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Abstract
Glucose-6-phosphatase-α (G6PC) is a key enzyme in glucose homeostasis that catalyzes the
hydrolysis of glucose-6-phosphate to glucose and phosphate in the terminal step of gluconeogenesis
and glycogenolysis. Mutations in the G6PC gene, located on chromosome 17q21, result in glycogen
storage disease type Ia (GSD-Ia), an autosomal recessive metabolic disorder. GSD-Ia patients
manifest a disturbed glucose homeostasis, characterized by fasting hypoglycemia, hepatomegaly,
nephromegaly, hyperlipidemia, hyperuricemia, lactic acidemia, and growth retardation. G6PC is a
highly hydrophobic glycoprotein, anchored in the membrane of the endoplasmic reticulum with the
active center facing into the lumen. To date, 54 missense, 10 nonsense, 17 insertion/deletion, and 3
splicing mutations in the G6PC gene have been identified in more than 550 patients. Of these, 50
missense, 2 nonsense, and 2 insertion/deletion mutations have been functionally characterized for
their effects on enzymatic activity and stability. While GSD-Ia is not more prevalent in any ethnic
group, mutations unique to Caucasian, oriental, and Jewish populations have been described. Despite
this, GSD-Ia patients exhibit phenotypic heterogeneity and a stringent genotype-phenotype
relationship does not exist.

Introduction
Glycogen storage disease type I (GSD-I), also known as von Gierke disease, is a group of
autosomal recessive disorders with an overall incidence of approximately 1 in 100,000 [Chou
and Mansfield 1999; Chen 2001; Chou et al., 2002]. GSD-I was originally divided into four
subtypes, corresponding to defects in the glucose-6-phosphatase-α (G6PC) catalytic unit, GSD-
Ia (MIM232200); defects in the glucose-6-phosphate transporter (G6PT), GSD-Ib
(MIM232220); defects in a putative phosphate transporter, GSD-Ic; and defects in a putative
glucose transporter, GSD-Id [Chou and Mansfield 1999; Chen 2001; Chou et al., 2002]. GSD-
Ia and GSD-Ib have been characterized at the molecular level. Both the G6PC [Lei et al.,
1993] and G6PT [Gerin et al., 1997; Annabi et al., 1998] genes have been cloned and molecular
genetic studies have confirmed that mutations inactivating G6PC cause GSD-Ia [Lei et al.,
1993; 1994; 1995a; 1995b] and mutations inactivating G6PT cause GSD-Ib [Hiraiwa et al.,
1999; Chen et al., 2000; 2002]. In contrast, GSD-Ic and Id have not been characterized at the
molecular level. Clinical cases reported to represent GSD-Ic, GSD-I non-a, and GSD-Id, have
been subjected to sequence analysis and shown to share deleterious mutations identified in the
G6PT gene of GSD-Ib patients [Veiga-da-Cunha et al., 1998; 1999; Galli et al., 1999; Janecke
et al., 2000]. This raises the possibility that G6PT is implicated in all cases of GSD-I non-a.
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GSD-Ia is the most prevalent, representing over 80% of GSD-I cases. G6PC is a key enzyme
for the maintenance of glucose homeostasis between meals, catalyzing the hydrolysis of
glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of gluconeogenesis
and glycogenolysis. GSD-Ia patients are unable to maintain glucose homeostasis and a
hallmark of GSD-Ia is hypoglycemia following a short fast [Chou and Mansfield 1999; Chen
2001; Chou et al., 2002]. This loss of glucose homeostasis leads to the accumulation of elevated
levels of G6P in the cytoplasm. This in turn stimulates the alternative metabolic pathways
involving G6P. The primary impact, from which the name of the disease derives, is the
synthesis and excessive accumulation of glycogen in the liver and kidney, which in turn
promotes progressive hepatomegaly and nephromegaly. Other major metabolic consequences
of elevated cytoplasmic G6P are hypercholesterolemia, hypertriglyceridemia, hyperuricemia,
and lactic acidemia that also characterize the clinical pathophysiology of GSD-Ia. In addition
to excessive glycogen deposition, additional accumulation of fats in the liver also contributes
significantly to the hepatomegaly.

