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� A tightly reasoned justification is presented for the procedures used in our test of the
linear-no threshold theory of radiation carcinogenesis by comparing lung cancer rates
with average radon exposure in U.S. counties. A key point is its dependence on ecological
variables rather than on characteristics of individuals and the principal problems involve
treatment of potential confounding factors (CF). The method of stratification is intro-
duced and shown to be preferable to multiple regression for evaluating effects of con-
founding. Utilizing numerous available CF reduces the problem of representing a com-
plex confounding relationship by the average value of a single CF. The requirements on a
CF for affecting the results are quantified in terms of its correlations with lung cancer rates
and radon levels and it is shown that the existence of an unknown confounder satisfying
these requirements is highly implausible. Effects of combinations of confounding factors
are treated and shown not to be important. The problem of confounding factors on the
level of individuals is resolved. Consideration of plausibility of correlations is used in sev-
eral applications, including treatments of uncertainty in smoking prevalence, within coun-
ty differences in radon exposure between smokers and non-smokers, variations in intensi-
ty of smoking, differences between measured radon levels and actual exposures, etc.
Examples are presented for all applications. The differences between our study and case-
control studies, and the advantages of each for testing the linear-no threshold theory, are
discussed.

Keywords: linear-no threshold, radiation carcinogenesis, confounding, stratification, plausibility of
correlation, dose-response

1. INTRODUCTION

1.1. Background

In a 1995 paper (Cohen 1995), data on lung cancer mortality rates,
m, in 1601 U.S. counties were compared with radon exposure, r, in those
counties. These data are displayed in the plot in Fig. 1a, which is
explained in the caption. It is evident from that figure that there is a
strong and statistically indisputable tendency for lung cancer rates to
decrease as radon exposures increase, which is contrary to initial expec-
tations from the fact that radon causes lung cancer.

These data are used to test the validity of the linear-no threshold the-
ory (hereafter, LNT) in the low dose region. This test is very different
from other tests of LNT utilizing case-control studies (Lubin and Boice
1997), which are really designed to determine a risk vs dose relationship
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for individual persons. That obviously requires data on individuals,
whereas we have only average data on groups of individuals, the popula-
tions of counties. Such data on groups are called “ecological data”.

As an example of the difficulty this represents, consider a situation
where the risk has a sharp threshold at 50 units of dose. The average risk
in the county then depends on the fraction of the population exposed to
more than 50 units, which is not necessarily related to the average dose
which might be about 5 units. Clearly, the average dose does not deter-
mine the average risk, and is therefore not useful for determining the risk
vs dose relationship. To assume otherwise is called “the ecological falla-
cy”. However it is readily demonstrated mathematically that this particu-
lar problem does not arise if the risk is linearly related to the dose. In that
special case, the average dose does determine the average risk. This is
familiar to Health Physicists from the widely used paradigm from LNT
that person-sieverts (man-rem) determines the number of deaths; per-
son-sieverts divided by population is the average dose, and number of
deaths divided by population is the average risk. 

The procedure for testing LNT involves two basic steps. The first step
is, assuming LNT to be valid, to transform the risk vs dose relationship for
individuals mathematically into a relationship between ecological vari-
ables, and the second step is to test that relationship against observation.
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FIGURE 1 Lung cancer mortality rates before (Fig. 1a) and after (Fig. 1b) correction for smoking
prevalence vs average radon levels in homes, for 1601 U.S. counties. Data points shown are the aver-
age of ordinates for all counties within the range of r-values shown on the base-line of Fig. 1a; the
number of counties within that range is also shown there. Error bars are one standard deviation of
the mean, and the first and third quartiles of the distributions are also shown. Theory lines are arbi-
trarily normalized lines increasing at a rate of +7.3% per pCi/L as predicted (after the smoking cor-
rection) by LNT. These figures are used only for presentation; all analyses, including the straight line
fit to the data shown here, use the 1601 actual data points.



The first step starts with the BEIR-IV formula (NAS 1988) for risk to an
individual, based on LNT, and develops it mathematically, summing over
all persons in the county. This and subsequent analyses were done sepa-
rately for males and females, always leading to similar results, but for
brevity here, we confine our attention (with a single exception) to males.
The result of the mathematical development (Cohen 1995) for males
(with m in units of deaths per year/100,000 population, and r in units of
37 Bq/m3 [pCi/L) is

M = m / [9 + 99 S] = A + B r Eqn. (1)

where S is the fraction of adult males that smoke cigarettes, A is close to
1.0, B = +7.3 (in percent increase per 37 Bq/m3 [per pCi/L], and M is
defined by the equation on the left and may be thought of as lung cancer
rate corrected for smoking. The data thus corrected for smoking are
shown in Fig. 1b. 

Eqn.(1) is a relationship between ecological variables—m, r, and S—
and hence it accomplishes our first step. Since it is derived mathemati-
cally from the LNT relationship between variables for individuals, if the
latter is valid, Eqn.(1) must be valid and can be used as a test for the valid-
ity of LNT. This use of a mathematically derived formula to verify the the-
ory from which it is derived is a time honored procedure in science.
Newton’s famous theory relating force acting on an object, its mass, and
its acceleration, F = m a, was not directly tested for centuries since accel-
eration could not be directly measured; it was rather used to mathemati-
cally derive the distance traveled by the object vs time, which was meas-
ured to test the theory.

The fact that Eqn.(1), a relationship between ecological variables—
m, r, and S—is being used to test LNT represents a radical departure from
previous tests. This has far reaching consequences. The principal previ-
ous tests have used case-control studies for individuals, which require
extensive information on these individuals. But in our approach, no such
information is required unless it can be shown that it might affect the
relationship between m, r, and S. The difference this makes will be illus-
trated through the rest of this paper. 

It is apparent from Fig. 1b that there is a huge discrepancy between
the LNT prediction, B = +7.3, and the fit of Eqn.(1) to the observed data
which gives B = −7.3�0.56, a discrepancy of 26 standard deviations. We
refer to this as “our discrepancy”. The Scientific Method requires that, if
a theory makes predictions that are discrepant with observations and if
no plausible explanation can be found for that discrepancy, the theory is
invalid. If LNT is to survive the test, we must therefore find a plausible
explanation for our discrepancy. The principal purpose of this paper is to
describe the search for such an explanation.
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Before proceeding, it is important to understand that Fig. 1 should
not be interpreted to be a dose-response relationship between radon
exposure and lung cancer. As explained above, to do so would be falling
into the trap of “the ecological fallacy”. There are only two logical alter-
natives to consider: (1) LNT is valid in which case a plausible explanation
must be found for our discrepancy, or (2) LNT is not valid, in which case
we cannot use these data to determine a dose-response relationship. 

