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ABSTRACT

Many data sets one could use for population genetics contain artifactual sites, i.e., sequencing errors.
Here, we first explore the impact of such errors on several common summary statistics, assuming that
sequencing errors are mostly singletons. We thus show that in the presence of those errors, estimators of
u can be strongly biased. We further show that even with a moderate number of sequencing errors,
neutrality tests based on the frequency spectrum reject neutrality. This implies that analyses of data sets with
such errors will systematically lead to wrong inferences of evolutionary scenarios. To avoid to these errors,
we propose two new estimators of u that ignore singletons as well as two new tests Y and Y * that can be used
to test neutrality despite sequencing errors. All in all, we show that even though singletons are ignored,
these new tests show some power to detect deviations from a standard neutral model. We therefore advise
the use of these new tests to strengthen conclusions in suspicious data sets.

THE mode of evolution of a population sculpts the
polymorphisms that segregate in all of its homol-

ogous sequences. Under a standard neutral model (i.e.,
a Wright–Fisher model or any other related models), an
incredible amount of theory has been developed to
characterize those polymorphisms. Using what is ex-
pected about the polymorphisms, population geneticists
have proposed several summary statistics measuring the
departure from the standard model. These statistics are
used to test for the likelihood of the standard model.

Most, if not all, of the neutrality tests based on the
frequency spectrum compare different estimators of
u ¼ 2pNem, where p is the ploidy (1 for haploids and 2
for diploids), Ne is the effective population size, and m

the whole-locus mutation rate. Among a sample of n
homologous sequences, several estimators of u have
been derived using a coalescent framework. This in-
cludes (i) ûS ¼ S=an that uses S, the total number of
polymorphic sites, along with the correcting factor an ¼Pn�1

i¼1 1=i (Watterson 1975); (ii) ûp ¼ p, where p is the
average pairwise difference in the sample (Tajima 1983);
(iii) ûj1

¼ j1 that uses j1, the number of derived single-
tons (sites at frequency 1/n) (Fu and Li 1993); and (iv)
ûh1
¼ h1 3 ðn � 1Þ=n based on h1, the total number of

singletons ½sites at frequency 1/n or (n � 1)/n� (Fu and
Li 1993).

Statistics used for neutrality tests are typically based
on the difference between two of these estimators,
normalized by its standard deviation. Hence, using the

estimators, several statistics were proposed: D ¼ ðup �
uSÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½up � uS �

p
(Tajima 1989) as well as four other

tests that compute differences between other estimators
DFL* , F *, DFL, and F (Fu and Li 1993). Fu (1996) later
proposed two other statistics, Gh and Gj, that compute
the sum of the differences between the observed and
the expected numbers of polymorphic sites at each
frequency. Fu (1997) defined a general framework of
tests that encompasses all of these tests, among others
(like the H test of Fay and Wu 2000). A comparison of
the main tests (Simonsen et al. 1995; Fu 1997) reveals
that all these statistics usually behave similarly, although
some violation of the standard model induces notable
differences. For example, all statistics have almost the
same power to detect population growth (Fu 1997) but
show differences in detecting selective sweeps (Simonsen

et al. 1995; Fu 1997; Fay and Wu 2000). The original
Tajima’s D is usually one of the most powerful tests
(Simonsen et al. 1995; Fu 1997), although it is not sys-
tematically the case (see, e.g., Teshima et al. 2006).

Singletons are the class of polymorphisms that have
the highest impact on several statistics including D. An
excess or a deficit of singletons strongly skews the
statistics; this deviation can lead to the rejection of the
standard model. As we discuss below, sequencing errors
are mostly singletons. In that respect, these errors have a
strong harmful potential for population geneticists who
want to infer evolutionary scenarios from data sets. Even
when substantial effort is made to correct sequencing
errors, singletons are typically not taken into account
(Innan et al. 2003).

‘‘Sequencing errors’’ are used here in their broadest
sense. They encompass any errors that are introduced
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during the experimental procedure. Sequencing is
done directly either from amplified genomic regions
or from a cloned fragment.

In the former case, the sequencing is done on a pool
of amplified fragments and some of them typically
contain PCR errors. Actually, the errors rate of the
replication enzymes used in PCR are typically high:
regular taq polymerases and reverse transcriptases make
�10�4 errors/bp and Pfu polymerases, which proofread
the newly synthesized fragments, make�10�6 errors/bp
(see, e.g., the Invitrogen website). Because direct se-
quencing is a consensus of all amplifications, it does
not cause many errors. However, it appears that new
sequencing techniques (i.e., pyrosequencing) exhibit
an error rate that can be as high as 10�3 errors/bp
(Wang et al. 2007). Whatever is the rate of errors, only
increasing the coverage (the number of independent
replicates) reduces the amount of sequencing errors.

Alternatively, one can sequence a clone that is a
genomic fragment embedded in a plasmid. If the
cloned fragment is a PCR product, it typically contains
one or more sequencing errors. Indeed, even though
the consensus of all amplifications does not have errors,
individual sequences from amplified fragments typically
contain errors. Any error that is carried by the clone
itself cannot be corrected by increasing the coverage.
Estimates of the error rate for cloned amplified frag-
ments from the maize genome give 7 3 10�4 errors/bp
(Eyre-Walker et al. 1998; Tiffinand Gaut 2001). Here
also, increasing the number of independent clones of
the same genomic region can be used to reduce the
number of errors.

There are several reasons why only a single clone is
sequenced. A first obvious reason is cost. Typically,
exploratory genome projects ½e.g., the génolevures pro-
ject (Souciet et al. 2000)� invest more in the number of
sequenced genomes than in the coverage of each se-
quence. This type of analysis culminates with the meta-
genomic projects ½e.g., Sargasso Sea project (Venter et al.
2004)�, where random chunks of DNA are cloned from
the samples of the environment and subsequently
sequenced. Another interesting example is when sequen-
ces from a given organism cannot be independently
cloned twice. This happens either when no clonal culture
is available or when the organism cannot be grown. This
is the case of several microorganisms and almost all
viruses. We emphasize the case of individual cloning of
retroviruses (see, for example, the method develop by
Palmer et al. 2003), where, for each individual, only a
single clone is obtained by reverse PCR.

Finally, ancient DNA also contains many errors due to
DNA degradation (Green et al. 2006). In this last case,
chemical damage that accumulates in the molecule
through the years makes it impossible to retrieve the
original sequence at some sites.

Recently, a very interesting approach explicitly in-
corporated sequencing errors (among other experi-

mental biases) into coalescent models (Knudsen and
Miyamoto 2007). This new model can be used to esti-
mate, through a full maximum-likelihood framework,
population parameters as well as sequencing error
rate. Although this is a very powerful approach, it
remains extremely computationally intensive and will
be strongly affected by recombination events. We there-
fore think that summary statistics estimations (moment
methods) are complementary to these types of meth-
ods. In that regard, the impact of sequencing errors on
ûS and ûp has been studied very recently by Johnson and
Slatkin (2008). The authors developed a finite-site
model to account for these errors on the basis of their
probability of occurrence per site in a finite sequence.
Complementarily, we developed here an infinite-site
model (i.e., all sequencing errors are new singletons) to
characterize their impact in detail and avoid them
without any prior knowledge of their likelihood.

