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ABSTRACT

The roles and target genes ofmany transcription fac-
tors (TFs) are still unknown. To predict the roles of
TFs, we present a computational method for asso-
ciating Gene Ontology (GO) terms with TF-binding
motifs. The method works by ranking all genes as
potential targets of the TF, and reporting GO terms
that are significantly associated with highly ranked
genes. We also present an approach, whereby these
predicted GO terms can be used to improve predic-
tions of TF target genes. This uses a novel gene-
scoring function that reflects the insight that genes
annotated with GO terms predicted to be associated
with the TF are more likely to be its targets. We con-
struct validation sets of GO terms highly associated
with known targets of various yeast and human TF.
On the yeast reference sets, our prediction method
identifies at least one correct GO term for 73% of the
TF, 49% of the correct GO terms are predicted and
almost one-third of the predicted GO terms are cor-
rect. Results on human reference sets are similarly
encouraging. Validation of our target gene prediction
method shows that its accuracy exceeds that of
simple motif scanning.

INTRODUCTION

Interactions between trans- and cis-acting elements bestow
the eukaryotic cell with a flexible mechanism to control
gene expression. Experimental data elucidating the rela-
tionship between transcription factors (TFs) and their
target genes is sparse, but paints a non-trivial picture. It
often involves multiple factors and epigenetic modifica-
tions, imparting both positive and negative influences on
expression levels (1,2).
Extensive research has explored the computational

discovery and prediction of sites at which TFs bind. A
TF-binding site (TFBS) is usually found upstream of the
coding region. Sites are typically short and their motifs are
consequently non-specific. When used for screening large
genomic regions, TFBS motifs often require further

qualification to be useful. Complementary approaches
leveraging co-expression data and conservation patterns
offer modest improvements for binding site discovery and
prediction (3–7). However, drawing on recent experimental
technologies, such as chromatin immunoprecipitation-chip
(ChIP-chip) experiments, predictive tools enable the tenta-
tive construction of gene-regulatory networks (1,8).

This study aims to improve the problematic signal-to-
noise ratio of TFBS prediction, not by building a more
accurate model of transcription, but by leveraging a func-
tional profile drawn from secondary information resources
such as the Gene Ontology (GO). We first predict the tar-
gets of a TF in silico using a position weight matrix [PWM;
(9)] description of its binding site preferences and the
upstream regions of an entire genome. Then, by assuming
that factors tend to bind genes of related biological pur-
pose, we validate such relationships by inspecting the func-
tional profile of the set of predicted targets. More
specifically, we determine the statistical significance of a
correlation between a set of putative transcription binding
events and the functional terms transitively associated with
the transcribed genes, i.e. the probability of such a correla-
tion occurring at random.

Our proposed method will allow us to assign putative
roles to a TF given its binding motif. This will provide
insights into the functions of binding motifs discovered ab
initio using either whole genome approaches (3,5), or dis-
covered in sequence sets prepared based on SELEX [sys-
tematic evolution of ligands by exponential amplification;
cf. (10)] experiments, expression data (e.g. upstream
regions of genes with similar expression profiles), or
ChIP-chip experiments. It may be argued that experimen-
tal data like ChIP-chip and gene expression can be directly
correlated with annotations. However, operating at a
finer-grained resolution (i.e. motifs as opposed to genes),
the proposed method may assist in resolving ambiguities
among candidate binding sites identified by motif discov-
ery tools in nominated genes.

In addition to suggesting possible and specific roles of a
transcription factor, the method delivers complementary
evidence to validate binding of the usually large number of
predicted binding sites. Intuitively, matches in the
upstream regions of (putative) target genes with identical
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or semantically similar annotations (fetched from our sec-
ondary information resource) attain more support than
those that do not.

To evaluate alternative implementations of the principal
idea, we first identify a reliable and authoritative set of
TF-gene annotations of the yeast genome (Saccharomyces
cerevisiae). Next, predictor configurations are quantita-
tively assessed, and their performance and limitations are
investigated. The configuration exhibiting the most reliable
predictions of target function is then applied to the human
genome (Homo sapiens), revealing putative roles of several
TFs some of which are verified from recent experimental
work. Finally, we establish the method’s ability to assist in
identifying target genes in the recently proposed yeast gene-
regulatory network (8). We make several observations that
help illustrate the capacity of the method to infer true roles
of a factor given its binding motif, and its potential to
improve the specificity of in silico target gene prediction.

MATERIALS AND METHODS

Overview of method

The GO consists of three separate dictionaries of
terms (collectively referred to as GO terms) that describe
cellular component, biological process and molecular
function (11).

We develop a method for predicting GO terms asso-
ciated with (the targets of) a TF. The method takes a
TFBS motif in the form of a PWM, and the upstream
regions of all genes in a genome, and produces a (possibly
empty) set of GO terms. Each such predicted GO term is
significantly associated (over- or under-represented) with
putative target genes. We then use the method to improve
in silico prediction of the targets of a TF by increasing the
scores of putative target genes that are annotated with the
significant GO terms associated with the TF, resulting in
improved target prediction specificity.

The steps of our GO term prediction method are
(i) construct a ranked list of (putative) target genes by
in silico prediction and (ii) find significant GO terms
using the target gene ranking:

TF $ PWM¼)ranked target genes¼)fGO termsg:

To evaluate our method, we require a ‘correct’ list of GO
terms associated with a given TF. To create such a list, we
use a variant of the above approach that uses a set of
target genes, rather than a ranked list:

TF¼)ftarget genesg¼)fGO termsg:

Here, the set of target genes is an input to the method,
rather than being predicted by it.