1.2. Confounding Factors (CF)

It is not unexpected that factors other than smoking and radon expo-
sure can affect the risk for lung cancer. In principle, these should be
included in the BEIR-IV formula for risk to individuals that we start with,
carried through the mathematical development, and end up represented
in Eqn. (1). This would be a completely unmanageable process, but fail-
ure to carry it out does not mean that the problem is unmanageable.
Analogous situations arise universally throughout science. Few, if any, for-
mulas used by scientists are absolutely exact and complete, not even
Newton’s formula F = m a, but it is conventional to develop them mathe-
matically to yield other formulas that are useful. In an elementary Physics
course and in several Engineering courses, Newton’s formula is mathe-
matically developed into dozens of useful formulas, involving trajectory
of motion, kinetic and potential energy, momentum, torque, pressure,
etc. In all fields of science, formulas simplified by neglecting less impor-
tant terms are developed mathematically to derive other useful formulas.
The neglected terms can be treated by various approximation methods,
or simply ignored with a recognition that the results are subject to some
uncertainty.

In seeking an explanation for our discrepancy, we must investigate
the effects of variable factors that might, in principle, be included in a
complete treatment of the lung cancer vs radon relationship. If one of
these variables does indeed contribute to the lung cancer risk, and if, for
some reason, it is correlated with radon levels, it would affect the rela-
tionship evident in Fig. 1. That variable would then be said to confound
the relationship between M and r, and would be called a confounding fac-
tor (CF). As an illustrative hypothetical example, suppose that ozone lev-
els in the atmosphere irritate the lungs and thereby cause lung cancer,
and suppose that through some unknown process ozone scavenges radon
out of the air, reducing radon levels. Then counties with high ozone lev-
els would tend to have high lung cancer rates and low radon levels, and
vice versa for counties with low ozone levels. The variations in ozone lev-
els among U.S. counties would then, in itself, cause a negative slope, B,
for the data in Fig. 1. This could possibly explain our discrepancy, indi-
cating that county ozone levels would be an important CF.
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A lengthy list of potential CFs could be drawn up, and each of these
should be investigated before a judgment can be made on the validity of
LNT. It is this process that we now describe. We begin by considering
smoking prevalence to be known so that M and r have known values for
each county, and later, in Section 4, we come back to consider potential
confounding by smoking variables.

2. STRATIFICATION

2.1. The Stratification Method

A straightforward way to check on whether a particular factor, the
value of which is known for each county, is a CF is to consider only coun-
ties for which that factor has the same value, leaving no possibility for it
to confound. The practical manifestation of this procedure is to stratify
the complete data file into many sub-files on the basis of the factor being
investigated. As an example for which direct data are available, consider
population density (PD) which might affect lung cancer rates through
behavioral patterns and medical services, and might affect radon levels
through house construction characteristics. In Table 1, the results are
shown for stratifying our entire1601 county data file into 10 deciles (sub-
files) of 160 counties each on the basis of PD; the data in each decile are
fitted to Eqn. (1) to obtain a completely independent value of the slope
B of the M vs r regression. Table 1 includes data for females as an exam-
ple of the general similarity of results for the two sexes, but data for
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TABLE 1 Treatment of “County Population Density” (PD) as a confounding factor by the stratifica-
tion method. Results are for B using single regression of M on r as in Eq. (1), and multivariate 
(double) regression of M on r and PD, fitting the data to

M = A + B r + E PD

where E is a fitting parameter. Bottom line gives the averages of the columns above and the stan-
dard deviation of that average.

County Rank 
by PD

PD range
(×100/sq.mi)

Single Regression Double Regression

B-male B-female B-male B-female

1–160 0.003–0.094 −3.7 −6.6 −3.7
161–320 0.095–0.22 −8.0 −7.8 −8.0 −7.9
321–480 0.22–0.35 −7.0 −8.5 −7.0 −8.5
481–640 0.35–0.50 −6.4 −9.7 −6.4 −9.8
641–800 0.50–0.67 −8.9 −8.7 −8.9 −8.7
801–960 0.67–0.92 −4.3 −4.4 −4.3 −4.4
961–1120 0.93–1.29 −9.2 −6.0 −9.3 −6.0
1121–1280 1.30–2.05 −5.9 −8.1 −5.9 −8.1
1281–1440 2.05–4.11 −0.5 −2.7 −0.5 −2.8
1441–1601 4.12–671.8 −4.5 −7.4 −3.9 −6.2

Average � Std.Dev. −5.8�2.7 −7.0�2.1 −5.8�2.7

−6.4

−6.9�2.1



females will be omitted for brevity in all further discussions. From the sec-
ond column of Table 1, we see that in each stratum (except the last) the
values of PD are very similar, much more similar than in the data for all
U.S. counties, so any confounding by PD is greatly reduced. This is reit-
erated in Table 1 by including results of a multivariate regression of M on
r and PD, noting that B-values (the coefficients of r in the regression)
from single and multivariate regression are essentially the same. Note that
the values of B are all negative and generally of the same magnitude as
the value for the entire 1601 county data set. The differences between
their average and the values for the entire data set, B = −7.3 for males and
B = −8.3 for females, are well within the standard deviation of the averag-
ing process. More importantly, there is no evident trend for B to increase
or decrease monotonically with increasing PD; there is little difference in
B-values if we consider only counties with the largest PD, or if we consid-
er only counties with the smallest PD, or if we consider only counties with
average PD, etc. These facts clearly indicate that confounding by PD is of
little relevance in explaining our discrepancy. 

2.2. Comparison of Stratification with Multivariate Regression

Since stratification is a somewhat laborious process, one might ask
why not simply do a multivariate regression of M on r and the CF, and
accept the coefficient of r in this regression as the value of B corrected
for confounding? One obvious weakness of multivariate regression is that
it assumes that the relationship of M to the CF is a linear one, which may
not be true. But here we offer a treatment which demonstrates a more
subtle weakness.