Here we focus on the impact of sequencing errors on
neutrality tests based on the frequency spectrum. First,
we first explore how strongly sequencing errors can af-
fect the estimators of u. Then, we show that the D and F
statistics (Tajima 1989; Fu and Li 1993) can be highly
skewed by sequencing errors. Therefore, we propose
new u-estimators that will be insensitive to sequencing
errors (ûS�j1

, ûS�h1
, ûp�h1

, and ûp�j1
) and two related

statistics (Y * and Y ) that can be used to test neutrality
despite the presence of sequencing errors. We then
analyze the sensitivity of the tests on the basis of these
two statistics to detect some violations of the standard
model: variable population size (bottleneck), selection,
and isolation (an extreme case of population structure)
with and without sequencing errors.

RESULTS

Regardless of the experimental artifact leading to
sequencing errors, the errors are very likely to be
uniformly distributed along the sequences. As a conse-
quence, if sequences are long enough, almost all
sequencing errors will be singletons. If this is true, the
singletons that we observe in a sample of sequences are a
mixture of real singletons and sequencing errors. There
are two types of mutations that are singletons: the j1

ones at frequency 1/n and the jn�1 ones at frequency
(n � 1)/n. Without the help of an outgroup, these two
classes will be considered a single class of mutation, h1.

The number of sequencing errors, e, depends on
both the locus rate of errors, merr and the number of
sequences, n. Actually, e can be defined as a Poisson
random variable with a parameter nmerr. It is interesting
to see that e and S, the number of real mutations,
increase linearly with the sequence length (i.e., mseq ¼
Lseq 3 msite). This implies that increasing the length of
the sequence of interest will not alter the fraction of
artifactual sites. On the contrary, S and e do not exhibit
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similar relationship with n, the number of sequences. e
increases linearly with n whereas S increases only
logarithmically with n. In that respect, increasing the
number of sequences in the sample will inflate the
fraction of artifactual sites and then worsen the situa-
tion. It is even more dramatic when one considers only
the singletons (j1), whose average number does not
depend on n (E½j1� ¼ u). As a result, adding new
sequences will add only new artifactual singletons but
no real ones.

Impact of sequencing errors on u-estimators: We first
study how sequencing errors will affect four common u

estimators: ûp, ûS , ûj1
, and ûh1

. Even though all of these
estimators will be inflated by sequencing errors, we can
expect that the errors will not equally affect all of them.
In fact, each error adds a new singleton as well as a new
segregating site but adds only 2/n to the average
pairwise difference. Since both S and e are independent,
all covariances between real and artifactual sites are
null. Using the expectations of p, S, h1, and j1 as well as
their variances (Watterson 1975; Tajima 1983; Fu and
Li 1993) (Equations B1–B13), we can express the mean
and the variances of all biased estimators as

E ½ûerr
p � ¼ u 1 2merr ð1Þ

Var½ûerr
p � ¼

n 1 1

3ðn � 1Þ u 1
2ðn2 1 n 1 3Þ

9nðn � 1Þ u2 1
4

n
merr ð2Þ

E ½ûerr
S � ¼ u 1

n

an
merr ð3Þ

Var½ûerr
S � ¼

u

an
1

bn

a2
n

u2 1
n

a2
n

merr ð4Þ

E ½ûerr
j1
� ¼ u 1 nmerr ð5Þ

Var½ûerr
j1
� ¼ u 1 an

2n

ðn � 1Þðn � 2Þ �
4

ðn � 2Þ

� �
u2 1 nmerr

ð6Þ

E ½ûerr
h1
� ¼ u 1 ðn � 1Þmerr ð7Þ

Var½ûerr
h1
� ¼ ðn � 1Þ

n
u 1 an

2ðn � 1Þ
n2 � 1

n2

� �
u2

1
ðn � 1Þ2

n
merr: ð8Þ

The expectations are in good agreement with the
intuition; the effect is the strongest on uj1

and the
weakest on up. It is noteworthy to mention that for n . 4,
the bias is stronger for uS than for up. It also shows that
increasing the number of sequences will inflate the bias
for all estimators except for up. The examination of the
variances also shows some interesting properties. As
expected from intuition, adding sequencing errors

inflates all variances. In the original variances (set merr

to 0), only the variance of ûS vanishes as n increases, and
this is the reason why u is preferentially estimated from
S. The other variances typically converge to a constant
when n increases. Adding sequencing errors drastically
changes this pattern. Indeed, the relationship between
the variances and n becomes linear for ûj1

and ûh1
,

sublinear for ûS, and converges to a constant for ûp. With
a moderate rate of sequencing error (i.e., merr¼ 0.1) and
a typical sample size (n # 100), Var½ûS � . Var½ûp� for
small u-values (i.e., u # 2).

Therefore, in the presence of nonnegligible sequenc-
ing errors, estimations of u should be carefully per-
formed. Since both the mean and the variance of ûp

are less affected by errors, their use is less inadequate
than the use of ûS , especially when the sample size gets
large or when u # 1. This is in good agreement with
the predictions of a finite-site model ( Johnson and
Slatkin 2008). However, all these estimators of u are
biased; this consequently motivates the derivation of
new estimators that are immune to sequencing errors.

New u-estimators: The simplest way to correct for
sequencing errors would be to just ignore some of the
observed singletons in the sequences. However, this
assumes that we are able to estimate properly the
number of artifactual singletons, which is unrealistic.
Therefore, we derive new estimators that do not make
use of the singletons to estimate u. Although there is no
way to compute a revised uh1

and uj1
, since they are solely

based on singletons, one can compute new estimators
derived from both the number of segregating sites and
the average pairwise differences when singletons are
ignored. Depending on the availability of an outgroup
to orientate the mutations, these estimators are defined
as S�j1

and p�j1
(with outgroup) or S�h1

and p�h1
(no

outgroup). The means of these values were derived by
removing the expected numbers of singletons in a
sample. The expected number of singletons is given
by either E½j1� or E½h1� ¼ E½j1� 1 E½jn�1�. These two
values are respectively equal to E½j1� ¼ u and E ½h1� ¼
ðn=ðn � 1ÞÞu (Fu and Li 1993). It is important to point
out that a singleton weighs 2/n on p. As a consequence,
the expectations of these values are

E ½S�h1
� ¼ u 3 an �

n

ðn � 1Þ

� �
ð9Þ

E ½S�j1
� ¼ u 3 ðan � 1Þ ð10Þ

E ½p�h1
� ¼ u 3

ðn � 3Þ
ðn � 1Þ ð11Þ

E ½p�j1
� ¼ u 3

ðn � 2Þ
n

: ð12Þ

Corresponding variances are presented in appendix

b (see Equations B22, B23, B31, and B32). We used the
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mean values to derive unbiased estimators of u that
should be insensitive to sequencing errors:

ûS�h1
¼ S�h1

an � n=ðn � 1Þ ð13Þ

ûS�j1
¼ S�j1

ðan � 1Þ ð14Þ

ûp�h1
¼ p�h1

3
ðn � 1Þ
ðn � 3Þ ð15Þ

ûp�j1
¼ p�j1

3
n

ðn � 2Þ: ð16Þ

Expected impact of sequencing errors on D and F:
Since the overestimation on u is not the same on all
estimators, it has to be true that all neutrality tests based
on a difference between ûS , ûp, ûj1

, and ûh1
will be

biased. Here, we focus on how tests based on D (Tajima

1989) and F (Fu and Li 1993) are affected by sequencing
errors. Please note that all tests that use ûh1

or ûj1
(i.e., all

Fu and Li 1993 ones) behave very similarly to the F test.
Therefore, for clarity purposes, we choose to present
results for F only but all our conclusions apply similarly
to the other tests.