In the following sections, we first describe how we per-
form in silico prediction of TFBSs. This is the essential
first step in our method for associating TFs with GO
terms. Next, we describe our statistical approach to pre-
dicting over- and under-represented GO terms linked
(transitively) to a TF. Then, we describe our method for
improving target gene prediction using predicted GO term
associations. Finally, we describe the sources of PWMs
and sequence data used in evaluating our methods.

Predicting gene targets of TFs in silico

We consider several approaches for predicting the gene
targets of a TF. All of the methods are based on predicting
the propensity of the upstream region of a given gene to
bind to the TF. Each of the methods uses a TFBS motif
described in the form of a PWM, which encodes the pro-
pensity of different, fixed-length DNA sequences to bind
to the TF (9). Each gene receives a score based on the
match between the motif and the upstream sequence of
the gene. The motif is defined in terms of a probability
matrix, q, where w is the width in base pairs, and qðk;XÞ
is the probability of observing the nucleotide
X 2 fA;C;G;T g at position k 2 f1; :::;wg.
We explore three gene-scoring methods and variations

of them. In each scoring method and for each position in
the upstream region relative to the gene’s transcription
start site (including both strands), we compute the odds
of the position being a binding site versus random (as
specified by a zero-order background model and described
below). Two of our three scoring methods compute the
maximum and average odds, respectively, for all positions
in a given gene’s upstream region. We refer to these meth-
ods as ‘Max-Odds’ and ‘Avg-Odds’, respectively. The
third method computes the number of positions with
odds score above a given threshold (‘hits’), and we refer
to this scoring method as ‘Hit-Count’. This score accom-
modates multiple binding sites while requiring that their
strength exceeds a threshold. In order to make the thres-
holds for different PWMs more consistent, the Hit-Count
threshold is expressed as a P-value—the probability of a
single position being a random match. Max-Odds and
Avg-Odds share the benefit of not requiring a threshold.
Max-Odds considers only one putative binding site,
whereas Avg-Odds accounts for multiple sites within the
same regulatory region. The disadvantage of averaging
over all positions is that sensitivity drops when sequences
are long. The disadvantage of the Hit-Count method is
that it requires selecting a suitable P-value threshold.
To maximize transparency, we have chosen to include

only the aforementioned baseline approaches, popular in
several motif-scanning software, e.g. MAST (12) (Max-
Odds and Hit-count) and Clover (13) (Avg-Odds).
Alternative scoring functions are also applicable and
may even incorporate additional resources such as phylo-
genetic and expression profiles.
Each of the three gene-scoring methods requires the

specification of a TFBS motif model (the PWM) and a
background model. In all instances, we use a zero-order
Markov background model that reflects the prior prob-
ability of each possible nucleotide. We consider two var-
iants of each scoring method, one using ‘Global’
background, which reflects the global occurrence of each
nucleotide in the upstream regions of genes, and the other
using a ‘Local’ background that is re-computed for each
sequence. The Local background model-based scores
attempt to compensate for regional biases in nucleotide
composition along the chromosome. For example, genes
whose upstream regions have high GC-content will tend to
receive lower scores when scored with GC-rich motifs.
Each background model is constructed by estimating the
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probabilities of nucleotides A, C, G and T as the average
number of each letter in the relevant sequence(s).
As another way of reducing potential problems caused

by sequence composition biases, we also investigate two
additional variants of the Avg-Odds score. Each of these is
based on the standard Z-score of the Avg-Odds score. The
Z-score is computed using the mean and SD estimated
using either (i) 30 Avg-Odds scores generated on zero-
order shuffled sequence data (Avg-Odds-ZS) or (ii) 30
Avg-Odds scores generated when the columns of the
PWM are randomly reordered (Avg-Odds-ZM).
In addition to the three motif-based scores (Max-Odds,

Avg-Odds and Hit-Count), we also consider a non-infor-
mative score as a negative control. We do this because
there is reason to be cautious with GO term analysis. It
is well-known that the base-composition of the DNA
sequence is far from uniform. Some genomic regions
have high GC-content and others are rich in AT.
Likewise, motifs have varying preference for sequence
regions with high (or low) GC-content. Significant corre-
lations between some TF motifs and certain GO terms are
possibly due to base composition alone. As a negative
control score, we simply use the GC-content (expressed
as a fraction) of the upstream region.
The mathematical details of our various gene-scoring

functions are as follows. The binding motif (PWM) for a
TF is specified by qðÞ, where qð j, aÞ is the probability of
base a at position j of the width-w motif. Similarly, pðaÞ
represents the background probability of base a. For all
three scores, each position i 2 f1; :::;LðgÞg on both strands
of the LðgÞ-base pair upstream sequence of gene g 2 G are
screened, where G is the set of genes for a species. All three
scoring functions use the same fundamental odds score,

SOðg; iÞ ¼
Yw
j¼1

qð j;Nð g; iþ j� 1ÞÞ

pðNð g; iþ j� 1ÞÞ
;

where Nðg; kÞ returns the kth nucleotide in the upstream
sequence of gene g 2 G. The odds score for the reverse
strand, S0

O, is defined analogously using q0 and p0 counter-
parts of the above that are flipped to reflect the comple-
mentarity of nucleotide base pairing. The Avg-Odds score
is the average odds of each position being a binding site
versus random sequence,

SAOðgÞ ¼
1

2Lð gÞ

X
i2L

SOð g, iÞ þ S 0
Oðg; iÞ:

Max-Odds scores each position on both strands and
selects the highest score,

SMOðgÞ ¼ max
i

ðmaxðSOðg; iÞ;S
0
Oðg; iÞÞÞ:

The Hit-Count score takes an upstream sequence and
counts the number of times a motif scores above a speci-
fied threshold on either strand. It is defined as

SHCðg, pÞ ¼ jf8iðmaxðSOðg, iÞ;S
0
Oðg, iÞÞ > XðpÞgj;

where the threshold XðpÞ is chosen such that the probabil-
ity (P-value) of obtaining an SO score at least as extreme
as XðpÞ by chance is p (14).