We begin by recognizing the fact that the only way a confounding fac-
tor, X, can affect the value of B derived from fitting data with Eqn.(1) is
by systematically causing counties with low M to have high (or low) r, and
vice versa. This would be evidenced by the rankings of counties in our
data file by M, R(M), which has a value ranging from 1 to 1601 for each
county, and (for our case) the inverse rankings of these counties by r,
R(r), both being highly correlated, for unrelated reasons, with the rank-
ings of counties by X, R(X). We refer to these correlations by ranking
(also known as Spearman’s ρ) as CoRR(X,M) and CoRR(X,r) respective-
ly; that is, in a notation where Corr(a,b) denotes the coefficient of corre-
lation (Pearson product moment) between a and b, 

CoRR(X,M) = Corr[R(X), R(M)] 
CoRR(X,r) = Corr[R(X), R(r)] 

Both CoRR(X,M) and CoRR(X,r) must be large for unrelated reasons if X
is to be an important confounding factor.
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Using this background, we now address the issue raised at the begin-
ning of this section, on the use of multivariate regression. Let us assume
that there is a confounding factor, X, that is causally related to M but has
no causal or other direct relationship to r. It thus cannot confound the
relationship between M and r, and therefore should have no effect on the
value of B. But it will necessarily have a correlation with r because of the
correlation of M with r evident in Figure 1.

To study this effect quantitatively, we take

R(X) = s R(M) + (1 − s) R-random

where R-random is a random rearrangement of rankings and s can be var-
ied between 0 and 1.0 to get various CoRR(X,M). Some results for
CoRR(X,r) and B, defined here as the coefficient of r in the multivariate
regression of M on r and R(X), follow:

CoRR(X,M) 0 0.30 0.44 0.59 0.73
CoRR(X,r) 0 −0.14 −0.18 −0.23 −0.28
B −7.3 −6.7 −6.0 −4.9 −3.7

We see that, even though X is not a confounding factor in the relation-
ship between M and r because it has no causal or other direct relationship
with r, its use in multivariate regression still has an appreciable effect on
the resulting value of B. This demonstrates why the method of stratifica-
tion is preferable to multivariate regression in assessing the effects of con-
founding factors; since with stratification, the value of the CF is essential-
ly the same for all data in each regression, it cannot affect that regression.

The demonstration here does not mean that multivariate regression
is a useless tool. But it indicates that it should be used with some caution.

2.3. Problem: Average Value of a CF May 
Not Represent Its Confounding Effects

The stratification procedure may not eliminate effects of a con-
founding relationship because the average value of a CF does not neces-
sarily represent its confounding effects. For example, average annual
income may not represent the confounding effects of monetary income
because its confounding effects may depend on the fraction of the popu-
lation that is very poor, or very rich. To cover this problem, we consider
separately as CF the fraction of the population with income <$5000,
$5000 to $10,000, . . . . . , >$150,000 (10 brackets in all), plus various
combinations of adjacent brackets (Cohen 2000a). Since none of these
has a confounding effect, we may conclude that any aspect of annual
income, not just average annual income, can be excluded as an important
CF.
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As a related but different type example, a person’s age is an explicit
factor in the BEIR-IV formula for risk vs dose to an individual, and it is
carried through the mathematical process of deriving Eqn.(1) by showing
that variations in age distributions do not have appreciable effects on that
equation (Appendix A of Cohen 1995). But as an extended treatment of
that issue, we consider as CF the fraction of the population in age groups
<1 year, 1–2 years, . . . . . , >85 years (31 groups in all) plus various
combinations of adjacent brackets. Since none of these has an important
confounding effect, we may conclude that age distribution can be exclud-
ed as a CF explaining our discrepancy.

Perhaps our conclusions here, that annual income and age distribu-
tion are not plausible confounders, is not justified. To consider this pos-
sibility, we need a suggestion for specific not-implausible dependences on
these for individuals that would not be reflected in the ecological CF spec-
ified above. Despite frequent efforts to devise or solicit such a suggestion,
none has materialized. 

2.4. Stratification on Geography and Environmental Factors

The very wide differences in average radon levels in counties, evident
in Fig. 1, indicates that geography is an important factor in determining
radon levels. Since different geographic regions have many other different
characteristics that may affect lung cancer rates—climate or ethnicity of the
population are plausible examples—geography is a potentially important
CF. This can be investigated with a method akin to stratification by dividing
the nation into sections and doing a separate analysis for each section.

This was done using Bureau of Census Regions and Divisions, and
using individual states (Cohen 2000a). If we take the average value of B
to represent a corrected true value, the results are as follows: for the 4
national regions, B = −5.2; for the 8 national divisions, B = −4.1; for the
33 individual states plus 4 combinations of contiguous states (combined
so as to get at least 20 counties in each data file), B = −5.0. This may be
interpreted as indicating that confounding by geography changes the
value of B from −7.3 to about −5.0, but this is still a long way from explain-
ing our discrepancy with the LNT value, B = +7.3. 

Stratification on environmental factors like altitude, temperature,
precipitation, etc was treated in Section K of (Cohen 1995) and found
not to affect the results. The behavior shown in Fig. 1 is found if we con-
sider only the warmest areas or if we consider only the coolest areas, if we
consider only the wettest or only the driest, etc.

2.5. Screening Candidates for Stratification Studies 

Well over 100 potential CF have been treated by the stratification
method with no progress in resolving our discrepancy. But stratification

B. L. Cohen

376



is a tedious process and the number of potential confounding factors is
very large. A more rapid screening procedure is desirable. Moreover,
there are numerous potential CF for which no data are available—ozone
levels discussed in Section 1.2 above is an example—but they cannot sim-
ply be ignored. The solution to these problems is treated in Section 3
below.