Introducing sequencing errors, D and F become

Derr ¼
perr � Serr=anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1Serr 1 e2SerrðSerr � 1Þ
p ð17Þ

Ferr ¼
perr � h1errffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yF Serr 1 nF S2

err

q ; ð18Þ

where the constants e1 and e2 are defined in Tajima

(1989) and yF and nF in Fu and Li (1993).
Even though the whole D probability distribution is

difficult to derive, one can derive an approximation of
the average Derr as

E ½Derr� �
E ½perr� � E ½Serr�=an

ðe1 � e 2ÞE ½Serr�1 e 2E ½Serr�

¼ E ½p� � E ½S�=an 1 merrð2� n=anÞ
ðe1 � e 2ÞðE ½S �1 nmerrÞ1 e 2ðVar½Serr�1 E ½Serr�2Þ

¼ merrð2� n=anÞ
ððe1 � e 2ÞE ½S �1 e 2E ½S2�Þ1 nmerrðe1 1 e 2ð2anu 1 nmerrÞÞ

¼ merrð2� n=anÞ
Var½d�1 nmerrðe1 1 e 2ð2anu 1 nmerrÞÞ

: ð19Þ

Similarly, one can show that:

E ½Ferr� �
merrð2� nÞ

Var½ f �1 nmerrðyF 1 nF ð1 1 2anu 1 nmerrÞÞ
:

ð20Þ

As expected, sequencing errors cause negative values
in Derr and Ferr. Indeed, the numerator of Equation 19 is
always negative (or null when n ¼ 2) and even more

dramatically so in Equation 20. From the comparison of
the numerators of Equations 20 and 19, we can suspect
that the impact will be stronger on Ferr than on Derr. This
negative bias is increased by both the sequencing error
rate, merr, and the number of sampled sequences, n.
Interestingly enough, the estimated variances in the
denominators are larger with sequencing errors, which
fits the intuition, since adding another random variable
(the number of sequencing errors) overall will inflate
the variance. The left terms are the usual variances
whereas the right terms are the expected increase,
which grow with n and merr. Increasing the denominator
tends to diminish the magnitude of the bias on D and F
(without changing their signs).

Simulated impact of sequencing errors on D and F:
To assess more precisely the impact of sequencing errors
on D and F, we ran simulations of a standard model with
extra singletons that were added to the resulting
sequences. All coalescent simulations were performed
using a standard algorithm that depends only on u and
n. A detailed description of such algorithms is given in
reviews or books such as Hudson (1990) and Hein et al.
(2005). Here, all sequencing errors are assumed to be
singletons. Therefore to simulate data with sequencing
errors, we simulate a regular coalescent tree with ‘‘true’’
mutations and add some ‘‘artifactual’’ singletons whose
number e is computed as a Poisson random variable
with parameter merr 3 n. Errors are distributed uni-
formly among all sequences.

In this study, we analyze the power of several statistics
(i.e., D, F, Y *, and Y) to detect a departure from a
standard model. We use here the largest and most
robust confidence interval that is constituted by the
most extreme values of the statistics for a given n but for
u 2 [0, ‘[. We present in appendix a a method to find
the confidence-interval limits and discuss other possible
methodologies.

Results (Figure 1) show that even with a moderate
rate of sequencing errors, the distributions of Derr and
Ferr are skewed toward significant negative values. More
precisely, when the merr is in the vicinity of ½u/100, u/10�,
the Derr and the Ferr distributions tend to be significantly
negative. In other words, if there is 1 sequencing error
for �10–100 singletons (or pairwise differences) in the
sample (E½j1� ¼ E½p� ¼ u), Derr and Ferr are always ‘‘too’’
negative. As expected, this effect gets stronger when n
becomes large. Because the test based on F directly uses
the number of singletons, the bias is stronger for Ferr

than for Derr.
This shows that what really matters for the impact of

sequencing error is the natural diversity (i.e., u) of the
population and the sample size, n. Even with a low rate
of sequencing error, results from large data sets (i.e., n .

100) or from species with low diversity can be strongly
affected by sequencing errors and therefore should be
interpreted with caution. Thus, we derive two new tests
that are immune to sequencing errors.
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Derivation of Y * and Y: As in the standard D from
Tajima, we define here two new statistics Y and Y * to be a
difference between u-estimators. Following Fu and Li’s
(1993) notation, Y requires the use of an outgroup
whereas Y * does not. As we have shown, u can be esti-
mated either from the number of nonsingleton segre-
gating sites (S�h1

or S�j1
) or from the average pairwise

differences, excluding singletons (p�h1
or p�j1

). There-
fore, we define Y and Y * as

Y ¼ p�j1
� fS�j1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½p�j1
� fS�j1

�
p ; where f ¼ ðn � 2Þ

ðnðan � 1ÞÞ
ð21Þ

and

Y * ¼ p�h1
� f *S�h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½p�h1
� f *S�h1

�
q ; where f * ¼ ðn � 3Þ

ðanðn � 1Þ � nÞ:

ð21Þ

The details of the derivations for both variances in
the denominators are presented in appendix b. They
can be expressed as Var½p�j1

� fS�j1
� ¼ anu� bnu2 and

Var½p�h1
� f *S�h1

� ¼ an*u� bn*u2, where an, bn, an*,
and bn* are constants that depend on n only. As for
regular D, we show that u and u2 are unknown but can
be estimated from S�h1

or from S�j1
. Please refer to

appendix b for more details.

Importantly, these new statistics are totally immune
to sequencing errors provided that these errors are
singletons.

Violation of the standard model: We choose to
explore the relative power of D, F, Y *, and Y to detect
violation of the standard model in three different sce-
narios: bottleneck, hitchhiking along with a selective
sweep, and isolation. In all three scenarios, we used ded-
icated coalescent simulations for both n¼ 20 and n¼ 50
and used u¼ 10 with either no sequencing errors (merr¼
0) or a low rate of sequencing error (merr ¼ 0.1).

It is important to keep in mind that it is always
possible to increase u for the locus by increasing
sequence length. This will result in an improvement of
the power of the tests. Actually, more mutations (larger
u) in the tree make it easier to recover its shape from
polymorphisms and, therefore, to unravel its nonneu-
tral distortions. This effect of u is especially important
when we consider cases where the tree is reduced
overall.