Sometimes referred to as standardizing, a Z-score is
derived by subtracting the population mean from an indi-
vidual raw score and then dividing the difference by the
population SD. A Z-score can be determined from any of
scoring methods by using as the individual raw score the
method’s score on the original data and then determining
a ‘random score’ population mean and deviation by
repeatedly applying the method on either (i) randomly
shuffled sequences, retaining composition of the original
sequence or (ii) randomly reordered columns of the origi-
nal motif, retaining composition and information content.
The Z-score indicates how many SD an actual observation
is above or below the mean. The expectation is that a true
motif match receives a higher Z-score than a random
match (represented by the populations generated in
either of the two ways above). The score is defined as

ZðSÞ ¼
S� �

�
;

where � is the population mean and � is its SD.

Predicting GO terms associated with a TF

The GO database contains a finite set of GO terms, T. A
specific gene, g 2 G, is associated with zero, one or more
GO terms, i.e. forms a set Tg ¼ ft : annotðg; tÞ ^ t 2 Tg,
where the predicate annotðÞ pairs genes with their terms.
Using one of the scoring functions described in the pre-
vious section, we can rank all genes according to their
(putative) tendency to be a target of a given TF by scoring
the gene’s upstream region using the PWM for the TF. To
determine if a particular GO term is significant, we then
label each gene ‘+’ if it is annotated with that term, and
‘�’ otherwise. Our null hypothesis is that the order of the
‘+’ and ‘�’ genes in the list is random. If the ‘+’ genes
tend to have high scores (low ranks in the list), this would
indicate that the (predicted) targets of the TF are fre-
quently annotated with the given GO term. We refer to
this as the GO term being over-represented. We apply the
Mann–Whitney U-test (also known as the Wilcoxon
Ranksum-test) to determine whether we can reject the
null hypothesis and state that the GO term is significantly
associated with either high- or low-scoring genes. It should
be noted that it is not completely clear that low scoring
genes have any biological meaning, but they are included
here for completeness.

We repeat the above process for each term in the Gene
Ontology. To each term we assign as its score the P-value
of the U-test. To account for multiple testing, we use a
Bonferroni correction to compute the E-value of the GO
term—the number of terms that would score as well by
chance in the entire GO database. For a given E-value, E,
and TF, f, we denote the set of predicted terms as T

pred
f ðEÞ.

Constructing a gold standard of TF–GO term associations

In order to construct a reference set of associations
between a TF and GO terms, we require a list of the
TF’s target genes. To determine if a given GO term is
significantly over- or under-represented in such a list,
we construct a two-by-two contingency table and apply
Fisher’s Exact test. The rows of the table are counts of
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‘target’ and ‘non-target’ genes. The columns are ‘has GO
term t’ and ‘does not have GO term t’. The Fisher’s Exact
Test determines whether the two groups differ in the pro-
portion with which they fall into the categories with or
without GO term t. Rejecting the null hypothesis (that
they do not differ) is acceptable only if the P-value is
small. As before, we compute E-values to correct for mul-
tiple tests. We designate all GO terms enriched with an
E-value of 0.05 or below as belonging to target level 1. All
terms with E-values of 0.01 or below, belong to target level
2. Finally, all terms with E-values of 0.001 or below,
belong to the strictest level, target level 3.

Improving target gene prediction using GO term associations

Suppose we knew what GO terms a TF was associated
with. We would then expect genes with these terms to be
a priori more probable targets. We can leverage this intui-
tion to create an improved target gene predictor. First, we
predict TF–GO term associations to TF f using one of the
scoring methods described above. We then use the follow-
ing score to re-score all genes, g, as potential targets of TF f:

SGOðg, f Þ=
SAOðgÞ � 1 if T

pred
f ðEÞ \ Tg ¼ 6 0

SAOðgÞ � 2 otherwise;

�

where E is the GO term E-value.

GO terms, genomic sequences and PWMs

We use the GO (24 August, 2007) OBO version 1.2. In
total, there are 13 911 terms for biological processes, 7892
terms for molecular functions and 2007 terms for cellular
components. The terms are linked with ‘is-a’ and ‘part-of’
relations. When appropriate, the closure of such transitive
relations is determined to ascribe terms to genes, e.g. if a
gene is associated with the term nuclear exosome
(GO:0000176), which ‘is-a’ nuclear part (GO:0044428), it
is (per transitive inference) also associated with this more
generic term. As a consequence of collapsing terms this
way, the method will use a more generic description of
each GO term, no longer specific to the level in the GO
hierarchy at which it appears. Furthermore, we do not
distinguish between evidence classes in the GO, but
simply include them all. Including less corroborated anno-
tations (e.g. those inferred by homology) could compro-
mise the quality of predictions. However, we argue that
since inference requires broad statistical support, the use
of less reliable data may instead alleviate the problem of
sparsely annotated genomes.