3. OTHER CONFOUNDING FACTOR ISSUES

3.1. Plausibility Requirements on Confounding Factors

For subsequent analyses, it is important to understand quantitatively
what is required for a confounding factor to influence our results. As
pointed out in Section 2.2, the only situation in which a confounding fac-
tor X can affect the value of B derived from fitting data with Eqn (1) is
where both CoRR(X,M) and CoRR(X,r) are large for definite but unre-
lated reasons. The most effective R(X), was found to be

R0(X) = Ranking of {0.5 R(M) + 0.5 R(r)}

which, applied to our data file, gives CoRR(X,r) = CoRR(X,M) = 0.82.
Lesser correlations can be generated by taking

R(X) = Ranking of {p R0(X) + (1 − p) R-random}

where R-random is a random rearrangement of the rankings, that is of
integers between 1 and 1601, and p is varied between 0 and 1.0 to obtain
varying CoRR(X,M) and CoRR(X,r). For each value of p we utilize strati-
fication on R(X) into quintiles, fitting the data in each stratum to Eqn (1)
to obtain a B-value for that stratum, and averaging the B-values from the
five strata to obtain a B-value for the entire data set. The results for three
different sets of R-random (generated by the MINITAB statistical pack-
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TABLE 2 B values obtained if a confounding factor, X, has various correlations by ranking with M
and r, CoRR(X,M) and CoRR(X,r). The three sets of results are for three different R-random. The
first B-value is from stratification into quintiles, and value in parenthesis is the coefficient of r in a
multivariate regression of M on r and R(X).

CoRR 
(X.r)

CoRR
(X,M) B

CoRR
(X,r)

CoRR
(X,M) B 

CoRR
(X,r)

CoRR
(X,M) B

0.09 0.09 −7.2(−7.2) 0.07 0.12 −7.2(−7.2) 0.08 0.08 −7.2(−7.2)
0.18 0.18 −7.0(−6.9) 0.16 0.21 −6.9(−6.8) 0.16 0.17 −7.0(−6.9)
0.34 0.34 −5.2(−5.5) 0.32 0.37 −5.3(−5.4) 0.33 0.33 −5.1(−5.6)
0.53 0.53 −2.1(−2.2) 0.51 0.55 −2.3(−2.0) 0.52 0.52 −2.1(−2.3)
0.69 0.69 +3.2(4.0) 0.68 0.70 +2.9(+4.0) 0.69 0.69 +3.3(+3.9)
0.79 0.79 10.5(11.3) 0.78 0.79 10.4(11.1) 0.79 0.79 10.8(11.2)
0 81 0.81 13.7(14.4) 0.81 0.82 13.7(14.2) 0.81 0.81 13.8(14.3) 



age) are listed in Table 2. The B-values in parentheses there are the coef-
ficients of r from multivariate regression of M on r and R(X). Note that
the B-values obtained in these two very different ways are in good agree-
ment. In view of our definition of R0(X), CoRR(X,M) and CoRR(X,r)
should be nearly the same, but since these depend somewhat on R-ran-
dom, both are listed in Table 2.

We see from Table 2 that the different sets of R-random give consis-
tent results and indicate that for a CF, X, to shift the value of B from its
original value, B = −7.3, to the LNT prediction B = +7.3, requires
CoRR(X,r) and CoRR(X,M) (or, according to further calculations, their
average) to be about 0.75, and even to change the sign of B from − to +,
accounting for half of our discrepancy, requires these correlations to be
about 0.6.

The bottom rows of Table 2 show that a confounding factor can
indeed drastically change the results of the study, as Lubin (1998) has
demonstrated mathematically. But there is an unstated corollary to
Lubin’s mathematical demonstration—the required values of the CF
must be plausible. The issue of plausibility must be addressed.

How plausible are the values of a CF leading to the correlations
required here? The factors affecting radon exposure, r, are geology and
house construction characteristics, while the factors affecting M, lung
cancer rates corrected for smoking, are human behavioral and genetic
characteristics, so it is very difficult to imagine a CF, other than geogra-
phy which was treated in Sec. 2.4, that has a causal relationship with both
of these very different type characteristics. It would seem that the most
likely source of confounding is through socioeconomic variables, SEV.
Our data base includes 530 SEV (Cohen 2000a). For these, the maximum
(in absolute value) CoRR(SEV,r) is 0.486; for only 13 of these 530 SEV is
it >0.4, and for only 49 of them is it >0.3. The maximum CoRR(SEV,M).
is 0.39 and for only 13 of the 530 SEV is it >0.3. Calculations indicate that
the relevant quantity is the average of the absolute values of CoRR(SEV,r)
and CoRR(SEV,M), which we call “Aver-CoRR” (in cases where the signs
of the two are opposite). The maximum Aver-CoRR is 0.43, only one
other is >0.4, only 11 are >0.35, and only 25 of the 530 SEV have Aver-
CoRR >0.3. It thus seems implausible for any CF to have Aver-CoRR larg-
er than 0.5, and it is surely very highly implausible for Aver-CoRR to
approach 0.75, which is required to explain our discrepancy with the
LNT prediction, or even 0.6 which is required to substantially reduce that
discrepancy.

It should be noted in passing that all of the strong correlations cited
above can be explained as arising from the urban-rural effect—urban peo-
ple smoke more and have lower radon exposures than rural people. The
effects of this on B-values were studied by stratification on county popula-
tion, percent urban, etc in Section H of (Cohen 1995) and no effects on
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B-values were found. The urban-rural effect within counties was treated in
Section L of (Cohen 1995) and found not to affect the value of B.

The concept of plausibility of correlation introduced above is a very
powerful one, available in this study because there are data on such a
large number of potential CF, enough to draw meaningful conclusions
about the distribution of their correlations. For example, it covers ozone
as a CF in the hypothetical situation introduced in Sec 1.2. Ozone level in
the atmosphere is related to urban vs rural factors, importance of manu-
facturing, prevalence of motor vehicles and highways, and other variables
for which data are available and included in our analyses. We may thus
conclude that ozone level is not an important CF even though data are
not available on ozone levels in each county. Similarly, we may conclude
that any factor which is related to socioeconomics may be excluded as a
CF that might explain our discrepancy. 

3.2. Confounding factors on the level of individuals

There are potential CF on the level of individual people, rather on
the level of groups of people like county populations, that might seem
not to be represented by ecological variables, as required in our proce-
dures. As a “far-out” example, one might think this applies if a man’s lung
cancer risk depends on Y = [the product of his annual income squared,
and the number of siblings that he has, raised to the fourth power]. But,
in principle, counties could keep statistics on the values of Y in its popu-
lation, and report averages, YAV. These would then be an ecological
socioeconomic variable, and it would be reasonable to expect
CoRR(YAV,r) to be in the same range as other CoRR(SEV,r), which would
not affect our results.