As a consequence, we do not discuss the absolute
power of the tests based on Y and Y * but rather their
relative power compared to the one based on D or F.
Since we disregard some of the information carried by
the sequences (i.e., the singletons), we expect tests
based on Y * and Y to have less power when compared
to the tests based on D and F. Importantly, adding
sequencing errors will not affect the tests based on Y and
Y *, but will change both D and F into Derr and Ferr. It is

Figure 1.—Strong impact of se-
quencing errors on D and F, noted as
Derr and Ferr, when merr . 0. All 105 sim-
ulations were performed with n ¼ 20,
50, 100, with u ¼ 1 (left) or u ¼ 10
(right) and a variable merr. This rate of
sequencing errors is defined for one se-
quence and for the whole locus, so that
the number of errors is given by a Pois-
son law with mean nmerr. Sequencing er-
rors artificially steer the statistics to
negatives values. We report the power
of the tests to reject the standard model.
This shows that even when the sequenc-
ing error rate is moderate (0.01–0.1 of
u), the effect can be strong (especially
when n is large).
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important to note that, with the parameters we used
(u¼ 10 and merr¼ 0.1), the power of the test based on D
is not affected by sequencing errors only and the test
based on F is only weakly affected (Figure 1). We report
the power of the tests with and without sequencing
errors in all scenarios.

Change in population size: We considered a population
that experiences a severe bottleneck. The simulations
were performed using a change in timescale (Griffiths

and Tavaré 1994). The population has a regular size N,
but shrinks at size N/100 during the bottleneck that
goes for a time Tl (at most Tl ¼ 0.1). Some time Tb can
have elapsed after the bottleneck ended. Looking at this
process in reverse, any coalescent time that falls between
Tb and Tb 1 Tl/f needs to be shortened adequately
(Simonsen et al. 1995). Here we consider the cases
where the sample is taken during the bottleneck (Tb ¼
0; Tl # 0.1) or after the bottleneck (Tb . 0 ; Tl ¼ 0.1).

Results from simulations (Figure 2) show that devia-
tions from the standard model are observed whenever
the sample is taken either close to the beginning of the
bottleneck (0 , Tl , 0.01 and Tb ¼ 0) or just when it
finishes (Tl ¼ 0.1 and 0 , Tb , 1). On one hand, if the
sample is taken after the bottleneck (i.e., population
expansion), the tree will have internal branches that are
‘‘too short,’’ and therefore all statistics will exhibit
negative values. On the other hand, if the sample is
taken during the bottleneck (i.e., population decline),
the resulting coalescent tree will be shorter and with
internal branches that are ‘‘too long’’; this will lead to an
excess of medium-frequency polymorphisms and there-
fore to positive statistics. In both cases, the signal lasts
for N (or N/100) generations. Whereas the new test
performs poorly when detecting an excess of low-
frequency polymorphisms, it performs well when de-
tecting an excess of medium-frequency polymorphisms.
Adding sequencing errors reduces the power to detect
an excess of medium-frequency polymorphisms but
enhances the ability to detect an excess of low-frequency

polymorphisms. This highlights that the bias induced by
sequencing errors tends to lower the positive deviations
of the statistics and enhance the negative ones. It should
also be noted that the loss of power to detect positive
deviations is stronger for F than for D. This is in good
agreement with a stronger impact of sequencing errors
on F as shown above.

Hitchhiking along with a selective sweep: Another in-
teresting situation is when the locus of interest is neutral
but linked to a nearby locus that experienced a selective
sweep. This effect has long been referred as the
hitchhiking effect (Maynard Smith and Haigh 1974;
Stephan et al. 1992; Kim and Stephan 2002). We used
the simplified version of the model proposed by
Braverman et al. (1995), described in Fay and Wu

(2000). From the end of the sweep to its beginning, the
frequency of the selected allele decreases deterministi-
cally from 1 � 10�4 to 10�4 with a selection coefficient
equal to a ¼ 2Ns ¼ 1000. We started the simulation at
Ts ¼ 0.01 after the sweep end (i.e., a very recent sweep).
In Figure 3 we report results for a variable range of
recombination rates (R ¼ 4Nc) expressed as the ratio
between recombination and selection (c/s).

When the c/s ratio is very small, the resulting star tree
has almost only singletons. In the case of n ¼ 20, it has
only a few singletons (i.e., no power for any tests)
whereas it has several when n ¼ 50. In this case, the
tests based on Y and Y * have no power to detect the de-
viation. Importantly, adding sequencing errors greatly
increases the excess of singletons and therefore artifi-
cially enhances the power of the test based on Derr and
Ferr at a low c/s ratio. When the ratio is in the vicinity of
0.01, an important fraction of the trees shows only 1
lineage that has escaped the sweep through recombina-
tion. This lineage will have ancestral singletons (jn�1).
In this case, the test based on Y performs well whereas
the test based on Y * performs poorly. When the ratio
becomes high, most of the lineages escape the sweep
through recombination and the process is assimilated

Figure 2.—Power of all tests to detect
population expansion or decline. All 105

simulations were performed with u ¼ 10
and n ¼ 20 (left) or n ¼ 50 (right). The se-
quencing error rate was set either to merr ¼
0 (D and F) or to merr ¼ 0.1 (Derr and Ferr).
We report the power of all tests as a func-
tion of the total time since the bottleneck
started. Bottlenecks are characterized by
two times: Tl, the length of the bottleneck,
and Tb, the time after the bottleneck. Here,
the population size reduction is 1/100th
and lasts for at most Tl ¼ 0.1. A sample
can be taken during the bottleneck (Tl 1
Tb # 0.1) or after it has ended (Tl 1 Tb

. 0.1). The graphs illustrate that depend-
ing on the how the frequency spectrum is skewed, the new tests performed either poorly (i.e., excess of low frequency: star-like
trees) or honorably (i.e., excess of medium frequency: trees with stretched internal branches). They also illustrate that sequencing
errors mask an excess of medium frequency and artificially enhance an excess of low frequency.
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to a standard process; there is no more deviation to be
detected besides a residual bias due to sequencing
errors on F.

Isolated populations: An extreme case of population
structure is isolated subpopulations, i.e., a population
complete split. In a simple model (Simonsen et al.
1995), an isolation event happened at some time Ti in
the past, after which both populations (size N/2) did
not mix anymore. Before Ti, the ancestral population
(size N) is panmictic and simply follows a standard
model. We analyze two types of sampling: (1) both
populations have been sampled with equal size and (2)
one population is largely underrepresented in the sam-
ple. As we will see, the tests behave differently in each
situation.

Results for the case of equal sample size (Figure 4a)
show that all tests have almost the same power to detect a
violation from the standard expectations. With Ti $ 1,
all distributions are skewed on high values in a very
similar fashion. Here, there is a long internal branch
that splits the sample in two subtrees with an equal
number of lineages. Since singletons do not have any
particular role, all tests perform identically when there
are no sequencing errors. Adding sequencing errors
lowers the power of tests based on D and F since it
reduces their positive deviations.

On the contrary, results for samples of unequal sizes
(Figure 4b) show that the new tests based on Y and Y *
perform better than the original test based on D and F.
Despite the difference of power, all distributions are
skewed toward negative values. Having unequal sample
sizes creates a stretch of the branch that splits the tree
into two subtrees, one with few individuals and the other
one with all other individuals. This stretch induces an
excess of both high- and low-frequency polymorphisms.

