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0 Non-linear dose response relationships pose statistical challenges for their discovery.
Even when an initial linear approximation is followed by other approaches, the results may
be misleading and, possibly, preclude altogether the discovery of the nonlinear relationship
under investigation. We review a variety of straightforward statistical approaches for detect-
ing nonlinear relationships and discuss several factors that hinder their detection. Our spe-
cific context is that of epidemiologic studies of exposure-outcome associations and we focus
on threshold and J-effect dose response relationships. The examples presented reveal that
no single approach is universally appropriate; rather, these (and possibly other) nonlinear-
ities require for their discovery a variety of both graphical and numeric techniques.

1. INTRODUCTION

The practice of fitting linear models to associations such as those
relating exposures and health, is well appreciated as an approximation, as
nature is rarely so simple. Thus, implicit in the fitting of linear models to
observed phenomena is the belief that, despite their inherent inaccura-
cies, valuable insights will be revealed nonetheless. Often, the linear
approximation methodology is accompanied by some combination of the
fitting of selected model refinements suggested by regression diagnostics,
the inclusion of additional covariates, and case analysis. In this report, we
reason that, while the practice of entertaining linear models is often
appropriate, there are important non-linearities in nature for which the
linear approximation is an uninformative (and possibly misleading) first
analysis step. We argue that even the application of additional, more flex-
ible, approaches might also fail to detect certain nonlinear relationships.

Our focus is on threshold and U- or J-shaped relationships where the
outcome is binary (such as the occurrence or non-occurrence of a single
health outcome), as these are often of interest in epidemiological inves-
tigations of dose response relationships. In the estimation of such rela-
tionships (and relationships generally), the extent to which study conclu-
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sions will be uninformative depends on the degree of disparity between
the misspecified and true relationships. Less well appreciated, however, is
that, with respect to threshold and U- or J-shaped relationships in partic-
ular, the practice of beginning with a linear model approximation will be
misleading whenever the fitted line obscures the threshold or U or | while
describing reasonably well a linearity that exists elsewhere in the expo-
sure range. In such settings, the investigator risks the possibility of failing
altogether to discover the unknown threshold or U or | phenomenon.
Required, therefore, are “nature revealing” alternatives to the initial lin-
ear model assumption when nature is non-linear. We consider here sev-
eral factors that contribute to our inability to detect a nonlinear relation-
ship (e.g. sample size and observed range of exposure) and we use graphs
and examples to illustrate the concepts.

In Section 2, we introduce threshold and U- or J-shaped associations
and give examples from the literature. In Section 3, we discuss statistical
approaches to modeling nonlinear relationships. Factors hindering the
discovery of nonlinear dose-response relationships in epidemiologic stud-
ies are reviewed in Section 4. The consequences of misspecified models
are discussed in Section 5. Section 6 is a discussion. In the Appendix we
compare the statistical use of the term “non-linear model” to the way it is
used in the report and we present the specifics of the generated example
data. For ease of presentation, we focus on one-to-one relationships and
we assume an absence of confounding. However, we remark on the gen-
eralizability of our suggestions to the more real world situation where
interpretation necessitates an acknowledgement of the reality that there
exist multiple etiologies for any given disease outcome, rendering the
observed relationship very complex (e.g. one-to-many) and possibly con-
founded or modified by extraneous variables. Readers interested in the
more technical details of the approaches considered here are referred to
Becher (2002).

2. THRESHOLD AND U- OR J-SHAPED ASSOCIATIONS

The defining characteristics of threshold and U- or J-shaped relation-
ships are familiar. For simplicity, consider a cross-sectional study of a sin-
gle exposure at varying dosages and its association with a selected health
outcome. In a threshold relationship, increasing exposure elicits no
effect on health for dosages below some threshold value; in this range,
the association between dose and health is null or positive. Exposure
dosages exceeding the threshold, however, do affect health and, typically,
the effect is according to a negative dose-response relationship. An exam-
ple is the hypothesized effect of cumulative exposure to hexavalent
chromium on the development of lung cancer (Jones, 1990; De Flora,
2000; Luippold, 2003). Presently understood is that, up to a certain level
of exposure, the body is capable of reducing the carcinogen hexavalent
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chromium to the non-carcinogen trivalent chromium; the latter, in small
quantity, is an essential nutrient for humans and animals. Beyond the
threshold dose of hexavalent chromium, however, the body’s capacity for
its reduction is exhausted and the carcinogenic effects of hexavalent
chromium are realized.