There is a substantial literature pointing out that CF on the level of
individuals cannot be adequately represented in a case-control study by
ecological variables (Greenland and Robins 1994, Morgenstern 1995,
Stidley and Samet 1994, Lubin 1998). But before this can be interpreted as
invalidating our study, it must be shown that such a CF can affect the rela-
tionship between m, r, and S, which is the basis for our test of LNT through
Eqn. (1). In trying to go through this process, I have found it to be
inevitable that the effect under consideration can be represented by eco-
logical variables; the effects considered below in Sec. 4.3, 4.4, and 4.5 are
examples, as is the treatment of Y in the previous paragraph. I would be
anxious to address any suggestions for effects in which this treatment fails.

3.3. Effects of Combinations of Confounding Factors

Up to this point we have been considering CFs one at a time. Since
any one may cause small changes in the value of B, is it possible that these
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small changes can accumulate and thereby explain our discrepancy? We
address that issue here.

The only way in which confounding factors can affect the results is if
the rankings of counties by these factors is highly correlated for unrelat-
ed reasons with R(M) and R(r). But from the treatment of CF by stratifi-
cation, it is clear that only one set of such rankings can enter into the
determination of B through its correlations with R(M) and R(r). This
could be an equivalent set, R(E), based on all relevant CFs. It is important
to recall here that CoRR(X,r) refers to the inverse ranking of X vs r; the
correlations considered in Table 2 require that X be correlated with M
and r in opposite directions. There can just as easily be confounding fac-
tors X that are correlated in the same direction with M and r in which
case the effect is to make the B-value more negative, increasing the dis-
crepancy with the LNT prediction. For example, with CoRR(X,r) =
CoRR(X,M) = 0.75 with correlations in opposite directions, analysis gives
B = +7.7, but for these correlations in the same direction, the result is B
= −16.2 which is a much larger discrepancy with LNT than is found with-
out confounding, B = −7.3. Thus R(E) is just as likely to increase our dis-
crepancy as to reduce it.

But improbable as it is, let us consider the worst case, where all effec-
tive CF have correlations with r and M in opposite directions. If we define
R(1), R(2), R(3), . . . . . as the rankings of the most important CF, the
second most important CF, the third most important CF, . . . . . , a
first approximation to R(E) is R(1). Any improvement to R(E) by making
changes to include R(2), R(3), etc will decrease the effectiveness of R(1),
and hence will tend not to be a major improvement. Thus the effect of
combinations of confounding factors would not be much greater than
the effect of the single most important confounding factor.

As a test of this conclusion, the confounding effects of the 530 SEV in
our data base were investigated by multivariate regression of M on r and
groups of SEV. If we use multivariate regression of M on r and the single
SEV with the largest Aver-CoRR, the slope B is changed from its original
value, B = −7.3, to B = −4.8. If we expand the multivariate regression to
include 12 variables, r plus the 11 SEV with the largest Aver-CoRR, the
result is B = −4.4, only a slight change from the effect of the single most
important CF.

Since the combination of all CFs cannot have much more effect than
that of the single most important CF, and we have shown that it is very
highly implausible for a single CF to explain our discrepancy, we con-
clude that it is also very highly implausible for a combination of CF to
affect the results.

Accepting the result that confounding may change B from −7.3 to −
4.4 reduces our discrepancy with the LNT prediction, B = +7.3, by only
20%, not an appreciable improvement. Moreover, it was shown in Section
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I of (Cohen 1995), using an approach similar to that in Section 2.2, that
use of multivariate regression substantially over-estimates the effects of
confounding.

4. CONFOUNDING BY SMOKING-RELATED VARIABLES

4.1. Relative Importance of Smoking and Radon Exposure

One might think that smoking is such a dominant cause of lung can-
cer that its effects can easily mask the effects of radon. To address this, we
estimate the relative importance of these two factors in determining lung
cancer rates by use of BEIR-IV. The width of the distribution of S-values
for U.S. counties, as measured by its standard deviation, is 13.3% of the
mean, which, according to BEIR-IV, would cause a difference in lung can-
cer rates of 11.3%. The width of the distribution of average radon levels
is 58% of the mean, which, according to BEIR-IV, would cause a differ-
ence in lung cancer rates of 6.6%. Thus the importance of smoking for
determining variations in lung cancer rates in U.S. counties is less than
twice (that is, 11.3 / 6.6) that of radon exposure.

But even more important for our purposes is the fact that smoking
prevalence, S, can only influence our results to the extent that it is corre-
lated with radon levels, r. Thus we are facing a straightforward quantita-
tive question: How strong an S-r correlation is needed to affect our
results? That question is addressed in the next section. 

4.2. Uncertainties in Smoking Prevalence, S

Smoking prevalence, S, has a very special place in our analysis due to
its explicit inclusion in Eqn. (1). Since S is involved in the equation to be
fitted, the distribution of S-values, not just its ranking for various counties,
affects results for B. Three very different sources of data were used to
determine S-values for counties—(1) a Bureau of Census survey for States
with an adjustment for urban vs rural differences among the counties in
each state, (2) state cigarette sales tax collections with a similar adjust-
ment, and (3) lung cancer rates for counties with similar radon levels.
Each of these utilized separately gives essentially the same results as those
based on combining the three. Nevertheless, the uncertainty in S-values
was still a matter of some concern which was addressed by studying the
correlations between S and r required to explain our discrepancy. 

As an initial approach, values of the best estimated S-values are main-
tained but these S-values are reassigned to counties so as to give
CoRR(S.r) = −1.0; that is, the county with the lowest r was assigned the
highest S, the county with the next lowest r was assigned the next highest
S, and so forth thru our 1601 counties, ending with the county with the
highest r assigned the lowest S. Even with this perfect inverse correlation,
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which completely violates any considerations of plausibility, B is only
reduced from its original value, −7.3, to zero, still leaving half of our dis-
crepancy with the LNT prediction, B = +7.3, unexplained. 

