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THE EFFECT OF RANDOM ERROR IN EXPOSURE MEASUREMENT UPON THE
SHAPE OF THE EXPOSURE RESPONSE 

Kenny S. Crump � The Environ Health Science Institute 

� Although statistical analyses of epidemiological data usually treat the exposure variable
as being known without error, estimated exposures in epidemiological studies often
involve considerable uncertainty. This paper investigates the theoretical effect of random
errors in exposure measurement upon the observed shape of the exposure response. The
model utilized assumes that true exposures are log-normally distributed, and multiplica-
tive measurement errors are also log-normally distributed and independent of the true
exposures. Under these conditions it is shown that whenever the true exposure response
is proportional to exposure to a power r, the observed exposure response is proportional
to exposure to a power K, where K < r. This implies that the observed exposure response
exaggerates risk, and by arbitrarily large amounts, at sufficiently small exposures. It also
follows that a truly linear exposure response will appear to be supra-linear—i.e., a linear
function of exposure raised to the K-th power, where K is less than 1.0. These conclusions
hold generally under the stated log-normal assumptions whenever there is any amount of
measurement error, including, in particular, when the measurement error is unbiased
either in the natural or log scales. Equations are provided that express the observed expo-
sure response in terms of the parameters of the underlying log-normal distribution. A lim-
ited investigation suggests that these conclusions do not depend upon the log-normal
assumptions, but hold more widely. Because of this problem, in addition to other prob-
lems in exposure measurement, shapes of exposure responses derived empirically from
epidemiological data should be treated very cautiously. In particular, one should be cau-
tious in concluding that the true exposure response is supra-linear on the basis of an
observed supra-linear form.
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INTRODUCTION

Statistical analyses of epidemiological data usually treat the exposure
variable as being known without error. However, in many studies the
exposure measure is very uncertain, perhaps more so than that of the
health endpoint serving as the dependent variable. Research into the
effect of exposure measurement error has focused primarily on its effect
upon the ability to detect exposure responses and to correct biases in
regression slopes (see e.g., Thomas et al. 1993); less attention has been
directed at understanding the effect of exposure error upon the shape of
the exposure response. 
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Herein, the primary concern regarding the “shape of the exposure
response” is whether the increase in health outcome with increasing
exposure is linear when plotted against exposure, supra-linear (a steeper
increase in response with increasing exposure at lower exposures than at
higher exposures, as represented by exposure to the K-th power, with K
<1), or sub-linear (a less steep increase in response at lower exposures
than at higher exposures, as represented by exposure to the K-th power,
with K >1). A threshold response, in which there is no effect of exposure
until an exposure threshold is exceeded, can be thought of as a special
case of a sub-linear response.

Exposure-response analyses of epidemiological data are sometimes
used to predict risks at exposure levels that are below those at which risks
can reliably be measured directly. If the exposure-response from an epi-
demiological study is used for this purpose, then the shape of the expo-
sure response will be a critical determinant of the resulting risk levels. In
addition, some guidelines for setting health standards (e.g., USEPA 2003)
mandate radically different approaches for setting exposure standards in
cases where the exposure response is “non-linear” (specifically, sub-lin-
ear), as opposed to cases in which the exposure response is linear. If the
shape of the exposure response from an epidemiological study is used to
decide between “linear” and “non-linear”, the observed shape of the
exposure response curve will be important in setting exposure standards. 

In this note we point out that even unbiased errors in exposure can
cause systematic distortion of the shape of the exposure response. In par-
ticular, such errors tend to cause risks from low exposures to be exagger-
ated and to make a linear exposure response appear supra-linear. 