Prior to the cloning of the G6PC gene, GSD-Ia was diagnosed primarily by clinical and
biochemical symptoms, supported by basic laboratory investigations, and confirmed by
measurements of G6PC activity in liver biopsy samples. With the cloning of the G6PC gene,
DNA-based diagnostic tests for GSD-Ia were developed by several laboratories. DNA testing
for GSD-Ia, primarily in the form of targeted mutation analysis and exon sequencing of G6PC,
is now available from several clinical testing laboratories which can be identified through the
NIH funded GeneTests web site
(
http://www.geneclinics.org/servlet/access?prg=j&db=genetests&site=gt&id=8888891&fcn=c&qry=2678&res=nous&res=nointl&key=GnAY5RgtLYkBn&show_flag=c
). GSD-Ia and GSD-Ib patients manifest a near identical metabolic phenotype but GSD-Ib
patients also suffer from neutropenia, myeloid dysfunctions, and inflammatory bowl disease
indistinguishable from the idiopathic Crohn's disease [Visser et al., 2000; Dieckgraefe et al.,
2002; Chou and Mansfield 2003]. Therefore, flowcharts have been presented for the diagnosis
of GSD-Ia in which the presence or absence of myeloid dysfunction determines whether to
perform mutation analysis of the G6PC gene [Rake et al., 2000a]. However, neutropenia is not
manifest by all GSD-Ib patients [Galli et al., 1999; Kure et al., 2000; Melis et al., 2005;
Angaroni et al., 2006; Martens et al., 2006] and some GSD-Ia patients suffer from mild
neutropenia [Weston et al., 2000]. Therefore, a clear diagnosis may still warrant mutational
analysis of both G6PC and G6PT genes.

There is no cure for GSD-Ia and the current treatment for GSD-Ia is a dietary therapy
augmented by various conventional drugs. For patients younger than 6 months old, the therapy
typically consists of nocturnal nasogastric infusion of glucose to avoid hypoglycemia [Greene
et al., 1976] because cornstarch is poorly tolerated due to immaturity of the gastrointestinal
tract and lack of brush border enzymes [Weinstein and Wolfsdorf, 2002]. For patients older
than 6 months, the therapy consists of a supplement of uncooked cornstarch, which serves as
a slow release carbohydrate to prolong euglycemia between meals [Chen et al., 1984]. Many
patients on a therapy of uncooked cornstarch fail to maintain “ideal plasma glucose levels” and
manifest hyperlactataemia after midnight. A treatment regimen including nocturnal intragastric
feeding of a glucose polymer during both childhood and adolescence to maintain blood glucose
in the high normal range has been advocated to enable GSD-Ia patients to maintain normal
urinary lactate levels and achieve optimal growth [Daublin et al., 2002]. In general, these
dietary strategies enable patients to attain near normal growth and pubertal development, with
fewer complications as they age. However, dietary therapy fails to completely prevent the
occurrence of hyperlipidemia, hyperuricemia, lactic acidemia, hypercalciuria, and
hypocitraturia [Weinstein et al., 2001; Rake et al., 2002]. As a result, osteoporosis, gout,
pulmonary hypertension, kidney disease, and hepatic adenoma remain long term complications
of GSD-Ia [Chou and Mansfield 1999; Chen 2001; Chou et al., 2002].
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The human G6PC is a single copy gene that contains 5 exons [Lei et al., 1993] and spans 12.5
kb of DNA on chromosome 17q21 [Lei et al., 1994]. The expression of G6PC is tissue
restricted, the predominant sites of expression being the liver, kidney, and intestine [Pan et al.,
1998b]. The 3100-base G6PC transcript encodes a highly hydrophobic, endoplasmic reticulum
(ER)-associated glycoprotein of 357 amino acids [Lei et al., 1993]. A G6PC isoform, G6PC3
(glucose-6-phosphatase-β) has recently been discovered and the G6PC3 gene also maps to
chromosome 17q21 [Martin et al., 2002]. While similar in many respects to G6PC, G6PC3
contains an additional exon, spans only 5.4 kb of DNA, and most notably, is expressed
ubiquitously [Martin et al., 2002]. The G6PC3 protein shares 36 % amino acid identity to G6PC
[Martin et al., 2002; Shieh et al., 2003; Guionie et al., 2003] and is similar in many respect to
G6PC. It too is a hydrophobic protein, though slightly shorter (346 amino acids) and shares
topological structure, active center and kinetic properties with G6PC [Shieh et al., 2003; Ghosh
et al., 2004]. However, mutations in G6PC3 are not associated with GSD-Ia, which is consistent
with the primary role the liver, kidney and intestine play in inter-prandial glucose homeostasis
for the body as a whole. The remainder of this review will focus primarily on G6PC and its
relationship to GSD-Ia.