Going still further, the effects are increased if the distribution of S-val-
ues is wider. The maximum not implausible width for the distribution of
S-values is the width of the lung cancer mortality rate (m) distribution,
since other factors influence m in ways that, statistically, would increase
that width. With this increased S-distribution width, centered on the well
established national average for S, S-values are reassigned to each county
to give CoRR(S.r) = −1.0; we call this S-perfect. At the other extreme,
these same S-values are randomly assigned to each county to obtain S-ran-
dom. Calculations are then done with

S = q S-perfect + (1 − q) S-random (2)

where q is various numbers between 0 and 1.0 chosen to obtain various
CoRR(S,r) and coefficients of correlation with r (not correlations by
rank), Corr(S,r). The results for three different sets of S-random are
shown in Table 3. We see there that the Corr(S,r) required to change B
to the LNT prediction, B = +7.3, is about 0.9, and just to reduce B down
to zero, eliminating half of the discrepancy, is about 0.62, even with this
substantially increased width of the S-distribution.

How plausible are these required Corr(S,r)? The most probable
source of a correlation between S and r is through socioeconomic vari-
ables, SEV. It therefore seems reasonable to assume that Corr(S,r) should
be in the same range as Corr(SEV,r) for other SEVs. In our data base of
530 potential confounding SEV, the largest Corr(SEV,r) is 0.45, only 7 of
the 530 are >0.4, and only 15 are >0.35. It thus seems reasonable to
assume that values of CoRR(S,r) larger than 0.5 are implausible. It is sure-
ly highly implausible for Corr(S,r) to approach the values, 0.62 − 0.90,
required to help explain our discrepancy, even if we accept the almost
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TABLE 3 B-values obtained if smoking prevalence, S, has various Corr(S,r), assuming the maxi-
mum plausible width for the S-distribution. The three sets of results are for three different S-ran-

Corr
(S,r)

CoRR
(S,r) B

Corr
(S,r)

CoRR
(S,r) B

Corr
(S,r)

CoRR
(S.r) B 

-0.17 −0.17 −7.1 −0.24 −0.23 −5.5 −0.23 −0.22 −6.0
−0.33 −0.32 −4.7 −0.39 −0.37 −3.2 −0.38 −0.36 −3.7
−0.41 −0.39 −3.5 −0.47 −0.45 −2.0 −0.45 −0.43 −2.6
−0.49 −0.47 −2.3 −0.54 −0.52 −0.9 −0.53 −0.51 −1.4
−0.57 −0.55 −1.1 −0.62 −0.60 +0.3 −0.60 −0.58 −0.2
−0.65 −0.63 +0.1 −0.68 −0.66 +1.4 −0.68 −0.66 +0.9
−0.78 −0.75 +2.7 −0.81 −0.79 +3.8 −0.80 −0.78 +3.3
−0.88 −0.85 +5.5 −0.89 −0.86 +6.4 −0.88 −0.85 +6.0
−0.93 −0.90 +8.6 −0.93 −0.90 +9.3 −0.93 −0.90 +8.9



implausibly increased width of the distribution of S-values which ignores
our three independent sources of data. 

4.3. Different r for Smokers and Non-smokers

Another type problem arises if there is a systematic difference in aver-
age radon exposures for smokers, rs, and non-smokers, rn (Cohen 1998a).
Since smokers are 12 times more at relative risk from radon than non-
smokers (NAS 1988), the effective radon level, re, for the county as a
whole for causing lung cancer is

re = [12 S rs + (1 − S) rn] / [12 S + (1 − S)]

where the two terms in the numerator are the weightings for radon expo-
sure to smokers and non-smokers, and the denominator is the sum of
these weightings. This differs from the measured average radon level, r,

r = S rs + (1 − S) rn

If we define x = rs / rn, the relationship between the effective and meas-
ured radon levels is converted by algebra to

re = r (12 S x + 1 − S) / [(x S + 1 − S) (11 S + 1)]

We then use re instead of r in fitting the data to determine values of B. In
doing this, the parameters that may be varied are the average value of x
(x-average), the width of the distribution of x-values, and Corr(x,r). 

It has been found (Cohen 1991) that the national average for x is 0.9,
but we give some results for other values of x-average. For the 52 of the
54 SEV considered in (Cohen 1995) that are not proportional to the
county population, the average width of distributions is 26 % of their
mean, and for only one of the 52 is it above 50%—55% for “percent of
income from government” which is an understandable special case. On
this basis, we consider distributions of x-values to have width 57% of the
mean, which severely stretches the limits of plausibility, and 28% of the
mean which is in the region of reasonable plausibility.

Some results are listed in Table 4. The first five entries explore the
effect of x-average using assumptions about the other factors most favor-
able for explaining the discrepancy. The remaining entries use the known
value of x-average and explore the effects of the width of the distribution
and of Corr(x,r). The results in Table 4 indicate that it is highly implau-
sible for systematic differences between radon exposures to smokers and
non-smokers to change B from −7.3 to less than about −5.5, still a very
long way from the LNT prediction, B = +7.3.
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4.4. Variations in Intensity of Smoking

The BEIR-IV formula for cancer risk to an individual, which was the
starting point for our test of LNT, considers only the distinction between
smokers and non-smokers, with no consideration of intensity of smoking.
Therefore, that factor is not represented in Eqn. (1) which is derived
from the BEIR-IV formula. But the BEIR-VI Report (NAS 1999) suggest-
ed that Eqn. (1) is deficient in that it ignores intensity of smoking, and
proposes that this be treated by dividing smokers into two categories, 2
pack/day and 1 pack/day. To study this (Cohen 2000b), we define

k = ratio of 2 pack/day to 1 pack/day smokers in a county

f = ratio of lung cancer risk for 2 pack/day to 1 pack/day

Analysis of available data indicates the plausible values most favorable for
the BEIR-VI suggestion are f = 2.0 and national average for k = 0.4. Using
these converts Eqn. (1) to 

M = m / [9 − 9S + 84 S {(1 + 2 k)/((1 + k)}] = (A + B r) (3) 