METHODS AND RESULTS

For illustrative purposes we consider the case of a power function
exposure response (i.e., we assume the exposure-related increase in the
expected health outcome is proportional to the r-th power of the true
exposure) and investigate the effect of exposure error upon this expo-
sure response. Let O represent the health outcome of a person random-
ly selected from an exposed population, and let DT and DM represent his
true and measured exposures, respectively. We assume that O, DT and DM
are random variables. The assumed (true) exposure response can be
expressed mathematically as 

E(O | DT) = α + β * DT
r ,

for some constants α and β, where the left-hand side of this equation denotes
the conditional expectation of the health outcome, O, given the true expo-
sure DT. A linear exposure response corresponds to the special case r = 1.
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The observed exposure response is represented by E(O | DM), the
expected value of the health outcome given the measured value. To com-
pute this quantity we need to assume that E(O | DT, DM) = E(O | DT), i.e.,
that once the true exposure is known, the measured exposure provides
no additional information on the value of the health outcome. With this
assumption, and using basic properties of conditional expectation, if fol-
lows that 

E(O | DM) = E(E(O | DT, DM) | DM)

= E(E( O | DT) | DM)

= E(α + β * DT
r | DM)

= α + β * E(DT
r | DM) (1)

Thus, the observed exposure response is a linear function of the condi-
tional expectation of the true exposure, raised to the r-th power, given the
measured exposure.

To proceed, assumptions are needed regarding the distributions of
DT and DM. We assume that DT is log-normally distributed, with Ln(DT)
having mean µ and standard deviation σ. The expected value of DT is
(Johnson et al. 1994)

E(DT) = exp(µ + σ2/2). (2)

We further assume that the measured exposure can be expressed as
the product of the true exposure and a multiplicative measurement error,
i.e., DM = DT * DE, where the multiplicative error, DE, is independent of
the true exposure, DT, and also has a log-normal distribution. The mean
of Ln(DE) will be denoted by γ and its standard deviation by τ. Under
these conditions, the measured exposure DM also has a log-normal distri-
bution, with expected value given by 

E(DM) = exp(µ + σ2/2 + γ + τ2/2) (3)

For the mean of a sample of observed exposures, DM, to be an unbiased
estimate of the true mean exposure requires that E(DE) = 1, which is true
if and only if γ = –τ2/2. Similarly, Ln(DM) is an unbiased estimate of the
mean of the log-transformed exposures if and only if γ = 0. 

Conditional on the measured value, DM = d, DT can be shown (using
properties of the bivariate normal distribution; see, e.g., Mood and
Graybill 1963) to have a log-normal distribution with the logarithm of the
true exposure having conditional expected value

K. S. Crump

458



E[Ln(DT) | DM = d] = {µ * τ2 + σ2 * [Ln (d) – γ]} / (σ2 + τ2), (4)

and conditional variance

Var [Ln(DT) | DM = d] = σ2 * τ2 / (σ2 + τ2). (5)

Using the formulas for the expectation of the r-th power of a log-normal
distribution in terms of the mean and variance of the log-transformed
variate (equation 1) it follows that, conditional on the measured value,
the expected value of the true exposure raised to the r-th power condi-
tional on the measured value, DM = d, is (Johnson et al. 1994),

E (DT
r | DM = d) = A * dK, (6)

where the constant multiplier A is given by 

A = exp {[r * µ * τ2 + r * σ2 * (r * τ2 / 2 – γ)] / (σ2 + τ2)}, (7)

and the exponent K by

K = r * σ2 / [σ2 + τ2]. (8)

Consequently, from expression (1), the observed exposure response is
given by 

E(O | DM = d) = α + β * A * dK. (9)

It is important to note that, unless there is no measurement error (τ = 0),
the exponent K is less than r. Thus, in this case, measurement error will
always cause the exponent in the exposure response to shift in the direc-
tion of from sub-linear to supra-linear. E.g., a linear exposure response
(r = 1) will appear supra-linear (K < 1). The degree of shift from sub-lin-
earity to supra-linearity (i.e., the amount by which K is less than r) depends
upon the relative size of the variance, τ2, of the multiplicative errors, DE,
in comparison to the variance, σ2, of the true exposures, DT. For example,
if the true exposure response is quadratic (r = 2), but the measurement
error variance exceeds the variance of the true exposure distribution (τ2 >
σ2) then K < 1, and the observed exposure response will be supra-linear. It
should also be noted that, since dK/dr tends towards infinity as d tends
towards zero, the observed exposure response will always overestimate the
true exposure response by arbitrarily large factors at sufficiently small expo-
sures, irrespective of the true exposure response (value of r). 