In this study, we summarize the reported G6PC mutations and review what mutagenesis studies
have revealed about the structure and function of the G6PC catalytic unit. We also provide a
summary table that unites the various nomenclatures used in the literature reporting mutations
in G6PC in accordance with the guidelines of the Human Genome Variation Society
(www.hgvs.org). Early reports of G6PC mutations used a nomenclature in which the
transcription initiation site was designated nucleotide +1 [Lei et al., 1993]. These mutations
were renamed in this study with the A of the ATG-translation initiation codon as nucleotide
+1 [den Dunen and Antonarakis, 2000, 2001].

Topology and Active Center of G6PC
G6PC contains 9 transmembrane domains that anchor it in the ER membrane [Pan et al.,
1998a; 1998c]. The amino-terminus of the protein lies in the ER lumen and the carboxyl-
terminus in the cellular cytoplasm (Fig. 1). Sequence analysis has identified a conserved motif,
K-X6-RP-(X12-54)-PSGH-(X31-54)-SR-X5-H-X3-D, lying between residues 76 and 180 in
G6PC, which aligns with the conserved phosphatase signature motif found in lipid
phosphatases, acid phosphatases, and vanadium haloperoxidases [Hemrika and Wever, 1997;
Stukey and Carman, 1997]. Based on the crystal structure of the vanadium haloperoxidase
[Hemrika et al., 1997], the active center of G6PC is proposed to comprise Lys-76, Arg-83,
His-119, Arg-170 and His-176 [Hemrika and Wever, 1997; Stukey and Carman, 1997]. During
G6PC catalysis, an enzyme-phosphate intermediate is formed through a histidine residue
[Feldman and Butler, 1972]. Using active site labeling and cyanogen bromide mapping,
His-176 was shown to be the nucleophile that covalently bound the phosphate moiety forming
the phosphohistidine-G6PC intermediate during catalysis [Ghosh et al., 2002].

Mutations in four of the proposed active site residues, namely p.K76N, p.R83C, p.R83H,
p.H119L, and p.R170Q have been identified in GSD-Ia patients and shown to completely
abolish G6PC enzymatic activity [Lei et al., 1993; Shieh et al., 2002], consistent with their
proposed role. Both conservative and non-conservative in vitro mutations of Arg-83 and
His-119 have shown a loss of activity in G6PC catalysis further underlining the essential role
of these 2 residues for catalytic activity [Lei et al., 1995c]. Surprisingly, mutations involving
His-176 have not been identified in the G6PC gene of GSD-Ia patients. However, in vitro
mutagenesis of His-176 to Ala (p.H176A), Ile (p.H176I), Lys (p.H176K), Met (p.H176M),
Asn (p.H176N), Ser (p.H176S), or Arg (p.H176R) followed by transient expression analysis
has shown these H176 mutants are devoid of G6P hydrolytic activity [Pan et al., 1998a] as
would be expected for its role as the phosphate acceptor in G6PC. Sequence alignment indicates
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that G6PC and G6PC3 share the same active center structure and studies of G6PC3 support
the conclusions about G6PC. In G6PC3 the active site residues include Lys-72, Arg-79,
His-114, Arg-161, and His-167, and G6PC3 mutants R79A, H114A, or H167A are devoid of
enzymatic activity [Shieh et al., 2003]. Importantly, His-167 in G6PC3 is also the phosphate
acceptor forming a phosphohistindine-G6PC3 intermediate during catalysis [Ghosh et al.,
2004].