In a U-shaped effect relationship, zero or low exposure dosages are
harmful, intermediate dosages elicit either null or positive health effects,
and high doses are harmful. Vitamin toxicity is an example; it is necessary
to good health, but only in intermediate dosages. Doses too low are asso-
ciated with anemia, the occurrence of infectious diseases, and growth dis-
turbances while excessive doses have been associated with teratogenicity
in pregnant women (Sommer, 1996). Another example is the familiar,
but incompletely understood, relationship between blood pressure and
cardiovascular risk. This was a focus of the Hypertension Optimal
Treatment (HOT) trial (for review, see Hannson, L, 1999); briefly, it is
possible to lower blood pressure too much, such that diastolic readings
below 85 to 90 mm Hg are associated with increased risk of stroke and
myocardial infarction. Other examples of nonlinear relationships exhibit-
ing a U- or J-shape have been described as well, e.g. the possibility of
health risks associated with very low levels of ionizing radiation
(Rothkamm and Lobrich, 2003).

Threshold effect

The two general shapes of a threshold effect are depicted in Figures
la and 1b. Characteristic of a threshold effect is the absence of an effect
for exposure doses below some “critical” threshold value coupled with a
significant harmful effect for dosages greater than threshold; Cornfield
(1977) calls this a hockey-stick effect. Hockey-stick effects on a continu-
ous scale are of the type shown in Figure la; the effects on a yes/no or
present/absent type scale are as in Figure 1b.

A Threshold B Threshold

Response
Response

Dose Dose

FIGURE 1 Shapes of Threshold Effect Relationships Between Dose and Response. a, continuous
response; b, binary response.
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A U-shape B J-shape

Response
Response

Dose Dose

FIGURE 2 Shapes of U- and J-Effects.

U- or J-shaped effect

Nonlinear relationships that are U- or J-shaped are depicted in
Figures 2a and b, respectively; illustrated are the characteristic phenome-
na of adverse health effects at low and/or high doses of exposure and a
null or beneficial association in an intermediate dose range.

3. STATISTICAL APPROACHES TO MODELING NONLINEAR
RELATIONSHIPS

A'large body of literature and many textbooks provide excellent treat-
ments of the development, assessment, and interpretation of statistical
models generally (e.g. Hosmer and Lemeshow, 2000; Seber and Lee,
2003; Kleinbaum, Kupper, Muller and Nizam, 1998). Typically, the
methodology begins with estimating a linear relationship which, upon
assessment, is believed to yield some clues regarding the underlying true
functional form that relates the two variables. In the setting of this report,
where initial estimation of a linear relationship may be misleading when
the correct model is a non-linear dose-response relationship, we suggest
that initial data analyses should include techniques that are especially
appropriate for the detection of non-linearities. A variety of graphical
approaches and formal tests are available for this.