Different distributions of k-values were tried but the most promising was
a level distribution between 0 and 0.8, to be consistent with the national
average of 0.4. We assign k-values to counties so as to define k-perfect as
assignments for which CoRR(k.r) = 1.0, and k-random as one where k-val-
ues are assigned randomly. We then generate k-values to be used in fitting
Eq. (3) as
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TABLE 4 Effects of difference in radon exposure for smokers and non-smokers, with x =
smoker/non-smoker exposures in each county. Table gives value of B for various choices of the
width of distribution of x-values (SD as fraction of mean) and Corr(x,r).

x-average SD of x Corr(x,r) B 

0.8 0.57 1.0 −4.9
0.9 0.57 1.0 −4.8
1.0 0.57 1.0 −4.7
1.2 0.57 1.0 −4.5
1.5 0.57 1.0 −4.3
0.9 0.57 0 −6.5
0.9 0.57 0.4 −5.9
0.9 0.57 0.7 −5.5
0.9 0.57 1.0 −4.8
0.9 0.28 0 −7.3
0.9 0.28 0.4 −6.7
0.9 0.28 1.0 −5.6



k = g k-perfect + (1 − g) k-random

where g is given various values between 0 and 1.0 to obtain different
Corr(k,r). The results are

Corr(k,r) 0 −0.37 −0.52 −0.78 −0.91 −0.93
B −7.6 −5.0 −4.2 −2.5 −0.7 +1.4

In view of our previous discussion on plausibility of correlations, it seems
reasonable to assume that an absolute value of Corr(k,r) > 0.5 is highly
implausible. It is therefore clear that including intensity of smoking as a
confounder can do little to reduce our discrepancy with the LNT value,
B = +7.3. Of course, there is no reason why CoRR(k,r) should not be neg-
ative rather than positive, in which case the discrepancy with LNT would
be increased, so the above table gives an unbalanced view, emphasizing
things that may reduce the discrepancy with LNT. 

(Cohen 2000b) also considers possible correlations with r for both S
and k, using the above method. For cases where Corr(k,r) = Corr(S,r), as
these vary from zero to −0.8, B increases roughly linearly from −10.0 to
+1.3; for example, for Corr(k,r) = Corr(S,r) = 0.4, B = −4.3. Again it is
apparent that plausible values of these correlations can do little to bring
B close to the LNT prediction, B = +7.3. 

4.5. Combinations of Confounding by Smoking and Other Factors 

To go further, we consider the effects of uncertainties in our S-values
combined with an unknown confounding factor, X. Starting with our best
estimates of S-values in a pool, we reassign S-values from this pool utiliz-
ing Eqn (2) to generate sets of S-values with various Corr(S,r). For each
of these sets of S-values, we determine corresponding sets of M-values, uti-
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TABLE 5 B-values from combined effects of various CoRR(S,r) and CoRR(X,r) 

CoRR(S,r)

CoRR(X,r) −0.69 −0.53 −0.37 −0.23 0.00

-0.65 6.5 5.5 4.4 3.3 1.5
−0.60 4.4 3.3 2.0 1.0 −1.2
−0.55 2.4 1.1 0.2 −1.0 −2.9
−0.50 1.0 0.0 −1.0 −1.7 −4.5
−0.45 −0.4 −1.6 −2.5 −3.6 −5.5
−0.40 −1.4 −2.4 −3.5 −4.5 −6.8
−0.35 −2.2 −3.2 −4.3 −5.4 −7.6
−0.30 −3.0 −4.0 −5.1 −6.1 −8.3
−0.25 −3.5 −4.5 −5.6 −6.6 −8.7
−0.20 −4.0 −5.1 −6.2 −7.0 −9.2
0.0 −4.8 −5.9 −6.9 −8.0 −10.0



lizing the left side of Eqn (1). For each of these sets of M-values, we go
through the analysis described at the beginning of Sec. 3.1, to obtain sets
of R(X) with various CoRR(X,r); we then determine values of B as the
coefficient of r in multivariate regression of M on r and R(X). This gives
tables of B-values for various combinations of Corr(S,r) and CoRR(X,r).
By interpolating from these tables, we derive Table 5 which shows values
of B obtained for various combinations of C0RR(S,r) and CoRR(X,r). 

Applying our plausibility limit of 0.5 to both CoRR(S,r) and
CoRR(X,r) simultaneously, which is far less plausible than applying it to
only one of the two, and interpolating in Table 5, we obtain B = −0.2. This
is still strongly discrepant with the LNT prediction, B = +7.3.

5. OTHER PROBLEMS WITH CONFOUNDING

5.1. Urban vs Rural Differences

In extensive studies (Cohen 1991) of how radon levels vary with
socioeconomic factors, house characteristics, geography, etc), it was
found that rural houses average about 25% higher radon levels than
urban houses, whereas urban males smoke about 25% more frequently
than rural males. This problem was treated in Section L of (Cohen 1995)
using a model with the above percentages as parameters, by modifying
the derivation of Eqn.(1) to consider not just the two categories , smok-
ers and non-smokers, but four categories, urban and rural smokers and
urban and rural non-smokers, each category having its own percentage of
the population, lung cancer rate, and average radon level. These are
related by the percent of the population that lives in urban areas, a
known quantity for each county, and m, r, and S for the county. It was
found that the changes in B caused by various plausible values of the
parameters was only a few percent. 

5.2. Differences between Radon Exposure and Measured Radon Levels

There have been suggestions that effective radon exposure, r-effec-
tive, may not be the same as the measured radon level in the home, r-
measured; for example, time spent in the home may vary, or exposures
outside the home may be important. We represent this (Cohen 1998b) as

r-effective = (1 + f) r-measured

The properties of f that can affect our results are the width of the distribu-
tion of f-values among the counties, and the correlation between f and r,
Corr(f,r). We take the distribution to be uniform between −w and +w, where
w is a parameter to be used in calculations. To test the maximal effects of
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correlations between f and r, values of f can be assigned to counties such that
CoRR(f,r) = 1.0, which is equivalent to Corr(f,r) = 1.0. To check on the
effects of no correlation, values of f can be assigned randomly.

The values of the slope, B, from regression of M on r-effective, are
shown in Table 6, along with standard deviations in the B-values derived
from the regression analysis. We see from Table 6 that no values of w or
Corr(f,r) can help substantially in explaining our discrepancy with LNT
predictions. In fact, when these factors reduce the negative value of B,
they also reduce the standard deviation, so the number of standard devi-
ations by which B differs from the LNT prediction, B = +7.3, is not
reduced.