The range of exposures over which the observed exposure response
overestimates the true response is composed of those exposures, d, for
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which A * dK > dr. Solving this expression for d leads to the conclusion
that the observed exposure response overestimates the true exposure
response for exposures, d, such that 

d < exp[µ + σ2 * (r/2 – γ / τ2)], (10)

and underestimates responses for larger values of exposure. In the special
case of a linear exposure response (r = 1) and measured exposures are
unbiased (γ = –τ2/2), the observed exposure response is an overestimate
whenever the true exposure is less than exp(µ + σ2), the probability of
this occurrence being N(σ) = N{[ln(1 + c2)]0.5}, where c is the coefficient
of variation of the log-normal distribution, and N() is the standard nor-
mal distribution. This expression is always greater than 0.5, and, for
example, if c = 1, then the probability is 0.8. In the special case of a linear
exposure response and γ = 0 (corresponding to the measured exposures
being unbiased on a log scale), the right side of expression (10) reduces
to the mean of the true exposure.

Figures 1 and 2 contain graphs comparing the true and observed
exposure responses for various cases. In both figures the true response
increases linearly (r = 1) from 1 to 2 as exposure increases from 0 to 100
, and σ is fixed at σ = 1. Three values of τ are considered (τ = 0.5, 1, 1.5)
corresponding to different amounts of exposure error in relation to the
spread in the true exposures. With each value of τ selected, µ is chosen
so that 95% of the measured exposures are less than 100, the maximum
exposure graphed. 

Figure 1 considers the case in which measurement errors are unbiased
(γ = –τ2/2). As this figure indicates, large exposure errors, even if they are

FIGURE 1 True and observed dose responses, measured exposures unbiased (γ = –τ2/2)
α = 1; β = 0.01; r = 1; σ = 1
τ = 0.5 (I), 1.0 (II), 1.5 (III)
µ = 2.89 (I), 2.78 (II), 2.765 (III)
(µ selected so that 95% of observed doses are below a dose of 100)
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unbiased, can lead to extreme distortion of the exposures response. E.g.,
with τ = 1.5, the observed exposure response rises almost vertically from 1
to 1.2 and then flattens out, approaching horizontal. The flattening is less
severe with smaller values of τ (1.0 and 0.5). However, it should be kept in
mind that all three observed exposures responses overestimate the true
increase over the background value of 1 by arbitrarily large factors for very
small exposures. In all three cases, the observed exposure response over-
estimates the true one for exposures below the exposure value of about 50
and underestimates for higher exposures. 

Figure 2 was constructed in a manner identical to Figure 1 except it
considers the case in which measured exposures are unbiased on a log
scale (γ = 0). Here the range of exposures for which overestimation
occurs is narrower, but the degree of underestimation at the highest
exposures is more severe.

All the results presented thus far assume a log-normal for both true
exposures and exposure errors. Other distributional assumptions are
more difficult to investigate because the distribution of the true expo-
sures conditional on the measured exposures is generally not mathemat-
ically tractable. To give some indication of the robustness of the results
reported herein to the log-normal assumption, one calculation was made
assuming a uniform distribution of true exposures (uniform between 0
and 110), with independent log-normally distributed error (γ = 0, τ = 1.3).
The corresponding observed exposure response, computed using
Markov Chain Monte Carlo (Gilks et al. 1996), is shown in Figure 3. This
observed response is very similar in shape to those shown in Figures 1 and
2, which shows that the assumptions of log-normality are not necessary
for our general conclusions. 