Ordinal Reparameterization of Exposure

This approach entails retaining for analysis an ordinal reparameteri-
zation of exposure, rather than the continuously measured value itself.
Albeit with some loss of information necessarily, valuable insights are pos-
sible when the substitute ordinal variable permits a meaningful test of
trend, or an insight as to the nature of the functional relationship
between exposure and outcome, or both. In its implementation, the
range of the observed dose is divided into mutually exclusive subgroups
and, within each subgroup, a common value of exposure assigned (typi-
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cally the average for that subgroup). Exposure subgroup definitions
might be based on statistical considerations (e.g. quantiles) or subject
matter considerations (e.g. no exposure at all versus below legal limit ver-
sus above legal limit). Apparent trend in outcome with increasing dose of
exposure can be assessed using the Mantel extension test for trend
(Clayton and Hills, 1993, Mantel, 1963). Alternatively, the exposure sub-
groups can be used to define indicator variables for inclusion in a multi-
variable model of outcome; a plot of the estimated coefficients permits an
easy graphical assessment of the assumption of linearity. Thus, advantages
of this technique are its simplicity and apparent “model free” framework.
There are disadvantages, too, however (e.g. Lagakos, 1988; Zhao and
Kolonel, 1992; Greenland, 1995a), including its potential sensitivity to the
choice of exposure subgroups and a loss of power.

Polynomial and Fractional Polynomial Modeling of Exposure

A polynomial parameterization of exposure is a model-based approach
to exploring nonlinearity. In this technique, each exposure value is re-
expressed as a polynomial of degree greater than one (eg. quadratic, cubic,
etc), yielding an estimated model with multiple predictors (ie — separate
predictors for the linear, quadratic, etc terms respectively). An example is
the modeling of age; age might be modeled quadratically so as to accom-
modate a nonlinear effect on outcome in older persons. Testing the depar-
ture from zero of the coefficients for the higher order powers of exposure
is an assessment of the adequacy of the linear model representation. The
principal advantage of the use of a polynomial reparameterization of the
predictor is that it yields a single model of the overall relationship. Often,
a disadvantage is that this will be a poor fit in selected exposure dose
ranges, especially the highest and the lowest. Some improvement in fit is
achieved by the use of fractional polynomials or splines.

Fractional polynomials, developed by Royston and Altman (1994),
are an extension of a polynomial reparameterization of the predictor (in
our case, exposure) that permits consideration of fractional powers and
the combination of terms (see e.g. Hosmer and Lemeshow, 2000 for an
introduction). As with a polynomial reparameterization, a fractional poly-
nomial representation of the predictor is used to estimate a single overall
relationship between predictor and outcome. The use of fractional pow-
ers and the combination of terms can substantially improve the fit.
Nevertheless, it may not represent well changes in functional form, such
as abrupt changes in risk or changes in functional form occurring at very
low or very high exposure levels (e.g. threshold effects).

Splines

The use of splines in modeling predictor-outcome relationships is
also an extension of the polynomial reparameterization approach. Here,
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separate polynomials of the predictor (here, exposure) are fit for each
subgroup of the sample defined by interval values (e.g. quantiles) of the
predictor variable. As before, the partitioning of the sample into expo-
sure subgroups can be based on either subject matter or statistical con-
siderations. An overall smooth curve is obtained by fitting polynomials to
the subgroups of the predictor variable and connecting them at the
boundaries. Often, cubic splines are available in statistical software, but
quadratic splines have also been recommended (Greenland, 1995b). Due
to the fact that the fit of higher order polynomials is often a misrepre-
sentation for the lowest and highest exposure categories, linear functions
are fit for those. In this case the splines are called restricted splines.

Non-parametric smoothing techniques

A graphical approach that is useful for exploring dose-response rela-
tionships is that of smoothing. This technique does not make any assump-
tions regarding the nature of the relationship nor the distribution of
either dose or response variable; assumed only is that the relationship is
continuous. A particularly useful non-parametric smoothing technique is
lowess (for locally weighted regression) smoothing. For each value of the inde-
pendent variable, one estimates a separate linear regression model for
the data contained in a window around this value. Values closer to the
center of the window are weighted more than values close to the edges of
the window. The results are summarized as a set of local regression pre-
diction values, one for each window; the plot of these values is what com-
prises a lowess curve. The degree of smoothness of the resulting graph
depends on the width of the window. Lowess curves are especially useful
when the association is suspected to be different from a straight line.
More generally, the use of smoothing techniques is an excellent approach
for exploring nonlinear dose response relationships at a univariate level.
Unfortunately, their use in multivariate settings is limited.