6. COMPARISON WITH CASE-CONTROL STUDIES

Since case-control study practitioners usually deal with risk to individ-
uals, their studies require data on CFs for individual persons, obtained by
questioning each involved individual or a close relative or acquaintance.
This information is of key importance in their studies. For example, if
annual income is an important element, the annual income of each indi-
vidual must be connected to his cancer or lack of cancer. They may some-
times use ecological data for crude estimates; in the above example, they
might assume the annual income of each individual to be the average
income in his section of the city. But they clearly recognize this to be an
inferior procedure, and label studies that depend on such procedures as
“qualitative”, useful only for suggesting “analytical” studies that avoid
them. Non-epidemiologists have frequently used ecological data unjusti-
fiably to imply risk vs dose relationships for individuals. It is easy to show

Procedures in Test of Linear–No Threshold Theory

387

TABLE 6 Slopes B from regression of M on r-effective for various values of w and Corr(f,r). The last
column is the standard deviation in the determination of B.

w Corr(f,r) B SD(B)

0 −7.3 0.56
0.2 0 −7.0 0.53
0.5 0 −5.5 0.47
0.8 0 −4.0 0.41
1.0 0 −3.2 0.36

0.1 +1.0 −6.4 0.48
0.3 +1.0 −5.2 0.39
0.5 +1.0 −4.3 0.33
0.7 +1.0 −3.7 0.28

0.1 −1.0 −8.5 0.62
0.3 −1.0 −12 0.9
0.5 −1.0 −21 1.4



how any paper depending on ecological data for such a purpose can give
false results. It is certainly easy to understand that epidemiologists are
instinctively “turned off” by use of ecological data. 

However, our test of LNT is based on Eqn.(1) which is a relationship
between ecological variables. Analyses are therefore straightforward for
ecological CFs. Fortunately, every potential confounding relationship
that seems plausible to me, or that has been suggested as being plausible
by others, can be represented by ecological variables.

As an example of the difference between our approach and that of a
case-control study, consider a hypothetical situation in which people of a
certain ethnicity, call it Ethnicity-A, may have a high risk for lung cancer.
In our approach, the relevant variable for determining the county lung
cancer rate is the fraction of the population of Ethnicity-A, an ecological
variable; there is no need to know which individuals in the county are of
that ethnicity. If we were trying to find out whether people of ethnicity-A
have an excess cancer risk, it would not be sufficient to find high lung
cancer rates in counties with large fractions of their citizenry of ethnicity-
A. We would have to know whether it is the people of ethnicity-A in those
counties who had excess lung cancer. But in our study, we are simply test-
ing the consequences of the hypothesis that people of ethnicity-A might
have an excess cancer risk, which might cause counties with large popu-
lations of ethnicity-A to have high lung cancer rates, which could affect
our results (if people of ethnicity-A have systematically low radon expo-
sure). The fact that we find our results unaffected by fraction of the citi-
zenry of ethnicity-A does not disprove the hypothesis that people of eth-
nicity-A may have high cancer risk, but that is irrelevant to our purpose
which is to find CFs that do affect our results.

At least two papers (Lagarde and Pershagen 1999, Darby, Deo, and
Doll 2001) have pointed out cases where the relationship between lung
cancer and radon exposure derived from a study of individuals gives
results different from an ecological study based on the same data. But
these ecological studies involved no treatment of confounding factors,
and the difference between results from these and from the individual
level studies is easily explained by recognizable confounding factors. That
is certainly not the case in our study which involves very extensive con-
sideration of possible confounding factors.

It is frequently implied that our study is inferior to case-control stud-
ies for testing LNT. Aside from the fact that case-control studies do not
have the statistical power to test LNT in the low dose region, this ignores
the inherent weaknesses in treatments of CF in case-control studies. An
individual’s risk of lung cancer depends on a multitude of factors on a
molecular, cellular, intercellular, hormonal, etc. level that are not under-
stood, not readily measurable, and therefore not considered in these
studies. There are also a large number of potential CFs that could be, but

B. L. Cohen

388



are not included because of time, cost, or other practical limitations. In
practice, case-control studies treat only a very few CFs, often using multi-
variate regression which is a process of limited validity, and frequently
depending on marginal statistics.

Our study has many important advantages over these case-control
studies. It treats a far wider diversity of CF, and even includes a strong
argument that an unidentified CF cannot be important—no such argu-
ments are available in case-control studies which can easily be rendered
invalid by an unrecognized CF. Our study largely avoids use of multivari-
ate regression with its inherent weaknesses pointed out in Sec. 2.2 above
and elsewhere (Kleinbaum, Kupper, and Muller 1988). It includes a
method for treating cases where no data are available on a required vari-
able, by use of “plausibility of correlation”. It includes a wide variety of
geographic areas and population characteristics, whereas case-control
studies are normally confined to a single, or at most a few local areas.
Statistical uncertainties, one of the greatest limitations in many case-con-
trol studies, are virtually eliminated.

It should be understood that the success in treating confounding fac-
tors reported here is due to a combination of fortunate circumstances not
present in the great majority of studies. The very large number of data
points, 1601 counties, with good quality data for each on hundreds of dif-
ferent variables, is highly unusual. But perhaps more important is the fact
that radon levels in homes are very weakly correlated with most other
variables like climate, socioeconomics, ethnicity, etc that might affect
lung cancer rates.

One might question the fact that our study leans heavily on plausibil-
ity arguments, especially plausibility of correlation. But case-control stud-
ies choose the few CFs they investigate and the control groups they adopt
based solely on subjective judgments of plausibility. The CF analyzed in
our study include all of the many hundreds that are available. 

With all these advantages, the problem in accepting our study is diffi-
cult to understand unless someone can suggest a plausible specific CF
that could possibly explain our discrepancy. It must be specific in order
to address the issue of plausibility, but it is not necessary to show that it
does explain our discrepancy, only that it might possibly explain it. If such
a suggestion is forthcoming, I would be eager to address it. I have tried
very hard to solicit such a suggestion but have had only marginal success.
Therefore, until such a CF is suggested, it seems reasonable to conclude
that LNT fails our experimental test and must therefore be invalid in the
low dose region covered by Fig. 1.
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