To ensure generality of our approach, we test it on both
yeast and human regulatory regions. We chose yeast and
human as examples because their genomes are well-stu-
died and data-accessible (see below), and because they
are relatively extreme representatives of eukaryotic regu-
latory complexity. We use the 1000-bp upstream regions
all genes in S. cerevisiae (www.yeastgenome.org; 6
September 2007; 5883 sequences) and H. sapiens
(genome.ucsc.edu; version hg18; 23 570 sequences).
According to the GO, there are 4490 unique terms asso-
ciated with the S. cerevisiae sequences, and 8387 with

H. sapiens. There are terms for 6475 S. cerevisiae genes
and 16 251 H. sapiens genes.
Using ChIP data of Harbison et al. (15) and the merger

of two highly sensitive binding site discovery algorithms
incorporating evolutionary conservation, a high-confi-
dence yeast regulatory network was recently suggested
(8). Statistical scores of motif matches were stringently
based on empirical P-values and limited to regions
known to be bound by the corresponding factor. The
resulting network expands that of Harbison et al. (15)
without compromising specificity. Of the 172 transcription
factors with at least four bound probes in the Harbison
study, MacIsaac et al. (8) found 98 significant motifs (of
which 64 were validated from the literature). Augmented
by another 26 TF specificities from the literature, the net-
work consists of a total 124 factors with binding sites. We
use the complete regulatory map [http://fraenkel.mit.edu/
improved_map (8)] as a gold standard.
The regulatory map thus specifies a substantial number

of TFs and their binding sites, here converted into posi-
tion-specific scoring matrices. When assembling the target
gene set for a given TF, we distinguish between MacIsaac
and colleagues’ high confidence gene set (HC-set), filtered
via their strictest controls (motif match P � 0:001 and
their highest sequence conservation level ‘2’), and their
low confidence gene set (LC-set; motif match P � 0:05).
The statistical significance of each GO term associated
with these target genes is determined in the context of
the full set of yeast genes.
For the human gold standard, we use a total of 51 TF

motifs for H. sapiens taken from JASPAR (16). We also
use published target gene data sets for NFKB1 (17), SRY
(18), CREB1 (19), and TP53 (20).
To further validate predictions in human genes,

JASPAR identifies applicable TFs linked to UniProt.
We use the Function statement in the Comment field of
the entry (when available) to subjectively match predicted
terms with experimental knowledge.

Classification performance

We present methods for predicting (i) GO terms and (ii)
target genes from TF-binding motifs. The discrete nature
of such predictions allows us to view them as classifica-
tions. In our case, the set of predicted terms or genes are
all ‘positives’. All terms or genes that are not part of the
predicted set can be viewed as ‘negatives’. For the binding
motifs in our gold standard sets, we have access to the
terms and genes that should ideally be in the predicted
set. We thus distinguish between ‘true positives’ (correct
predictions), ‘false positives’ (incorrect predictions), ‘true
negatives’ (terms and genes that are correctly not included
as predictions) and ‘false negatives’ (terms or genes that
should have been but are not in the predicted set). When
viewed over all motifs, the number of each is determined,
here referred to as tp, fp, tn and fn, respectively.
The true positive rate is then defined as

tp

tpþ fn
:
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The false positive rate is defined as

fp

fpþ tn
:

Receiver operating characteristic (ROC) curves illustrate
how the true positive rate changes with the false positive
rate for all possible thresholds (separating positives from
negatives). The ROC50 (21) is simply the same curve but
only shows the true positive rate up to a maximum of 50
false positives. The area under the ROC (ROC50) curve is
referred to as AUC (AUC50), and gives a single measure
of classification accuracy that considers all possible trade-
offs of sensitivity and specificity. AUC50 illustrates the
ability of the methods to identify positives before falsely
identifying many negatives. It is more appropriate than
conventional ROC when what is important is predicting
a few correct relationships, rather than predicting all
relationships.
For GO term prediction, we report on recall and pre-

cision. Recall (also known as sensitivity) is equivalent to
the true positive rate above. Precision is defined as

tp

tpþ fp
;

and, similar to the false positive rate, illustrates the integ-
rity of the predictions. However, the GO term prediction
problem has a large number of ‘easy’ negatives which
motivates the stricter precision-measure.

RESULTS

Gold standard of GO terms associated with TFs

In order to evaluate our method for in silico prediction of
the GO terms associated with a TF, we require reliable
annotation of this type for a set of TFs. To our knowl-
edge, there is currently no resource that contains annota-
tion of TF with the GO terms associated with the genes
they regulate. Thus, we created such a resource for a large
number of yeast TFs and for four human TFs for which
sufficient knowledge of their target genes exists. To create
the gold standard for a given TF, we use the set of ‘known’
targets of the TF, and apply the statistical method
described in Materials and methods section, in order to
determine the set of GO terms significantly associated with
the target set. Details of all target GO terms are provided
in the Supplementary Material.
In yeast, we use the target genes for each of the 124 TF

in the gene-regulatory network of MacIsaac et al. (8). For
each TF, we determine the statistical enrichment of GO
terms amongst the target genes in their most conservative
mapping (the HC-set) only. Table 1 panel a summarizes
how many significant TF–Go term relationships for yeast
TFs our gold standard contains.
For creating the human gold standard, we use recent

experimentally determined target gene lists for NFKB1
(17), SRY (18), CREB1 (19) and TP53 (20). NFKB1 is a
member of the family of NF-kappa-B TFs, which are
involved in inflammatory and immune system mecha-
nisms, cellular stress reactions, as well as apoptosis (22).