4. FACTORS HINDERING DETECTION OF NON-LINEAR
DOSE-RESPONSE RELATIONSHIPS

Inadequate sample size, insufficient range, and individual suscepti-
bility pose unique challenges in the discovery of non-linear relationships
in epidemiologic studies.

Sample size

Insufficient sample size is known to reduce the likelihood of detect-
ing a true relationship through its effect on both type I and type II error,
all other things being equal. In the non-linear relationship setting, insuf-
ficient sample size poses another challenge as well. Specifically, for the
detection of a non-linearity, there must be a reasonable number of data
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points in the actual region of non-linearity. Thus, it is not enough to have
a large overall sample size; there must also be adequate sample sizes in
the regions of nonlinearity in particular. This requirement is more easily
met in experimental studies, as the investigator can set by design the sam-
ple sizes at each of the dose levels of interest. Observational epidemio-
logic studies, however, are problematic in this regard. Sample size-dose
combinations cannot be set by the investigator and, often, there exist only
small sample sizes for dose levels that are either very low or very high (the
very intervals where non-linearity might be anticipated). Another exam-
ple is the setting of studies of occupational health. It is difficult to obtain
exposure-outcome data for persons with a large number of years of cumu-
lative exposure to a putative carcinogen if federal guidelines limit this
exposure. In these and similar examples, when the available data is sparse
in the regions of nonlinearity, the result will be wide confidence bands
about the estimated model that are difficult to interpret.

Range of exposure

Our understanding that a fitted line is generalizable to the observed
range of data only, has implications in the non-linear setting. Specifically, if
the available exposure levels are only in the region of the “stick” portion
of the J-shaped curve, then the estimated relationship will be presumed
to be linear and any inference of non-linearity will be missed altogether.
Similarly, a threshold effect will be missed altogether, depending on the
available range of exposure.

Individual susceptibility

Despite extensive research, for most diseases, we do not know all of
the factors that contribute to the occurrence of the disease. Among the
statistical treatments of the unknown factors is the practice of handling
these as noise. Sometimes, however, it is meaningful to conceptualize
these as individual susceptibility.

Problematic is that individual susceptibilities might be both impor-
tant and inestimable. In population based studies of a non-linear dose-
response relationship in particular, it may not be meaningful to postulate
a single threshold dose for an entire population (Lutz, 2000) as, more
reasonably, individual susceptibilities might take the form of individual,
distinct, threshold dose values. The result is that, when characterizing a
dose-response relationship at the population level, depending on the
direction and magnitudes of the variations in individual susceptibility, the
latter is indistinguishable from noise. Thus, it is similarly possible that, in
the case of an underlying threshold effect, depending on the direction
and magnitude of these individual variations in susceptibility, a popula-
tion based study may or may not reveal the existence of any (individual or
otherwise) threshold effect at all.
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5. MISSPECIFIED MODELS

In the two settings that are of special interest here, those of threshold
and U- or J-shaped effects, we illustrate the challenges and the limitations
of a statistical analysis of a nonlinear dose-response relationship. Without
loss of generality, we consider simulated data having a simple structure.
Specifically, in both settings, noise is introduced by permitting individu-
als to have a different level of susceptibility. To keep things simple, noise
is random. Data generation is also such that exposure dose is not uni-
formly distributed over the range of observed levels of dose. Instead, and
in accordance with prevalence patterns that are likely to be encountered
in epidemiologic studies, dose levels are generated such that the majori-
ty of the analytic sample has low or medium exposure values while the
remaining minority have high levels of exposure. See Figure 3 for the dis-
tribution of dose levels used for both threshold and J-shaped settings.

5.1 True dose-response relationship: Threshold

We generated a data set of size n = 1000 in which exposure dose lev-
els range from 0 to 18 and the overall prevalence of disease is equal to
10%. Outcome status, defined as disease or non-disease, was generated
such that disease has an expected relative frequency of 5% for dose levels
below 8, then increases linearly from 5 to 50% for dose levels from 8 to
12, and is 50% for dose levels exceeding 12. See Appendix for details on
the generation of these data. A graphical representation of the probabil-
ity of disease occurrence and disease status for the generated example
data is given in Figure 4.