Based on mutational and active site labeling studies, the current paradigm for the G6PC reaction
mechanism is that His-176 is the nucleophile forming a phosphohistidine enzyme-intermediate,
Arg-83 and Arg-170 donate hydrogen bonds to phosphate and stabilize the transition-state, and
His-119 provides the proton needed to liberate the glucose moiety (Fig. 2). Of these residues,
all but Arg-76 (in helix-2), are predicted to lie on the luminal side of the ER (Fig. 1), confirming
the view that the active site of G6PC is not accessible from the cytoplasm [Nilsson et al.,
1978]. Therefore, the generation of glucose from G6P hydrolysis is dependent upon the
availability of G6P in the ER lumen. This places a second control on glucose homeostasis at
the level of transport of cytoplasmic G6P across the ER membrane into the lumen. This process
is mediated by the G6P transporter, G6PT [Chou et al., 2002;Chou and Mansfield 2003].
Deficiencies in G6PT cause a second subtype of GSD-I, GSD-Ib which represents
approximately 20% of GSD-I cases. G6PC and G6PT are co-dependent, in that mutation of
either leads to inactivation of the other [Lei et al., 1996;Hiraiwa et al., 1999] and, as expected,
GSD-Ib patients exhibit identical metabolic abnormalities as GSD-Ia patients, although they
also manifest the additional clinical complications of neutropenia, myeloid dysfunction, and
inflammatory bowl disease [Visser et al., 2000;Dieckgraefe et al., 2002;Chou and Mansfield
2003].

Mutations of the G6PC Gene
To date, 84 separate G6PC gene mutations have been identified out of approximately 550 GSD-
Ia patients (Table 1). These include 54 missense, 10 nonsense, 17 insertion/deletion, and 3
splicing mutations spread through the coding and exon-intron junction regions (Fig. 3). The
initial mutation studies of G6PC, performed before antibodies against G6PC were available
and the protein's secondary structure had been elucidated, focused on the catalytic impact of
missense mutations [Lei et al., 1993,1994,1995a,1995b;Bruni et al., 1999;Takahashi et al.,
2000]. Subsequently, the topology of G6PC was established by Pan and coworkers [1998a,
1998b] showing that the protein is anchored in the ER by 9 transmembrane helices (Fig. 1).
Using FLAG-tagged G6PC mutants and an anti-FLAG antibody, Shieh and coworkers
[2002] functionally characterized 48 naturally occurring G6PC missense mutations along with
the p.F327del mutation by enzymatic activity assays as well as by immunoblot analysis. They
grouped these mutations into three categories – active site, helical and non-helical - based on
their predicted topological position (Fig. 1). The active site mutations were assigned based on
the designated catalytic site; the helical mutations were assigned based on the proposed
transmembrane domains and the non-helical mutations were assigned based on the proposed
luminal or cytoplasmic locations in G6PC (Fig. 4). Later, Ghosh et al. [2002] characterized the
p.H176A active site mutant and Angaroni et al. [2004] characterized 2 additional missense
mutations, p.T16R and p.Y209C in a similar fashion (Fig. 4).