SRY is a genetic switch in male development (23). CREB1
is a TF involved in many viral and cellular promoters.
TP53 is a tumour suppressor involved in several cancer
types. Table 1 panel b summarizes the number of signifi-
cant TF–GO term relationships in our gold standard for
the four human TFs.

Negative control: GO terms associated with biased base
composition

We designed the Z-score variants of our Avg-Odds gene-
scoring method to try to eliminate spurious correlations
between sequences and motifs with biased base composi-
tions. In particular, it is well known that CpG islands
(large clusters of the dinucleotide CpG) are common in
the promoter regions of genes in many eukaryotes (24).

To give an upper bound on TF–GO term associations
that could be caused by associations between GO terms
and genes with biased base composition in their upstream
regions, we apply our GC-content score to both our
S. cerevisiae and H. sapiens upstream regions. We rank
genes using this simple composition score, and compute
significant GO terms as described in Materials and meth-
ods section. Using this GC-score, five GO terms are found
as over- or under-represented (in this context ‘under-
represented’ means ‘over-represented’ using an AT-con-
text score.) in S. cerevisiae and 138 terms were similarly
singled out in H. sapiens (each statistically significant
E < 0:05). A truly random score should result in no sig-
nificant GO terms in either genome. Hence, matches for
short and unspecific motifs may similarly result in spur-
ious GO terms with deceptively small E-values.

Table 1. Gold standards of TF–GO term associations used in this

study

Panel (a)

Yeast gold standard

Target level E-value TFs GO terms
per TF

1 �0.05 70 13.1
2 �0.01 57 12.4
3 �0.001 43 12.0

Panel (b)

Human gold standard

TF Target genes GO terms

NFKB1 99 214
SRY 906 82
CREB1 2197 168
TP53 62 40

Panel (a) shows for each target level in the yeast transcription network
the E-value range defining the level, the number of TFs with one or
more signficant GO terms and the average number of GO terms per
TF. Panel (b) shows the human TF gene name, the number of known
target genes and the number of significantly over-represented GO terms
(E� 0.05) associated with that TF.
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Based on these results, we expect that the Z-score var-
iants of the Avg-Odds method may be useful with the
human genome, but probably will have little effect with
the yeast genome, since so few terms are predicted in yeast
using the GC-score. All terms identified in this negative
control are provided in the Supplementary Material.

Identifying GO terms associated with TF targets

The gene-scoring methods described in Materials and
methods section provide each gene with a numerical
score. Since we look at binding events only for a fixed-
length upstream region, all genes are a priori equally prob-
able. Our test for over- and under-represented GO terms
involves ranking the genes according to their scores and
observing the prevalence of each GO term. More specifi-
cally, for each motif, the U-test assigns an E-value to each
GO term, indicating if the genes with that GO term are
dispersed randomly (the null hypothesis) or if they appear
non-randomly in the ranked list, either at the top (over-
represented) or the bottom (under-represented).

Table 2 shows the accuracy of the different variations of
our method for predicting associations between TFs and
GO terms in yeast. To instill maximum confidence in our
GO term prediction evaluation, we focus solely on the 43
TFs that have GO terms associated with them at all levels,
and illustrate results using our ‘Target Level 3’ gold stan-
dard. (The observations below are essentially unchanged
when using the less stringent target levels. The
Supplementary Material contains extended tables of
results at all levels, Tables S1 and S2.) Table 2 shows
results when we only consider predictions with an
E-value smaller than 10, as well as when we consider all
possible score cutoffs up to the fiftieth false positive
(AUC50).

In terms of their ability to predict at least one correct
GO term (‘1 TP’) when the E-value cutoff is set at ten, the
methods differ considerably. The Avg-Odds methods per-
form best according to this metric, achieving rates up to
87%. The best Max-Odds method is slightly less accurate
at this task (84%). The Hit-Count method performance
depends strongly on the choice of the motif-match thres-
hold, but the ‘1 TP’ rate is only 76% at best. When we
compare the methods using the AUC50 accuracy metric,
the Avg-Odds, Max-Odds and Hit-Count (motif-match
threshold 10�4) methods are all statistically indistinguish-
able according to a paired t-test comparing the AUC50 for
each of the 43 yeast binding motifs.

In terms of the precision of the predictions, the Z-score
variants of Avg-Odds work best. The precision of the Avg-
Odds ZM Local method is 0.21 at this E-value cutoff,
compared with 0.15 for the Avg-Odds Global method.
However, this increased precision comes at the expense
of lower sensitivity (recall is only 0.60, compared with
0.66 for Avg-Odds Global). On average, all Avg-Odds-
based methods predict roughly the same number of GO
terms. In general, the Max-Odds score variants do not
perform as well as the Avg-Odds methods in the experi-
ment with yeast TFs. The differences in accuracy are not
significant in practice.