DISCUSSION

Sequencing errors are very often encountered in data
sets used for population genetics inferences. As a result,

geneticists can be misguided by the effect of sequencing
errors that artificially increase the number of singletons.
This overabundance of singletons leads to overestima-
tions of u, which is typically used to compute the effec-
tive population size. We show that, even with a moderate
rate of errors, the overestimation can be significant. As
a consequence, we propose new estimators of u that
are insensitive to sequencing errors provided that these
errors are singletons. We therefore highly recommend
estimating u with these new estimators in suspicious
data sets.

Another very important consequence of the presence
of sequencing errors is their effects on neutrality tests.
Indeed, singletons are usually the class of polymor-
phisms that has the greatest impact on neutrality tests. It
is mainly the excess or the deficiency of singletons that
steers the statistics outside of their confidence intervals.
We have shown (Figure 1) that an artifactual excess of
singletons will easily alter the rejection of the standard
model. More precisely, it will enhance an excess of
singletons caused by some evolutionary scenarios (e.g.,
population expansion or selective sweep) or mask any
deficiency of singletons caused by other scenarios (e.g.,
population decline or population isolation with equal
sampling). As a result, it becomes hard to distinguish
the effect of sequencing errors from the ones due to
biological departures of the standard model. Tests that
use the u-estimators based on singletons (i.e., the Fu and
Li 1993 ones) are the most affected tests.

We show here that the tests based on D and F are
skewed even when the error rate is low. Namely, if the
rate of artifactual singletons per sequence represents
�0.01–0.1 of u (the number of singletons or the average
pairwise difference), D and F are often significantly
negative. Furthermore, a low rate of sequencing error
(0.01 of u) can alter strongly the power of the tests
when the scenario is not a standard neutral one. Using
the average pairwise difference, we can calculate the
error rate above which a data set becomes suspicious.
In the human population, we have u � 0.001/site

Figure 3.—Impact of a selective sweep
near the neutral locus under study. All 105

simulations were performed with u ¼ 10,
a ¼ 2Ns ¼ 1000, Ts ¼ 0.001 (the sample
was taken right after the sweep) and n ¼
20 (left) or n ¼ 50 (right). The sequencing
error rate was set either to merr¼ 0 (D and F )
or to merr¼ 0.1 (Derr and Ferr). Power is given
as a function of c/s, the ratio between recom-
bination and selection coefficients (al-
though s is fixed). The graphs illustrate
that when the recombination rate is very
small, the new statistics have little or no
power to detect a deviation, but, when the
ratio c/s is in the order of 1/100, the new test
with outgroup (based on Y ) performs well.
Finally, when it is very large, there is no more
deviation from the standard model.
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(Sachidanandam et al. 2001); this translates into a rate
of �10�5–10�4 errors/bp. In a population of HIV-1
infecting a patient, we observe u � 0.01/site (Achaz

et al. 2004); this leads to an error rate of 10�4–10�3

errors/bp. When these rates are compared to the ones
observed either for pyrosequencing techniques ½up to
10�3 errors/bp (Wang et al. 2007)� or for cloned PCR
products ½7 3 10�4 errors/bp (Eyre-Walker et al. 1998;
Tiffin and Gaut 2001)�, we have to acknowledge that
sequencing errors are a major issue in an uncured data
set. Consequently, only data sets where sequencing
errors have been carefully removed should be analyzed
by standard neutrality tests. The step to remove se-
quencing errors usually requires independent cloning
and/or sequencing, which is highly time and resource
consuming. In this context, we think our new tests can
be very useful to many population geneticists, since they
offer a safe and quick way to test for neutrality despite
the presence of sequencing errors.

If there are no sequencing errors, we expect tests
based on Y and Y * to show less power than regular tests.
However, more than a radical loss of power, ignoring
part of the suspicious data leads to a shift in the sen-
sitivity of the tests. We show that in any situation where
the height of the tree is greatly reduced and the tree
shape converges to a star tree (i.e., population expan-
sion and selective sweep with no recombination), the
new tests show less power to detect departure from the
standard model. This fits perfectly with intuition since

the signal lies on derived singletons, which here are
completely ignored. On the contrary, we show that for
scenarios where the internal branches of the tree are
stretched (i.e., population decline and isolated popula-
tions with an equilibrated sample) all the tests behave
very similarly. In this case, most of the segregating sites
will be at intermediate frequency and all tests are more
or less equally able to detect departures from a standard
model. Finally, the new tests can outperform the orig-
inal test based on D in two situations: (i) when there is an
excess of high-frequency polymorphisms (hitchhiking
along with a sweep—especially Y—and isolated popula-
tions with an unbalanced sample) and (ii) when there is
an excess of low-frequency, though nonsingleton, poly-
morphisms (isolated populations with an unbalanced
sample).

We have assumed throughout this study that the
sequencing errors were singletons. If these errors are
genuinely distributed uniformly along long enough
sequences, it is very likely that our assumption will hold.
It is, however, known that some errors are more com-
monly encountered than others. For example, micro-
satellites of mononucleotides are often increased or
decreased by 1 unit during the cloning/sequencing
step. These small indels are, however, not a problem
since they can be easily corrected manually. On the
other hand, if the sequencing errors rate depends on
the nucleotide context, i.e., some sites being more
mutated than others, this can create nonsingleton

Figure 4.—Power of all tests to detect
deviation due to isolation (an extreme
case of population structure). All 105

simulations were performed with u ¼
10, N1 ¼ N2 ¼ Nanc/2, and n ¼ 20 (left)
or n ¼ 50 (right). The sequencing error
rate was set either to merr ¼ 0 (D and F)
or to merr ¼ 0.1 (Derr and Ferr). (a) De-
viation when the sampling is equili-
brated between the populations (n1 ¼
n2 ¼ 10 or n1 ¼ n2 ¼ 25), as a function
of the time to the isolation event (Ti).
All tests exhibit very similar power to de-
tect deviation from a standard model.
(b) The sampling scheme is very unbal-
anced (n1 ¼ 2, n2 ¼ 18 or n1 ¼ 3, n2 ¼
47). Interestingly, the test based on Y or
Y * exhibits a stronger power than the
one based on D.
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sequencing errors that will also affect tests based on Y
and Y *. In any case, if there are some nonsingleton
sequencing errors, our tests will be much less sensitive to
those few rare events than the original D is to sequenc-
ing errors in general. We note that the equivalent model
with finite sites ( Johnson and Slatkin 2008) is more
appropriate when the density of polymorphic sites is
high and/or when the sequences are small. This model,
however, requires a prior knowledge of the error rate to
handle them properly.

We ignored the possibility of recombination events
within the locus under study. It has been reported,
however, that recombination tends to decrease the
variance of both u-estimators ûS and ûp (Hudson

1983). As a consequence it decreases the variance of D
and therefore, if the same confidence interval is kept,
there is an important loss of power (Wall 1999). We
expect that the same will happen with tests based on Y
and Y *. Here, we decided to keep the most conservative
confidence interval for the test (using u2 [0, ‘[ and R¼
0). However, one can define a confidence interval for
a different range of parameters that can be calculated
from the data. Using this last strategy, we should be able
to recover most of the power loss.