To illustrate the capabilities of smoothing techniques, following is a
graph of the estimated probabilities of having the disease using the exam-
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FIGURE 3 Distribution of Dose for threshold and J-effect scenarios
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FIGURE 4 Probability of disease occurrence and disease status as generated for threshold model

ple data and a lowess smoother (Figure 5). As can be seen, the estimated
form for the probability of having the disease does resemble the form
which was used to generate the data.

An analysis of the data naive to the possibility that the relationship is
threshold shaped might proceed with the following five results. (1) A
logistic regression model is estimated assuming a linear relationship on
the log odds scale. The odds of disease are estimated to increase by
approximately 28% for each unit increase in dose (Figure 6). The associ-
ated significance level is a pvalue less than 0.001. An assessment of good-
ness-of-fit for this model using the Hosmer-Lemeshow (2000) test sug-

Lowess smoother

14 HHEHHEE S R - R S

Disease

Dose
bandwidth = .5

FIGURE 5 Lowess smoother of the probability of having the disease in the threshold example data
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FIGURE 6 Estimated probabilities for the threshold example for the following approaches of mod-
eling dose: Linear, ordinal (deciles), fractional polynomials, and restricted quadratic splines

gests rejection of the null hypothesis of an adequate fit (p = 0.03). (2)
Consideration of a polynomial representation on the logit scale, in par-
ticular quadratic in dose, is not a statistically significant improvement
over the linear model (results not shown since they are almost identical
to the linear fit). (3) We consider an ordinal reparameterization using
deciles of dose and fitting dummy variables with the first group being the
referent group (Figure 6). The odds of having the disease is only statisti-
cally significantly increased for the last decile (with a pvalue of less than
0.001). If less than 10 groups are considered the results are very similar,
in that the odds of having the disease is always statistically significant for
the group including the highest levels of dose (results not shown). (4)
Expansion of the possible functional forms to the family of fractional
polynomials identifies as the best fitting model a sigmoidal shape with a
drop at the highest level of dose (functional form: logit [disease] = dose®
+ dose®(log(dose)), Figure 6); it is a statistically significant improvement
over the linear model (p < 0.01). (5) Finally, consideration of a model
comprised of quadratic splines for quartiles of dose suggests a sharp
increase in the logit for higher levels of dose (Figure 6).

Comparison of the four panels in Figure 6 reveals that, in this exam-
ple, the estimation of the ordinal representation, the fractional polyno-
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mial and quadratic spline models permits detection of a relatively sharp
increase in odds of disease with higher levels of dose. A drawback to the
estimated fractional polynomial model is that it suggests a drop in odds
of disease for the highest levels of dose, in contrast to the relationship
used to generate the data. The estimated quadratic splines model is mis-
leading as well; notice the consistently increasing estimated risk for high
levels of dose. This characteristic remains the same even if deciles of the
exposure are used instead of quartiles (results not shown). We note also
(results not shown) that consideration of unrestricted splines also sug-
gests, mistakenly, that there is a drop in odds of disease for the highest lev-
els of dose. Thus, while consideration of fractional polynomials and
splines is an enhancement of logit models that are linear or polynomial,
the former are difficult to interpret, particularly in the range of high val-
ues of the predictor variable (e.g. dose). That fractional polynomial and
quadratic spline models are potentially instable in the tails, as has been
noted by other authors as well (e.g. Greenland, 1995b). This has led to
the recommendation to use restricted splines instead of unrestricted
splines.

5.2 True dose-response relationship: J-shaped

For this illustration, we generated 1000 outcomes (presence or
absence of disease) such that estimated odds ratios relating exposure to
logit[disease] follows a quadratic function. The overall prevalence of dis-
ease equals 7%. See Appendix for details on the generation of these data.
A graphical representation of the odds ratio for disease occurrence is
given in Figure 7.