In terms of overall accuracy (as measured by AUC50),
there is very little difference among the scoring methods
when applied to the yeast genome. In particular, the per-
formance of the Z-score variants of the Avg-Odds scoring
methods are essentially indistinguishable from that of the
simpler methods on which they are based. This is not too
surprising given the fact that our negative control (using
the GC-content score) gave only five spurious GO term
predictions in yeast.
As noted earlier, the Hit-Count methods are extremely

sensitive to the choice of the motif-match threshold, and
perform poorly except when the threshold is set to 10�4.
Tuning this threshold may improve accuracies slightly but
in turn result in a parameter selection bias (tied to the
target data). When the threshold is strict enough, positive
predictions are rare. If no positives are predicted for one
or more TFs, average precision excludes such TFs
(marked with ‘�’ in Table 2). This however may lead to
optimistic estimates. We also tested Z-score variants of the
Hit-Count method, but AUC50 scores were inferior to
those of the simpler variant described here so they are
not shown.
Many TF-binding motifs without target GO terms still

predict convincing lists of GO terms. The following exam-
ples are predicted by Avg-Odds Global. Forkhead homo-
logues 1 and 2 (FKH1 and FKH2) are known to modulate
the yeast cell cycle and for controlling cell morphology
(25). Rightly, predictions include seven GO terms
(FKH1; 11 for FKH2), all related to these target roles,

Table 2. Accuracy of predicted TF–GO term associations in yeast

TF–GO term predictions in yeast

Scoring method E=10 cutoff AUC50

Pred. 1 TP Rec. Prec.

Hit-Count
10�3 Local 38.4 0.64 0.33 0.12 0.31
10�3 Global 34.2 0.76 0.44 0.16 0.39
10�4 Local 16.3 0.73 0.49 �0.37 0.57

10�4 Global 13.0 0.64 0.40 �0.37 0.54
10�5 Local 3.1 0.29 0.11 �0.67 0.24
10�5 Global 2.3 0.22 0.09 �0.63 0.21

Avg-Odds
Local 47.8 0.87 0.63 0.17 0.56
Global 54.0 0.87 0.66 0.15 0.56
ZS Local 39.1 0.84 0.63 0.20 0.56
ZS Global 39.9 0.84 0.62 0.20 0.57

ZM Local 36.7 0.87 0.60 0.21 0.56
ZM Global 37.1 0.84 0.59 0.20 0.55

Max-Odds
Local 39.9 0.82 0.60 0.19 0.54
Global 44.2 0.84 0.63 0.17 0.54

The average results for yeast TFs using different methods of scoring
target genes. Each row shows results at a significance level of E=10,
as well as overall results measured using the area under the ROC50
curve. The columns indicate the number of predictions returned (Pred.),
the probability of predicting at least one true positive (1 TP), the recall
(Rec.), the precision (Prec.) and AUC50. The best value for each metric
is shown in bold-face. When one or more TFs render no predictions
they are excluded from the precision average (marked with ‘�’; based on
a different data source, such values are not included when determining
the best for each metric).
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but in some cases more specific than what is apparent
from the literature (e.g. ‘M phase of mitotic cell cycle’
and ‘microtubule cytoskeleton’). Similarly, Sucrose trans-
porter SUT1 is not only predicted by our method to trig-
ger a range of sugar-related processes, but its targets’
cellular compartment is also confirmed to relate to the
plasma membrane (26). Finally, GATA-1 is known to
regulate nitrogen metabolism, and our predictor (cor-
rectly) lists ‘Allantoin metabolic process’ and
‘Heterocyclic catabolic process’ (27) as significant GO
terms associated with it.
Our gold standard for TF–GO term associations for

human TFs comprises the four well-studied TFs
NFKB1, SRY, CREB1 and TP53. Table 3 summarizes
the performance of the Avg-Odds Global prediction
method using the corresponding JASPAR PWMs for
these factors at prediction E-value cutoffs of 10 and 0.05
(the target GO term E-value cutoff is 0.05 in all human
tests).
On this small set of human TFs, with E � 10 the aver-

age recall is lower than with the yeast TFs (0.30 versus
0.66) but the average precision is higher (0.25 versus 0.15;
refer to Table 2 for yeast results and Table 3 for human
results). On a cautionary note and in line with the negative
control, not only are more terms predicted than for yeast,
but the number of targets is also higher (refer to Table 1).
At E � 0:05, the number of human GO term predictions
is comparable to that of yeast when E � 10. At this level,
for all but one factor (TP53), the Avg-Odds Global pre-
diction method correctly identifies at least one TF–GO
term association. For the three factors where a correct
association is predicted, the result is judged highly signifi-
cant by a one-tailed Fisher’s Exact test (P < 10�7Þ (data
not shown). However, these P-values should be inter-
preted with caution. GO terms are organized into rich
networks manifesting their relations, reporting dependen-
cies that are not considered when P-values are determined.
Since the Avg-Odds Global scoring method performs at

least as well (except for precision) as the other methods,
we further investigate its behavior at different precision
levels. Table 4 shows the GO term prediction performance
of this method when the prediction E-value cutoff is

varied. As expected, higher precision is observed at more
stringent (lower) E-value cutoffs, at the expense of lower
recall and lower probability that the predictions include at
least one true positive. In fact, at E � 0:1, there are TFs
for which there are no predicted GO terms. At E � 1, i.e.
with one-expected chance positive, all of our four human
TFBS motif searches result in at least one correct GO term
(73% in yeast). Moreover, of the predicted terms, one-
third represent a true role of the TF (27% in yeast). At
the more conservative cutoff E ¼ 0:01, we do not always
get a prediction, but when we do, about 60% are correct in
human (61% in yeast).

Although we do not have a TF–GO term gold standard
for all 51 human TFs in JASPAR, we also report here on
using our prediction method with each of them. With a
stringent cutoff of E ¼ 0:05, 43 of the human PWMs in
JASPAR result in one or more predicted GO terms (the
details are provided in the Supplementary Material). On
average, 32 GO terms are identified per motif. Hence, the
average number of predicted terms is almost four times
higher than in yeast with the same E-value (Table 4). We
evaluate these predictions subjectively based on (i) a gen-
eric summary over about half the motifs, filtered to
include those with short and specific lists of GO terms
and (ii) a detailed assessment of a few motifs with experi-
mentally determined target genes. For each of the motifs
for H. sapiens, we extract the entry for the TF (as specified
in JASPAR) from UniProt. We manually examine the
Function statement of the UniProt entry to identify key-
words relating to the target function of the factor. In a few
cases, we were unable to find any relevant target role.