FIGURE 2 True and observed dose responses, measured exposures unbiased on a log scale (γ = 0)
α = 1; β = 0.01; r = 1.0; σ = 1
τ = 0.5 (I), 1.0 (II), 1.5 (III)
µ = 2.77 (I), 2.28 (II), 1.65 (III)
(µ selected so that 95% of observed doses are below a dose of 100)
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DISCUSSION

This work demonstrates that measurement errors, even if unbiased,
distort the shape of the exposure response curve. In the situations con-
sidered herein, that distortion always converts an exposure response in
the direction of from sub-linearity to supra-linearity; e.g., a linear expo-
sure response is converted into a supra-linear shape. Although the analy-
sis did not define the range of circumstances under with this type of dis-
tortion occurs, it did confirm that it always occurs with log-normally dis-
tributed exposures and independent log-normally distributed errors.
This formulation should be general enough to approximate a wide range
of conditions involving random, independent exposure errors. A qualita-
tively very similar result was obtained assuming a uniform distribution of
true exposures (Figure 3). Thus, the effect of random exposure error
seems to be in the direction of making low exposures appear more dan-
gerous than they actually are. 

The results derived herein apply to the theoretical (i.e., expected)
response. The effect of random error in the dependent variable was not
investigated. Except for assuming a specific form for the expected value
of the response variable given the true exposure, no other assumption
was made about the form of the response variable. Consequently, these
results apply equally to continuous and categorical responses. 

Thus, it is reasonable to conclude that random independent expo-
sure errors in general tend to convert exposure responses in the direction
of from sub-linearity to supra-linearity. A threshold response is a special
case of sub-linearity, in which case random errors would obscure the
threshold by improperly assigning exposure-related cases occurring

FIGURE 3 True and observed responses assuming true exposures are uniformly distributed
α = 1; β = 0.01; r = 1; τ = 1.3; γ = 0
True doses uniformly distributed from zero to 100
(Observed response approximated using Markov Chain Monte Carlo)



above the exposure threshold to lower exposures, and thereby making a
sub-linear exposure response appear more linear. 

The underlying model of measurement errors used herein will gen-
erally be an oversimplification the true situation. For example, the
assumption of independence of true exposures and measurement errors
may not be warranted. In occupational cohort studies exposures are often
assigned to work areas based on often limited sampling, perhaps supple-
mented with ad hoc information, and then linked to individual workers
through work histories. In this situation, exposure errors of workers that
worked in the same location would not be independent. Exposure errors
in different locations could also be different. Although such potential
problems suggest that the analysis provided herein is oversimplified, their
existence does not suggest that the problem of the distortion of the expo-
sure response is overstated, but rather provide even more evidence that
the observed exposure-response shape may be unreliable. 

The degree of distortion of the exposure response depends upon
the spread of the measurement error distribution (τ) in comparison to
the spread of the true exposure distribution (σ). In practice this is a
very difficult issue to investigate. Thomas et al. (1993) discuss several
methods of dealing with measurement error when analyzing epidemi-
ology data, none of which are very satisfactory. The most general
method is the “full likelihood” method in which assumptions are made
regarding the joint distribution of true exposures, measurement errors,
and the true exposure response, and the resulting likelihood of the
observed data (both measured exposures and health outcomes) is cal-
culated. Since the true exposures cannot be observed, the specification
of their distribution will be very uncertain. The computation of the like-
lihood will be computationally complex since even with lognormal
assumptions, the unknown true exposures will have to be integrated out
of the likelihood using numerical integration. It seems unlikely that this
approach would provide definitive information on whether the
assumed exposure response is valid.

In addition to random exposure errors, there are other sources of dis-
tortion of the shape of the exposure response. If a study utilizes an inap-
propriate control group in which the response is low compared to that
expected in the study population, the exposure response will tend toward
an appearance of supra-linearity. Systematic errors in exposure also clear-
ly can distort the shape of the exposure response. One example of this is
when the highest exposures are overestimated by not modifying results
from area samples to account for the use of respirators. 

Because of these potential distortions of the exposure response
shape, one should be cautious in drawing conclusions about the shape of
the exposure response from epidemiological data. Since even random,
unbiased errors in exposure measurement will convert a linear exposure
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response, and can a convert sub-linear response, into a seemingly supra-
linear shape, one should be particular cautious about concluding an
exposure-response is truly supra-linear. In particular, it could be inadvis-
able to extrapolate an observed supra-linear exposure response to low
exposures to predict human risk.
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