124

104

QOdds Ratio
[=2]

2
14
0+

Dose

FIGURE 7 Relationship between odds ratios and dose for data generated to exhibit J-shaped effect
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FIGURE 8 Lowess smoother of the probability of having the disease in the J-effect example data

A graph of estimated probabilities of disease in the sample data using
a lowess smoother is shown in Figure 8 and does resemble a J-shaped
effect.

Analysis of these data naive to the possibility of a | shaped relationship
yields the following five results. (1) Based on the estimation of a logistic
regression model that assumes linearity on the logit scale, the odds of dis-
ease is estimated to increase by approximately 22% for each unit increase
in dose (Figure 9); the statistical significance of this finding is a pvalue
less than 0.001. The Hosmer-Lemeshow (2000) goodness-of-fit test fails to
reject the hypothesis of an adequate fit (p = 0.39). (2) Expansion of the
estimated model to include a quadratic effect in dose is not a statistically
significant improvement (results not shown since they are again almost
identical to the linear fit). (3) Considering an ordinal representation
using deciles of dose and fitting dummy variables with the first being the
referent group (Figure 9) yields estimated increases in odds of disease
with each decile of exposure that is statistically significantly only for the
last decile (with a pvalue of less than 0.001). If less than 10 groups are
considered the results are very similar with the following exception.
When using 7 groups of dose, the odds of having the disease is borderline
statistically significant for the second group compared to the first (refer-
ent) group (pvalue =0.07). (4) In this example, consideration of the fam-
ily of fractional polynomials does produce a “best” fitting model that is |
shaped (functional form: logit[disease] = log(dose) + (log(dose))?, not
shown). However, its improvement over the linear model is not statisti-
cally significant; thus, we might infer that a linear relationship is an ade-
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FIGURE 9 Estimated probabilities for the J-effect example for the following approaches of model-
ing dose: Linear, ordinal (deciles), fractional polynomials, and restricted quadratic splines

quate fit to the data (Figure 9). (5) Finally, the estimation of restricted
quadratic splines for quartiles of dose reveals the general functional form
as generated (Figure 9).

A comparison of the four panels in Figure 9 shows that, in this exam-
ple, only the quadratic spline model detects correctly the J-shaped rela-
tionship comprised of an initial drop in risk followed by a steady increase.
The ordinal parameterization gives some indication, but not a statistical-
ly significant suggestion of a J-shaped relationship. Both the linear and
fractional polynomial approaches are misleading; they fail to detect the
protective effect at low dose levels.

6. DISCUSSION

Our two simulations of threshold and J-shaped relationships were
designed to be simplified, but reasonable representations of real world
data having critical characteristics typically encountered in epidemiolog-
ic data: (1) the distribution of the exposure variable is not uniform and
(2) there is variability in the individual responses which might be charac-
terized as individual susceptibility. We have applied several straightfor-
ward statistical approaches to analyze the relationships. The finding that
the methodologies we employed were inconsistent in the detection of the
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underlying relationships is important. Specifically, “straightforward statis-
tical approaches” may fail us in the non-linear setting.

Note that an illustration of U-shaped dose-response data would reveal
that an initial linear fit would typically fail to detect the non-linear shape
altogether. This is the case, since in U-shaped dose response relationships
elevated risks at low and high exposure levels would “cancel out” more
protective effects at intermediate levels

Our illustrations reveal multiple advantages and caveats of using ordi-
nal, polynomial, and spline parameterizations of exposure in the setting
of threshold or | effect relationships. Principal among the advantages is
that the general shape of the dose-response relationship can be inferred.
Thus, we recommend against initial treatments of data that are limited to
the fit of a linear approximation. We also recommend against any other
single approach, especially as there exists statistical software that make it
straightforward to consider several approaches like ordinal, polynomial
and spline reparameterizations of the predictor variable.