All motifs where our prediction method predicts more
than 25 GO terms are likely to involve terms included by
chance alone. To increase the confidence in our subjective
evaluation, such motifs were removed entirely from consid-
eration. This leaves 21 motifs, of which 15 have predicted
GO terms that (subjectively) match the UniProt documen-
tation for the TF. The 21 JASPAR motifs, the correspond-
ing TF and the documented and predicted target roles are
listed in Supplementary Material Table S3 and S4.

Table 3. Accuracy of predicted TF–GO term associations in human

using the avg-odds global method

TF-GO Term Predictions in Human

Gene
name

E=10 cutoff E=0.05 cutoff AUC50

Pred. 1 TP Rec. Prec. Pred. 1 TP Rec. Prec.

NFKB1 120 1 0.19 0.32 18 1 0.07 0.78 0.10
SRY 147 1 0.28 0.15 28 1 0.08 0.21 0.07
CREB1 212 1 0.69 0.52 78 1 0.37 0.76 0.40
TP53 50 1 0.03 0.02 2 0 0.00 0.00 0.02
Mean 132.2 1 0.30 0.25 31.5 0.75 0.13 0.44 0.15

Each row shows results at significance level of E=10 and E=0.05, as
well as overall results measured using the area under the ROC50 curve.
The columns indicate the number of predictions returned (Pred.), the
probability of predicting at least one true positive (1 TP), the recall
(Rec.), the precision (Prec.) and AUC50, for four human TFs.

Table 4. Accuracy of predicted TF–GO terms associations at different

E-value cutoffs using the Avg-Odds global method

E-value cutoff Yeast Human

Pred. 1 TP Rec. Prec. Pred. 1 TP Rec. Prec.

0.01 5.4 0.56 0.27 �0.61 22.8 0.75 0.10 �0.60
0.05 8.2 0.58 0.32 �0.49 31.5 0.75 0.13 0.44
0.1 10.0 0.60 0.36 �0.44 36.8 0.75 0.14 0.40
1 20.2 0.73 0.49 0.27 72.3 1 0.22 0.33
10 54.0 0.87 0.66 0.15 132.3 1 0.30 0.25
50 144.6 0.93 0.78 0.07 250.3 1 0.37 0.17

The columns indicate the E-value cutoff, number of TF–GO term associa-
tion predictions returned by the method at that cutoff, the probability of
predicting at least one true positive (1 TP; higher is better), the recall
(higher is better), and the precision (higher is better). The values for
yeast are averages calculated from the 43 TFs for which target GO
terms exist. The values for human are averages calculated from
NFKB1, SRY, CREB1 and TP53. When one or more TFs render no
predictions they are excluded from the precision average (marked with ‘�’).
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Our negative control (using the GC-content score) indi-
cates that the compositional bias of many human promo-
ters may lead to large numbers of spurious GO term
predictions for motifs that also have biased basecomposi-
tion. Due to the small number of human TFs in our study,
it is impossible to draw strong conclusions, but the results
in Table 5 suggest that using the Z-score variant of the
Avg-Odds score may be beneficial with compositionally-
biased motifs. The accuracy (AUC50) of the predicted GO
terms improves substantially using the Z-score variant for
the two motifs with very high compositional bias (NFKB1
76% GC and SRY 76% AT). The improvement is espe-
cially notable for the AT-rich motif SRY, where the
AUC50 score increases from 0.07 to 0.34. On the other
hand, using the Z-score variant of the scoring method
causes a large decrease in accuracy for the GC-rich
motif CREB1. This effect may be due to the fact that
the promoters of CREB1 target genes are very rich in
CpG islands—44% of the target upstream regions are
CpG islands. Because the CREB1 is GC-rich (59% GC),
we expect the Z-score variant to decrease the scores of
these true targets relative to the scores of promoters that
do not contain CpG islands. This would tend to decrease
the accuracy of GO term predictions. This suggests that it
may be dangerous to use the Z-score variants with
GC-rich motifs in genomes that contain many promoter-
associated CpG islands.

Improving target gene prediction using GO term associations

In this section, we ask if predicted TF–GO associations
can be used to improve TF target gene prediction. We
use the augmented scoring function SGOðg; fÞ given in
the Materials and methods section, where the underlying
score is Avg-Odds Global. We refer to the overall gene-
scoring method as ‘Avg-Odds-GO’. To test the approach,
we use the 63 TFs in the regulatory map of MacIsaac et al.
(8) for which our method predicts one or more GO terms
and that have at least one gene in MacIsaac’s high con-
fidence target set (HC-set), with which we measure predic-
tion accuracy.

Figure 1 shows the average ROC50 curves for predict-
ing targets of these 63 yeast TFs using the Avg-Odds-GO,

Avg-Odds and Max-Odds scoring functions. The AUC
are 0.172, 0.162 and 0.120 for Avg-Odds-GO, Avg-Odds
and Max-Odds, respectively (higher is better, maximum is
1.0). This shows that the inclusion of GO terms is cleary
beneficial, although the advantage of the Avg-Odds-GO
scoring function compared to the Avg-Odds function is
rather small, especially at low false positive rates. The
individual AUC50 scores of each method on each of the
63 motifs are provided in Supplementary Material Tables
S5 and S6 together with two examples Tables S7 and S8.