To conclude, sequencing errors can easily misguide
interpretations of the data. In particular, they can make
regular statistics (D, F among others) significantly
negative, a signal that is usually interpreted as a star-
like tree. In this case, if there is no departure from
a standard model despite sequencing errors, tests
based on Y and Y * could be helpful to avoid spurious
interpretation of the data. However, because the new
tests do not have much power to detect star-like trees, an
absence of a significant result should not systematically
mean that the standard model is correct. We can already
envision that new tests inspired from the Fu and Li

(1993) ones using u-estimators based on polymorphisms
at frequencies 2/n and n � 2/n should perform better
than Y and Y * for detecting star-like trees.

The source code was designed as a C11 library and is available upon
request. I thank J. Wakeley, who motivated this study, for his scientific
generosity and his priceless advice. I also thank F. Depaulis, M. Tenaillon,
P. Nicolas, and D. Higuet for giving me constructive comments on the
manuscript; N. Bierne and O. Tenaillon for suggesting the name of the
new statistics; and T. Treangen for improving the English of this
manuscript. Finally, I thank the three anonymous reviewers for their
constructive suggestions that improved the manuscript.

LITERATURE CITED

Achaz, G., S. Palmer, M. Kearney, F. Maldarelli, J. W. Mellors et al.,
2004 A robust measure of HIV-1 population turnover within
chronically infected individuals. Mol. Biol. Evol. 21: 1902–1912.

Berger, R., and D. Boos, 1994 P values maximized over a confi-
dence set for the nuisance parameter. J. Am. Stat. Assoc. 89:
1012–1016.

Braverman, J. M., R. R. Hudson, N. L. Kaplan, C. H. Langley and
W. Stephan, 1995 The hitchhiking effect on the site frequency
spectrum of DNA polymorphisms. Genetics 140: 783–796.

Depaulis, F., and M. Veuille, 1998 Neutrality tests based on the dis-
tribution of haplotypes under an infinite-site model. Mol. Biol.
Evol. 15: 1788–1790.

Depaulis, F., S. Mousset and M. Veuille, 2001 Haplotype tests us-
ing coalescent simulations conditional on the number of segre-
gating sites. Mol. Biol. Evol. 18: 1136–1138.

Eyre-Walker, A., R. L. Gaut, H. Hilton, D. L. Feldman and B. S.
Gaut, 1998 Investigation of the bottleneck leading to the do-
mestication of maize. Proc. Natl. Acad. Sci. USA 95: 4441–4446.

Fay, J., and C. Wu, 2000 Hitchhiking under positive Darwinian se-
lection. Genetics 155: 1405–1413.

Fu, Y., 1996 New statistical tests of neutrality for DNA samples from a
population. Genetics 143: 557–570.

Fu, Y., and W. Li, 1993 Statistical tests of neutrality of mutations. Ge-
netics 133: 693–709.

Fu, Y. X., 1995 Statistical properties of segregating sites. Theor. Pop-
ul. Biol. 48: 172–197.

Fu, Y. X., 1997 Statistical tests of neutrality of mutations against pop-
ulation growth, hitchhiking and background selection. Genetics
147: 915–925.

Green, R. E., J. Krause, S. E. Ptak, A. W. Briggs, M. T. Ronan et al.,
2006 Analysis of one million base pairs of neanderthal DNA.
Nature 444: 330–336.
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APPENDIX A: POWER OF THE TESTS

To test whether an observed D value significantly differs from the neutral expectations, one needs to compare the
observation to limit values beyond which one can reject the regular coalescent model (for a given a-risk). Even though
we do not mention it each time (for readability purposes), all the following equally applies to F, Y, and Y *. We are
interested in finding the confidence interval on D (½Dlow, Dup�) that contains a fraction 1 � a of all values under a
standard model. Outside of this interval, we shall reject neutrality. There are two sources of variance in the frequency
spectrum of the polymorphic sites. The first one comes from the variance in the shape and in the branch length of the
genealogy; the second one derives from the number of mutations and their locations in the tree. Importantly, the
mutation locations are dependent only on the underlying tree, which itself, if expressed in units of N generations,
depends only on n (the sample size). On the other hand, the number of mutations depends on u, the population
mutation rate, and on the total tree length (expressed in N generations).

When a geneticist samples sequences from the wild and plans to use a neutrality test, he/she knows n but ignores u;
he/she can, however, easily measure some values from the sequences (e.g., S, the number of polymorphic sites). There
are therefore several possible strategies to compute the confidence interval ½Dlow, Dup�. The most conservative one that
defines the largest confidence interval assumes that only n is known and that all u-values are possible (i.e., u2 [0, 1 ‘[).
A second strategy assumes that some part of the data is known (typically S). Using S, we can either give a single estimate
of u (i.e., ûS) or give a confidence interval on u. This latter option was retained by Simonsen et al. (1995) to compute a
confidence interval ½ulow, uup�, using Tavaré (1984), with a small b-risk (with b , a) and, using the method proposed
by Berger and Boos (1994), to compute the confidence interval of D for all u-values in ½ulow, uup�. Although it sets the
confidence interval only for ‘‘likely’’ values of u, this method is extremely time consuming. Finally, a last strategy is to
assume that S is known and that the D confidence interval can be computed only for a given S (Hudson 1993;
Depaulis and Veuille 1998). This last strategy gets rid of all the variance that comes from the mutation rate so it will
give the narrowest confidence interval and therefore increase the power of the test. It implicitly assumes that the
generated genealogies have to be weighted by their probability knowing S (Markovtsova et al. 2001), but the shortcut
of using S instead of u is robust under almost all neutral genealogies (Depaulis et al. 2001; Wall and Hudson 2001).
Here, we chose to use the most conservative confidence interval (i.e., for u 2 [0, 1 ‘[). Even though one cannot scan
the whole u-space, we show that there is a relatively quick method to compute this conservative confidence interval.

To get a sense of how the confidence interval of D (½Dlow, Dup�) varies as a function of u, we explore, for a given n, a
large range of u-values (i.e., 0–100, by steps of 0.1); they include most of the values typically encountered. For each set
of n and u, we ran 105 regular coalescent simulations, built the empirical distribution of D, and reported the 0.95
confidence interval. Results for n¼ 10, 50, 100, and 300 (Figure A1a) show that Dup exhibits a peak for low values of u

(usually u , 5). Similarly, Dlow reaches its lowest value also for small u-values. This suggests that the most extreme limits
of D are observed for low u-values, regardless of n. Importantly this property holds for F, Y *, and Y.

From there, we set up a strategy to find Dlow and Dup, for a given n but for u 2 [0, 1 ‘[. For Dup, we want to find the
most extreme value (which is reached for a small u). Therefore, we start from u ¼ 0 and run 105 standard coalescent
simulations with increasing u-values (by steps of 0.1) until the newly calculated Dup is less than the most extreme value
of Dup encountered so far (by at least 0.001). The same can be applied to find the most extreme Dlow. Both Dup and Dlow

are considered individually. We therefore explore until we capture the summit of the peak or the bottom of the well. It
usually corresponds only to a reasonable number of steps (extreme values are observed for low u-values). The limits
computed in this way depend only on n and no longer on the unknown parameter u. A graphical representation of the
confidence interval for D, Y *, and Y is given in Figure A1b for n ranging from 5 to 500.