These studies revealed six key findings. Firstly, mutations in the active site residues, namely
p.R83C, p.R83H, p.H119L, p.R170Q, and p.H176A completely abolish G6PC enzymatic
activity, consistent with their proposed role. Secondly, Western blot analysis showed that the
active site mutants supported the synthesis of similar levels of G6PC protein compared to the
wild-type enzyme [Shieh et al., 2002; Ghosh et al., 2002], indicating that the active site residues
played no essential role in the stability of the enzyme. Thirdly, among the 32 helical mutations,
23 (72%) completely abolish G6PC activity, 7 retain residual activity, while two (p.G122D in
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helix-3, 28.2%; p.F322L in helix-9, 17.4%) retain significant activity. The p.G122D and
p.F322L mutants have similar stability to wild-type G6PC, suggesting that helix-3 is more
flexible and tolerant of changes. Fourthly, the majority (61%) of helical mutants, including
p.D38V (helix-1), p.W63R/p.G68R (helix-2), p.V166A (helix-4), p.G188D/p.G188S/
p.G188R (helix-5), p.Y209C/p.L211P/p.G222R (helix-6), p.N264K/p.L265P/p.G266V/
p.G270V/p.G270R (helix-7), p.R295C/p.S298P (helix-8), and p.F327del/p.V338F/p.I341N/
p.L345R (helix-9) supported the synthesis of reduced levels of G6PC protein compared to the
wild-type enzyme, indicating these mutations destabilize G6PC [Shieh et al., 2002; Angaroni
et al., 2004]. The studies also show that the structural integrity of transmembrane helices is
critical for the correct folding, stability and enzymatic activity of G6PC. Fifthly, eight (57%)
of the 14 non-helical mutations retain residual G6PC activity with 4 mutants retaining 15% or
more of wild-type G6PC activity, implying the non-helical regions of the lumen and cytoplasm
are less critical to activity. Finally, the non-helical mutations play no essential role in the
stability of the enzyme [Shieh et al., 2002], with the exception of the T16R mutation [Angaroni
et al., 2004], which does decrease stability. Presently, 4 of the naturally occurring missense
mutations, p.A65P [Matern et al., 2002], p.L173P [Li et al., 2007], p.F177C [Matern et al.,
2002], and p.P178A [Ki et al., 2004] remain to be characterized functionally.

Among the 10 naturally occurring nonsense mutations identified, p.R170X [Takahashi et al.,
2000] and p.Q347X [Lei et al., 1994] have been functionally characterized and both completely
inactive the G6PC enzyme. Since the p.Q347X mutant lacking 11 amino acids at the carboxyl
terminus is devoid of enzymatic activity, this suggests that the remaining 8 nonsense mutations
in G6PC (Table 1) predicted to encode polypeptides of 241 amino acids or shorter should also
be null mutations. Progressive deletions in the form of p.K355X, p.H353X, p.Q351X,
p.G350X, and p.L349X mutations lacking, respectively, 3, 5, 7, 8, and 9 amino acids at the C-
terminus retain 65%, 60%, 43%, 41.5% and 5.3%, respectively, of wild-type G6PC activity
[Lei et al., 1995c]. The consistent decline with the severity of deletion for the first 8 residues
suggests they contribute moderately to activity. Within these residues lies the ER retention
motif, KKSL [Jackson et al., 1990] between residues 354 to 357. Since the G6PC mutants
p.G350X, p.Q351X, and p.H353X exhibit latency and thermal stability indistinguishable from
that of the wild-type enzyme [Lei et al., 1995c], these results suggest that the ER retention
signal is not required for ER localization of G6PC or enzymatic activity. This is also true for
G6PC3 which is localized to the ER membrane despite the absence of an apparent ER retention
motif [Shieh et al., 2003]. The sudden drop in activity upon deletion of Leu-349 in G6PC
however, suggests it is a more critical residue.

Two naturally occurring insertion/deletion mutations, p.W244_E249delCEQPinsWRAA and
p.F327del have been functionally characterized and shown to be devoid of enzymatic activity
[Lei et al., 1995a, 1995b]. The remaining 15 insertion/deletion mutations are frameshift
mutations (Table 1) predicted to encode polypeptides of 6 to 300 amino acids which are
expected to be devoid of G6PC enzymatic activity, although these remain to be tested
experimentally.

Three natural occurring splicing mutations, c.230+4A>G, c.231-1G>A, and c.648G>T have
been identified (Table 1). The c.231-1G>A mutation causes exon 2 skipping [Akanauma et al.,
2000] and the c.648G>T mutation results in a 91-nt deletion in exon 5 [Kajihara et al., 1995]
encoding a severely truncated polypeptide of 201 amino acids [Okubo et al., 1997]. Both
mutations are predicted to inactivate G6PC activity, but have yet to be tested experimentally.

