of the v-nullclines forms a one-dimensional jump curve j.c. The v-
nullclines for different values of AB inhibition (sAB) form a surface (shaded) that is bounded
by two extremes (dashed) in each case indicate no (upper) or maximal (lower) inhibition from
AB to LP. The w-nullcline is the dotted curve. The trajectory is shown as a solid curve.
Additionally, the intersection of the w-nullcline with different v-nullclines forms a curve of
fixed points, fp.c. B. The projection of the slow manifold (shaded) depicted in panel A onto
the wLP-sAB phase space. C. The projection of the LP trajectory onto the wLP-sAB-sPY phase
space. The jump and fixed point surfaces, j.s. and fp.s., are now both two-dimensional. The
trajectory begins toward the front of the box with a high value of sPY, but a low value of sAB,
and moves down, to the left, and into the box (sAB, sPY and wLP all decay). When AB becomes
active, the trajectory is reset vertically to a higher value of sAB. The trajectory then moves in
the same way as before but for the time AB is active, sAB decays very slowly. The trajectory
escapes when it reaches j.s. (orange surface).
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Fig. 5.
Behavior of LP and PY when only AB inhibition is present. A. Phase curves for LP and PY
show a stereotypical cubic shape indicating that different mechanisms and parameters control
phase at different periods. B. The value of dAB,max increases with period. The strengthening of
the feed-forward AB synapses for P > 600 causes the control of phase (as shown in panel A)
to switch from the LP and PY intrinsic mechanisms to the AB synapses.
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Fig. 6.
Behavior of PY under AB and LP inhibition. A. The PY phase curves shown in three conditions
indicate how the half-activation period (P2) of the LP to PY synapse affects its ability to change
the phase of PY. B. The behavior of dLP,max for the three cases shown in panel A. The value
dAB,max (grey solid curve) is also shown to illustrate the relationship between the two synapses.
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Fig. 7.
The behavior of LP in the presence and absence of PY inhibition. Without PY inhibition, the
time t1 is calculated from the moment LP falls back to the silent state, associated with the onset
of AB activity (t=0; top arrow) to the jump point. When PY inhibition is present (the bold
trajectory), the onset of AB activity occurs at a lower point on the left branch of the vLP nullcline
(t=0; middle arrow) and t1 is calculated from this moment to the jump point and is therefore
much smaller.

Mouser et al. Page 22

J Math Biol. Author manuscript; available in PMC 2008 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
The effect of PY inhibition on dLP. When PY inhibition is present, LP inhibition strengthens
independently of the half activation (P2) of the synapse since LP spends more time in the silent
state. When the PY inhibition is absent, the LP inhibition can only strengthen if P2 is sufficiently
small as LP spends relatively little time in the silent state.
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Fig. 9.
LP and PY phase curves when reciprocal inhibition between the two is present. A. When the
AB synapses are non-depressing, the PY phase can still be better than 1/P if the LP inhibition
to PY is depressing. The local maxima of ϕPY are due to the strengthening of the LP to PY
synapse. Also note the small increase in ϕLP near these periods. B. When the AB synapses are
depressing, ϕPY and ϕLP can both have multiple local extrema. Panels A1 and B1 were obtained
by numerically solving the full set of equations for their respective cases. Panels A2 and B2,
obtained by solving equations (25) and (26), show good qualitative agreement with these
numerical results.
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