We also mention that we chose here to consider the ‘‘conservative’’ confidence interval for all statistics to reduce the
computation time. However, our strategy to find this conservative confidence interval could be easily changed to find

1418 G. Achaz



Figure A1.—Limits of the 95% confi-
dence interval of of D, Y, and Y * as a
function of u and n. (a) The upper
and lower limits of D (left), Y (right),
and Y * (right). For n ¼ 10, 50, 100,
300, we report the limits for u varying
between 0 and 100 with steps of 0.1. Val-
ues for Y and Y * for n . 10 are so sim-
ilar that we cannot distinguish one from
the other. This shows that, typically, the
limits peak for small u-values. (b) We re-
port the most extreme limits for n #
500. The conservative confidence-inter-
val limits we computed, using our strat-
egy, for n # 500. Note that the upper
limit of Y and Y * is different only for
small values of n # 15.

a narrower confidence interval that considers only likely values of u (Simonsen et al. 1995). This interesting idea can be
exploited through a minor modification of our algorithm that will greatly reduce the original computation time. A
modified version of Simonsen et al.’s strategy could be defined as follows:

1. Find Dup and Dlow and their associated uDup
and uDlow

as we do currently (this is affordable since only a few runs are
needed from u ¼ 0 to the peak).

2. Compute the confidence interval for u (½ulow, uup�) using S (Tavaré 1984) (this can be performed very quickly using
a numerical approach).

3. Compare uDlow
to ½ulow, uup� to set the final value of the lower boundary on D (Dfinal

low ). If uDlow
is inside the interval ½ulow,

uup�, set Dfinal
low as Dlow; otherwise perform one last run of simulations using ulow (if uDlow

, ulow) or uup (if uDlow
. uup).

In the two last cases, set Dfinal
low as the low boundary from this last run.

4. Perform almost the same procedure as in step 3 to find Dfinal
up .

Obviously the same four steps can be done for F, Y *, and Y. This would narrow the confidence interval and therefore
improve the power of the tests especially when u is large. It, however, implies that the confidence interval has to be
computed from S for each data set individually; this seems feasible for a given data set but inadequate for extensive
simulations.

Samples With Sequencing Errors 1419



APPENDIX B: VARIANCES OF THE NEW ESTIMATORS AND STATISTICS

Elementary variances and covariances: Here we give all elementary variances of p, S, j1, and h1 as well as their
covariances. These are necessary to derive the variances of S�j1

, p�j1
, S�h1

, p�h1
, Y, and Y *.

From Watterson (1975), we know that

Var½S � ¼ anu 1 bnu2

an ¼
Xn�1

i¼1

1

i

bn ¼
Xn�1

i¼1

1

i2: ðB1Þ

Tajima (1983) showed that

Var½p� ¼ n 1 1

3ðn � 1Þ u 1
2ðn2 1 n 1 3Þ

9nðn � 1Þ u2: ðB2Þ

From Tajima (1989), we know that

Cov½p; S � ¼ u 1
1

2
1

1

n

� �
u2: ðB3Þ

Fu and Li (1993) showed that

Var½j1� ¼ u 1
2nan � 4ðn � 1Þ
ðn � 1Þðn � 2Þ u2 ðB4Þ

Cov½p; j1� ¼
2ðn 1 1Þ
ðn � 1Þ2 an 1

1

n
� 2n

n 1 1

� �
u 1

1

n � 1
u2 ðB5Þ

Cov½S ; j1� ¼ u 1
an

n � 1
u2 ðB6Þ

Var½jn�1� ¼
u

n � 1
1

n � 2

ðn � 1Þ2 u2 ðB7Þ

Cov½p; jn�1� ¼
2

nðn � 1Þ u 1
4bn � 7 1 8=n

ðn � 1Þ u2 ðB8Þ

Cov½S ; jn�1� ¼
1

ðn � 1Þ ðu 1 u2Þ ðB9Þ

Cov½j1; jn�1� ¼
1

n � 1

3

2
� 2ðan 1 1=nÞ � 3

n � 2
� 1

n

� �
u2: ðB10Þ

Using the variances of j1 and jn�1 and the covariance between both, one can directly derive variances and
covariances that include h1. Here, we have expressed them in an alternative form (usually more compact) to that in Fu

and Li (1993).

Var½h1� ¼
n

n � 1
u 1 an

2

ðn � 1Þ �
1

ðn � 1Þ2
� �

u2 ðB11Þ

1420 G. Achaz



Cov½S ;h1� ¼
n

n � 1
u 1

an 1 1

n � 1

� �
u2 ðB12Þ

Cov½p;h1� ¼ an
2ðn 1 1Þ
ðn � 1Þ2 �

4

n � 1

� �
u 1 bn

4

n � 1
� 6n � 8

nðn � 1Þ

� �
u2: ðB13Þ

Derivation of Var½Y *�: If we define f * ¼ ðn � 3Þ=ðanðn � 1Þ � nÞ, it can then be written that

Var½Y *� ¼ Var ½p�h1
� f *S�h1

�
¼ Var½p�h1

�1 f *2Var½S�h1
� � 2f *Cov½p�h1

; S�h1
�: ðB14Þ

Following the notations of Fu (1995), we define j1 as the number of mutations in external branches and jn�1 as the
number of mutations in the highest branch (whenever it exists); thus both variances as well as the covariance can be
rewritten as follows:

Var½p�h1
� ¼ Var p� 2

n
ðjn�1 1 j1Þ

� �

¼ Var½p�1 4

n2 Var½jn�1�1
4

n2 Var½j1�1
8

n2 Cov½jn�1; j1�

� 4

n
Cov½p; jn�1� �

4

n
Cov½p; j1� ðB15Þ

Var½S�h1
� ¼ Var½S � ðjn�1 1 j1Þ�
¼ Var½S �1 Var½jn�1�1 Var½j1�1 2Cov½jn�1; j1�
� 2 Cov½S; jn�1� � 2 Cov½S ; j1� ðB16Þ

Cov½p�h1
; S�h1

� ¼ Cov p� 2

n
ðjn�1 1 j1Þ; S�h1

� �

¼ Cov½p; S � � Cov½p; jn�1� � Cov½p; j1� �
2

n
Cov½jn�1; S �1

2

n
Var½jn�1�

1
2

n
Cov½jn�1; j1� �

2

n
Cov½j1; S �1

2

n
Cov½j1; jn�1�1

2

n
Var½j1�: ðB17Þ

Therefore, by replacing the variances (Equations B15 and B16) and the covariance (Equation B17) in the variance
of Y * (Equation B14), one can show that