While GSD-Ia is not restricted to any one ethnic group, mutations unique to Caucasian/
Hispanic [Chevalier-Porst et al., 1996; Hinds and Burchell, 1996; Matern et al., 1996; Parvari
et al., 1997b, 1999; Keller et al., 1998; Huner et al., 1998; Bruni et al., 1999; Linnebank et al.,
1999; Stroppiano et al., 1999; Kozak et al., 2000; Rake et al., 2000a, 2000b; Rocha et al.,
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2000; Seydewitz and Matern, 2000; Trioche et al., 2000; Weston et al., 2000; Meaney et al.,
2001; Reis et al., 2001; Terzioglu et al., 2001; Miltenberger-Miltenyi et al., 2005], Chinese
[Hwu et al., 1995, 1999; Lee et al., 1996; Lam et al., 1998; Chiang et al., 2000; Wu et al.,
2000a, 2000b; Wong et al., 2001; Qiu et al., 2003; Li et al., 2007], Japanese [Kajihara et al.,
1995; Okubo et al., 1997; Karasawa et al., 1998; Akanuma et al., 2000; Takahashi et al.,
2000; Nakamura et al., 2001], Korean [Goto et al., 2000; Ki et al., 2004], and Jewish [Lei et
al., 1995a; Parvari et al., 1995, 1997a; Ekstein et al., 2004] GSD-Ia patients have been described
(Table 2). The prevalent mutations identified in the 676 alleles from Caucasian GSD-Ia patients
are p.R83C (33%) and p.Q347X (18%). Of the 112 alleles characterized from Chinese patients
the prevalent mutations are p.R83H (26%) and c.648G>T (54%). Amongst the 172 Japanese
alleles and 28 Korean alleles from GSD-Ia patients, there is a common prevalent mutation, c.
648G>T, accounting for 91% and 75% of the mutations, respectively. The common 648G>T
mutation found in Chinese, Japanese, and Korean might reflect the genetic relationship between
these three races. The prevalent mutation in the 24 Hispanics alleles characterized is c.
380_381insTA, representing 54% of the mutations. Out of 94 Jewish alleles characterized, all
but two are p.R83C, with p.Q347X making up the balance. Indeed, GSD-Ia is particularly
common in the Ashkenazi Jewish population where the carrier frequency for the p.R83C
mutation is 1.4% [Ekstein et al., 2004].

Genogype-Phenotype Correlation
GSD-Ia patients exhibit phenotypic heterogeneity and there is little evidence for a stringent
genotype-phenotype relationship for each GSD-Ia gene mutation. However, several reports
suggest some mutations are more commonly associated with more or less severe phenotypes.
For example, Nakamura et al. [2001] reported a patient first diagnosed as GSD-Ia when 40
years old, who presented with “liver dysfunction and a liver tumour.” Just two years later the
patient had hepatocellular carcinoma. Other causes for hepatocellular carcinoma, such as
alcohol abuse, hepatitis B, hepatitis C, and loss of heterozygosity for the p53 gene were
excluded. Genotyping revealed that the patient was homozygous for the c.648G>T splicing
mutation which led the authors to speculate that this particular mutation is associated with an
increased risk for hepatocellular carcinoma. A Chinese female patient with a similarly mild
disease history and homozygous for c.648G>T was diagnosed with an incurable hepatocellular
carcinoma when 43 years old [Matern et al., 2002] which would support this view. However,
in a larger study, genotype-phenotype correlation was carefully examined in 40 GSD-Ia
patients homozygous for the c.648G>T mutation [Akanuma et al., 2000]. They showed that
the age of disease onset, the severity of the symptoms, and complications including the
appearance of hepatic adenoma and carcinoma varied greatly among the 40 patients, indicating
that the genotype of the G6PC is not the sole determinant of clinical severity. However, the
authors noted none of the 40 patients with this genotype had suffered from severe hypoglycemia
in infancy, suggesting that the c.648G>T splicing mutation, common in Eastern Asian, may
confer a milder GSD-Ia phenotype with respect to recurrent hypoglycemia. A milder phenotype
would, on the surface appear a surprising characteristic for this mutation because it is predicted
to encode a severely truncated polypeptide of 201 amino acids which should be devoid of G6PC
activity. One possible explanation could lie in the observation that many splicing mutations
are not efficient, and can allow leaky expression of the enzymatically active native protein.
Arguing against this, however is the observation that in at least one homozygous GSD-Ia c.
648G>T patient, PCR amplification of liver biopsy RNA failed to detect the wild-type G6PC
transcript, which would suggest there was no hepatic G6PC activity in this patient [Kajihara
et al., 1995].