DISCUSSION

Hvidsten et al. (28) observed that genes bound to by the
same TFs are more strongly associated with the same GO
terms than with common binding sites or expression pat-
terns. Corá and colleagues (5,29) investigated using GO
annotation as well as expression data for de novo discovery
of TFBS binding sites by first identifying over-represented
short DNA sequences in upstream regions of known
genes. Genes were subsequently grouped by shared puta-
tive binding motifs and validated by requiring that micro-
array expression data support co-regulation and that
functional annotations be in agreement (per the GO).
Gene sets showing a statistically significant functional
characterization are then viewed as exhibiting a valid
binding site for a particular TF. Several of the identified
over-represented patterns were known TFBS or variations
thereof. Hu et al. (30) and Long et al. (31) similarly used
GO terms as a means of validating their binding site pre-
dictions. Hvidsten et al. (28) used GO terms to evaluate
combinations of transcription events described by rules.
The GO thus appears to offer a rich secondary informa-
tion resource to validate primary data analysis.

Table 5. Effect on accuracy of using the Z-score variant of Avg-Odds

global scores in human

Gene
name

AUC50 Motif
content

Target CpG
islands (%)

Avg-Odds Avg-Odds ZS

NFKB1 0.10 0.16 76% GC 27
SRY 0.07 0.34 76% AT 40
CREB1 0.40 0.05 59% GC 44
TP53 0.02 0.00 60% GC 48

The table compares the AUC50 accuracy score of predicted TF–GO
term associations in Human using the Avg-Odds Global method and its
shuffled-sequence Z-score variant (ZS) for four TFs. For each TF, the
average GC- (or AT-) content of the motif (the average total probabil-
ity of the two bases in the PWM) and the percentage of the known
targets of the TF that are CpG islands [according to the definition of
Takai and Jones (24)] are also shown.
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Figure 1. Accuracy (ROC50) predicting yeast TF target genes. Curves
show the ROC50 plots for three methods of predicting target genes of
63 Yeast TFs. Error bars show the standard error.
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This article presents a method by which GO terms asso-
ciated with a TF’s target genes are predicted using a
TF-binding motif. TF–GO term associations are predicted
using a two-stage process. The first stage consists of rank-
ing potential target genes by considering matches to the
transcription factor binding motif. The second stage con-
sists of finding GO terms significantly associated with
genes appearing at the top (or bottom) of the ranked list.
In tests using S. cerevisiae TFBS motifs, our predictor

predicts about 20 GO terms per TF at an E-value cutoff
of 1. At this cutoff, there is a 73% chance of predicting at
least one correct GO term. In fact, at this E-value, the
predictor picks up 49% of known TF–GO term associa-
tions. Conversely, 27% of the predicted terms are true
positives, attesting to the method’s usefulness with yeast.
We illustrate the broader applicability of the method by

predicting GO terms for human TF-binding motifs. The
method produces more predictions than on the yeast
genome, but highly useful rates of precision and recall
are achieved, and the probability of predicting at least
one correct association is satisfyingly close to 1. We note
that compositional biases in sequence data pose an obsta-
cle and that improved accuracy may result from compen-
sating for a motif’s GC-content and its association with
CpG islands.
On a cautionary note, the regulatory map for yeast is

partially refined through sequence analysis, biasing the
choice of target genes and, indirectly, target GO terms.
Since the proposed method is based on motif searching,
reported accuracies of predicting GO terms may be
slightly inflated. However, the human target gene sets we
use (other than for SRY) do not appear to have been
identified in a sequence-biased fashion, so the afore men-
tioned bias should not be present in our results for human
TFs.
Finally, we incorporate our TF–GO term prediction

method into a novel scoring method for predicting the
gene targets of a TF. This scoring method gives priority
to genes that are annotated with the GO terms predicted
to be associated with the binding motif. We show that the
augmented score increases the accuracy of TF target gene
prediction in the yeast genome. It should be noted that we
did not attempt to tune the E-value used by our augmen-
ted scoring function, in order to achieve maximum target
gene prediction accuracy. A refined scoring function could
consider the number and quality of GO term predictions
in combination with the preliminary score to provide a
possibly improved ability to identify actual target genes.
One possible approach would be filtering predicted GO
terms to maximize their coherence, e.g. using semantic
distance measures between terms (32,33). We further
anticipate that an augmented score that takes GO terms
associated with a query TF-binding motif into account
could be used in an iterated manner.
Using aligned genomic sequences from related species

can benefit TFBS prediction (34). Our GO term predictor
could similarly benefit from comparative genomics by (i)
altering the motif model in the scoring function to use
phylogenetic footprinting or (ii) running the native scoring
function independently on each genomic sequence and
then combining the species-specific GO term predictions.

The latter strategy would also alleviate concerns with
sparsely annotated genomes if more well-studied and evo-
lutionary related sequences are indeed available.

The GO is a secondary information resource that has so
far been under-utilized for improving our ability to dis-
cover true TFBS. Representing a clear-cut complement to
the incorporation of phylogenetic profiles and epigenetic
modifications, this article starts to leverage the ever-
expanding GO annotations to devise a novel and powerful
scoring method for TF target genes and, eventually, bind-
ing sites. We anticipate that putative TF binding sites
from SELEX and ChIP experiments, and gene-expression
analyses can be directly corroborated by the proposed
method.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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