The caveats are especially noteworthy for their insights to choice of
analysis. In the threshold effect setting, both fractional polynomial and
spline parameterizations of exposures were partly misleading; the former
suggested a drop in risk for the highest levels of exposure and the latter
suggested a consistent increase in risk for higher levels of exposure.

With respect to U and J-shaped effect relationships, there exist formal
statistical tests for assessing whether an enlarged model (e.g. fractional
polynomial or restricted splines) represents an improvement over a lin-
ear relationship. To our knowledge, however, there do not exist such tests
for threshold effect relationships which can be used in epidemiological
investigations. There exists only a test of this type for use in experimental
settings (Lutz et al., 2002). The development of a test for a threshold
effect for non-experimental settings would be desirable, but might be
either impossible or of limited practical value given the specific chal-
lenges of observational data.

Various authors have commented on the significant limitations of the
use of categorical variables to assess the effect of a continuous exposure
(e.g. false precision and loss of information). The advantages of the use
of fractional polynomials and splines have also been pointed out (e.g.
consideration of a larger family of possible functional form). We do not
disagree with either of these assessments. However, we view the use of cat-
egorical variables for purposes of exploration as potentially yielding
important insights. For example, in epidemiological investigations, if the
underlying dose-response relationship represents a threshold effect, the
use of categories has the potential to provide more clear insights to this
relationship than either fractional polynomials or splines.

We reason that, provided they are examined collectively, each of sev-
eral approaches (ordinal reparameterization, fractional polynomials,
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splines, etc) can contribute meaningfully to the discovery of a nonlinear
dose-response relationship. Thus, we recommend using multiple
approaches when exploring the possibility of a nonlinear dose response
relationship. The caveat to this recommendation is that the results from
each of the approaches should be judged in the context of its specific lim-
itations.

APPENDIX

Non-linear models

We wish to clarify a distinction that is relevant to this report, that
between “non-linear relationship” and “non-linear statistical model”.
“Non-linear relationships” are true non-linear phenomena. Threshold
effects, U-shaped effects, selected laws of physics (like the exponential
decay model) are examples. In contrast, a statistical model that is non-lin-
ear in the independent variables (for example, modeling the effect of age
as a quadratic effect) is nevertheless “statistically” linear when it is linear
in the estimated parameters. Thus, like statistical interactions, statistical
linearity refers to choice of scale, not nature.

Currently, theoretically based formulas are typically not available for
epidemiologic investigations of non-linear phenomena. In the absence of
such theory, in most cases, statistically linear models which include non-
linear modeling of the independent variables represent an adequate
approximation of the relationship of interest. Thus, the focus in this
report has been on models that are linear in the parameters but are non-
linear in the independent variables. Accordingly, the use of the term
“nonlinear” in this article refers to the relationship, not the statistical
model.

Data generating procedures

For both, the threshold and the J-shaped example 1000 observations
were generated randomly, such that the exposure variable dose follows a
chi-square distribution with an expected value of 5 (see Figure 3 for the
distribution of dose).

For the threshold example, the outcome (absence or presence of dis-
ease) was generated such that (uniformly) 5% of the observations with
dose levels below 8 and (uniformly) 50% of the observations with dose
levels above 12 exhibit the disease. For dose levels between 8 and 12, dis-
ease status was generated such that the probability of having the disease
increases linearly from 5 to 50%.

For the J-shaped example, the outcome (absence or presence of dis-
ease) was generated such that the relative risk of disease represents a quad-
ratic function of the exposure (dose). Specifically, the functional form for
the relative risk was generated as 1 — 54/187 dose + 9/87 dose?. This form
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was chosen such that a dose of level 0 and 6 result in a relative risk of 1,
and a dose of level 17 results in a relative risk of 10. Using the quadratic
form, a relative risk was determined for each observation. Using the logis-
tic model, the probability of having the disease was specified according to
the assigned relative risk while assuming a background prevalence of the
disease of 5% (Prob = [1/(1_exp(-1*(-2.944 + log(Relative Risk))))]).
The generated probabilities were subsequently used to randomly assign
the disease status for each of the observations.
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