A similar, inconsistent observation has been reported for a Japanese patient homozygous for
the p.P257L mutation which retains only 6.1% of wild-type G6PC activity. The patient is
reported to never experience a symptomatic hypoglycemic episode and not require dietary
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therapy [Takahashi et al., 2000]. Similarly, a compound heterozygous patient having p.R83C
and p.N264K null mutations does not manifest significant fasting hypoglycemia [Keller et al.,
1998]. In contrast, a compound heterozygous patient with p.E110Q and p.G222R mutations
that retain 16% and 2.6%, respectively of wild-type G6PC activity manifest typical severe
symptoms of GSD-Ia [Parvari et al., 1997b]. Rake et al. [2000] also reported variable
phenotypes among affected siblings with the same G6PC genotype. This may point either to
the inadequacy of the in vitro expression systems used to assess function, or to the presence of
modifiers that can compensate for or stabilize low level expression in vivo.

There is a report of GSD-Ia patients exhibiting the myeloid dysfunction usually considered a
characteristic phenotype of GSD-Ib, not GSD-Ia [Weston et al., 2000]. The patients carry a
homozygous p.G188R null mutation in the G6PC gene yet manifest mild neutropenia. When
isolated, their neutrophils exhibit decreased oxidative burst activity, impaired chemotaxis, and
defective killing of E. coli, all phenotypical of GSD-Ib [Chen 2001; Chou et al., 2002; Chou
and Mansfield 2003]. Mutations in the G6PT gene were not detected and this unusual
phenotype is not encountered in compound heterozygous GSD-Ia patients carrying p.G188R.
Again, the cause for this unusual phenotype is currently unknown, but may lie in the functional
co-dependence of the G6PC and G6PT (Lei et al., 1996; Hiraiwa et al., 1999].

Animal Models
There are mouse [Lei et al., 1996] and dog [Kishnani et al., 1997] models of GSD-Ia. Both
animals are physiologically similar to humans with respect to G6P metabolism. The G6PC-
deficient mice, generated by gene targeting, manifest all of the symptoms of human GSD-Ia -
hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, and
hyperuricemia, and mild lactic acidemia [Lei et al., 1996]. The GSD-Ia dog identified originally
was a Maltese breed carrying a natural p.M121I G6PC mutation that retains 6.6% of wild-type
activity when measured by transient expression assays [Kishnani et al., 1997]. However,
because the Maltese breed is small in size, exhibits low survival rate of newborns, and has a
small litter size, a new dog model was established by crossbreeding a carrier Maltese with
Beagles [Kishnani et al., 2001]. The two canine models manifest all the typical symptoms of
the human disorder, including hyperlactacidemia [Kishnani et al., 1997; 2001]. Both mouse
and canine models are being used to further our understanding of the biology and
pathophysiology of GSD-Ia, to develop novel therapies for this disorder, and to monitor the
long-term complications of GSD-Ia. The phenotypic similarity between the GSD-Ia mice,
carrying a null mutation, and the GSD-Ia dog carrying a mutation conferring 6.6% of normal
G6PC activity indicates that to correct the GSD-Ia disorder, more than 7% of normal G6PC
activity must be restored in the liver. Consistent with this, our recent gene therapy study has
shown that sustained restoration of approximately 11% of normal hepatic G6PC activity is
adequate to maintain glucose homeostasis in GSD-Ia mice [Ghosh et al., 2006]. However, liver
and kidney recovery differ. The study also showed that sustained restoration of 7% of normal
renal G6PC activity could not prevent the development of kidney disease in GSD-Ia mice
[Ghosh et al., 2006]. For the study of hepatic adenomas, which develop in 50% of GSD-Ia
patients in the second or third decade of life [Bianchi 1993; Labrune et al., 1997; Lee 2002],
the existing animal models have not been useful, primarily because the dietary therapies used
to sustain the life of GSD-Ia animals have not yet been refined to prevent premature death of
these animals from hypoglycemia seizures.