Var½Y *� ¼ Var½p�1 f *2Var½S � � 2f *Cov½p; S �

1 f * � 2

n

� �2

Var½j1�1 Var½jn�1�1 2 Cov½j1; jn�1�½ �

1 2 f * � 2

n

� �
Cov½p; j1�1 Cov½p; jn�1�½ �

1 2f * 2

n
� f *

� �
Cov½S ; j1�1 Cov½S ; jn�1�½ �: ðB18Þ

Each element of Equation B18 is known or can be easily derived. Therefore, replacing all elementary variances and
covariances (Equations B1–B10) in the variance expressed in Equation B18, the variance of Y * can be expressed as

Var½Y *� ¼ a*
nu 1 b*

nu2; ðB19Þ
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where both coefficients are equal to

a*
n ¼ f *2 an �

n

ðn � 1Þ

� �
1 f * an

4ðn 1 1Þ
ðn � 1Þ2 � 2

n 1 3

ðn � 1Þ

� �

� an
8ðn 1 1Þ

nðn � 1Þ2 1
n2 1 n 1 60

3nðn � 1Þ ðB20Þ

b*
n ¼ f *2 bn �

2n � 1

ðn � 1Þ2
� �

1 f * bn
8

n � 1
� an

4

nðn � 1Þ �
n3 1 12n2 � 35n 1 18

nðn � 1Þ2
� �

� bn
16

nðn � 1Þ1 an
8

n2ðn � 1Þ1
2ðn4 1 110n2 � 255n 1 126Þ

9n2ðn � 1Þ2
: ðB21Þ

Variances and covariance of S�h1
and p�h1

: We can show, from solving Equations B15–B17, that

Var½S�h1
� ¼ u an �

n

ðn � 1Þ

� �
1 u2 bn �

2n � 1

ðn � 1Þ2
� �

ðB22Þ

Var½p�h1
� ¼ u 3 �an

8ðn 1 1Þ
nðn � 1Þ2 1

n2 1 n 1 60

3nðn � 1Þ

� �

1 u2 3 �bn
16

nðn � 1Þ1 an
8

n2ðn � 1Þ1
2ðn4 1 110n2 � 255n 1 126Þ

9n2ðn � 1Þ2
� �

ðB23Þ

Cov½S�h1
;p�h1

� ¼ u 3 �an
2ðn 1 1Þ
ðn � 1Þ2 1

n 1 3

ðn � 1Þ

� �

1 u2 3 �bn
4

n � 1
1 an

2

nðn � 1Þ1
n3 1 12n2 � 35n 1 18

2nðn � 1Þ2
� �

: ðB24Þ

These values can be used as an alternative way of computing Var½Y *� (using Equation B14).
Estimation of u and u2 from S�h1

: As for the regular D, u is unknown, but it can be estimated using E ½S�h1
�, since

E ½S�h1
� ¼ an �

n

n � 1

� �
u ¼ g*

nu:

Hence, an adequate unbiased estimator of u is

ûS�h1
¼ S�h1

g*
n

: ðB25Þ

Similarly, u2 can be estimated using E ½S�h1
� along with Var½S�h1

�. Actually, Equation B22 can be rewritten in a
simplified form using adequate gn* and en* for practical purposes as

Var½S�h1
� ¼ ug*

n 1 u2d*
n:

Using these results, we can now express E ½ðS�h1
Þ2� as

E ½ðS�h1
Þ2� ¼ Var½S�h1

�1 E ½S�h1
�2

¼ ug*
n 1 u2ðd*

n 1 g*2
n Þ

¼ E ½S�h1
�1 u2ðd*

n 1 g*2
n Þ:

Hence, the unbiased estimator of u2 is

û
2
S�h1
¼ S�h1

ðS�h1
� 1Þ

d*
n 1 g*2

n

: ðB26Þ
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Derivation of Var½Y�: The use of an outgroup allows us to keep the ancestral state at frequency (n � 1)/n. The
derivations are extremely similar to the one above except that jn�1 is ignored (only j1 is removed from S and p). We
then have to define another constant f ¼ ðn � 2Þ=nðan � 1Þ that will be used in the Y definition:

Var½Y � ¼ Var½p�j1
� fS�j1

�

¼ Var p� 2

n
j1 � f ðS � j1Þ

� �

¼ Var½p�1 f 2Var½S � � 2f Cov½p; S �1 f � 2

n

� �2

Var½j1�

1 2 f � 2

n

� �
Cov½p; j1�1 2f

2

n
� f

� �
Cov½S ; j1�: ðB27Þ

Replacing all elementary variances and covariances (Equations B1–B6) in Equation B27, the variance of Y can be
expressed as

Var½Y � ¼ anu 1 bnu2; ðB28Þ

where both coefficients are equal to

an ¼ f 2ðan � 1Þ1 f an
4ðn 1 1Þ
ðn � 1Þ2 �

2ðn 1 1Þðn 1 2Þ
nðn � 1Þ

� �
� an

8ðn 1 1Þ
nðn � 1Þ2 1

n3 1 n2 1 60n 1 12

3n2ðn � 1Þ ðB29Þ

bn ¼ f 2 bn 1 an
4

ðn � 1Þðn � 2Þ �
4

ðn � 2Þ

� �
1 f �an

4ðn 1 2Þ
nðn � 1Þðn � 2Þ �

n3 � 3n2 � 16n 1 20

nðn � 1Þðn � 2Þ

� �

1 an
8

nðn � 1Þðn � 2Þ1
2ðn4 � n3 � 17n2 � 42n 1 72Þ

9n2ðn � 1Þðn � 2Þ : ðB30Þ

Variances and covariance of S�j1
and p�j1

: Using individual variances and covariances (Equations B2–B6), we can
show that

Var½S�j1
� ¼ u 3 ðan � 1Þ1 u2 3 bn 1 an

4

ðn � 1Þðn � 2Þ �
4

ðn � 2Þ

� �
ðB31Þ

Var½p�j1
� ¼ u 3 �an

8ðn 1 1Þ
nðn � 1Þ2 1

n3 1 n2 1 60n 1 12

3n2ðn � 1Þ

� �

1 u2 3 an
8

nðn � 1Þðn � 2Þ1
2ðn4 � n3 � 17n2 � 42n 1 72Þ

9n2ðn � 1Þðn � 2Þ

� �
ðB32Þ

Cov½S�j1
;p�j1

� ¼ u 3 �an
2ðn 1 1Þ
ðn � 1Þ2 1

ðn 1 1Þðn 1 2Þ
nðn � 1Þ

� �

1 u2 3 an
2ðn 1 2Þ

nðn � 1Þðn � 2Þ1
n3 � 3n2 � 16n 1 20

2nðn � 1Þðn � 2Þ

� �
: ðB33Þ

Estimation of u and u2 from S�j1
: We have

E ½S�j1
� ¼ ðan � 1Þu ¼ gnu:

Hence, the adequate u unbiased estimator is

ûS�j1
¼ S�h1

gn

: ðB34Þ
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Using gn and dn as adequate coefficients to write Equation B31 in a simplified form, we can write that

E ½ðS�j1
Þ2� ¼ Var½S�j1

�1 E ½S�j1
�2

¼ E ½S�j1
�1 u2ðdn 1 g2

nÞ:

Therefore, the estimation of u2 can be done by

û
2
S�j1
¼ S�j1

ðS�j1
� 1Þ

dn 1 g2
n

: ðB35Þ
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