Future Prospects
Despite many advances at the molecular genetic level, there are still a number of inconsistencies
in GSD-Ia that remain to be resolved. The phenotypic heterogeneity and the lack of a stringent
genotype-phenotype in GSD-Ia raise the possibility of the existence of genetic modifiers which
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may modify the phenotype. However, clear experimental evidence for the presence of such
modifiers, and their identities remain to be addressed. Moreover, even with our current
understanding of the mutations and their consequences, there are no alternatives to the current
standard of care. The primary complications of GSD-Ia are a loss of glucose homeostasis due
to the loss of functional G6PC in the liver and kidney, followed by secondary renal and liver
disease. However, the etiology of renal and liver disease in GSD-Ia remains unclear. The renal
biopsies of GSD-Ia patients reveal interstitial fibrosis, tubular atrophy, and focal segmental
glomerulosclerosis [Chen et al., 1988; Baker et al., 1989]. Most hepatic adenomas seen in GSD-
Ia patients tend to be small, multiple, and nonencapsulated, but in approximately 10% patients
these benign lesions can undergo malignant transformation [Bianchi 1993; Labrune et al.,
1997; Lee 2002]. The animal models of GSD-Ia are now being used to delineate the molecular
mechanisms responsible for the pathogenesis of this disorder. Using GSD-Ia mice, we have
recently shown that at least one mechanism underlying the nephropathy occurring in GSD-Ia
involves angiotensin system-mediated renal fibrosis [Yiu et al., 2008]. The animal models of
GSD-Ia also offer the opportunity to explore somatic gene therapy. While promising in animals
[Beaty et al., 2002; Sun et al., 2002; Ghosh et al., 2006; Koeberl et al., 2006], gene therapy
still remains distant for human patients.
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Fig. 1.
G6PC is anchored in the membrane of the ER by 9 transmembrane helices. The amino-terminus
is located in the ER lumen and the carboxyl-terminus in the cellular cytoplasm. Missense and
the p.F327del mutations identified in the G6PC gene of GSD-Ia patients are marked in black.
Arg-83, His-119, Arg-170, and His-176, which contribute to the active center, are denoted by
large circles. The phosphate acceptor His-176 is denoted by an arrow.

Chou and Mansfield Page 15

Hum Mutat. Author manuscript; available in PMC 2008 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Proposed roles of Arg-83, His-119, Arg-170, and His-176 in the G6PC reaction mechanism.
The single thick line represents the general backbone of the protein, which lies within the ER
membrane.
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Fig. 3.
Mutations identified in the G6PC gene of GSD-Ia patients. The G6PC gene is shown as a line
diagram with the 5 exons marked as boxes I to V. Black boxes represent coding regions, white
boxes the 5′ and 3′ untranslated regions of the G6PC transcript. The positions of all known
mutations are listed from left to right as insertion/deletion, nonsense, splicing, and missense
mutations.
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Fig. 4.
A summary of mutations of G6PC that affect phosphohydrolase activity. The G6PC protein is
represented by a line diagram, with the 9 helical transmembrane domains marked as boxes H1
to H9. Protein mutations that destroy G6PC activity are listed. Mutants retaining some residual
activity are listed with the percent of wild-type enzymatic activity retained in parentheses. The
active site mutant H176A, show in italic, is not naturally occurring.
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