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� The possibility of hormesis in individual dose-response relations undermines tradi-
tional epidemiological criteria and tests for causal relations between exposure and
response variables. Non-monotonic exposure-response relations in a large population may
lack aggregate consistency, strength, biological gradient, and other hallmarks of tradi-
tional causal relations. For example, a u-shaped or n-shaped curve may exhibit zero cor-
relation between dose and response. Thus, possible hormesis requires new ways to detect
potentially causal exposure-response relations. This paper introduces information-theo-
retic criteria for identifying potential causality in epidemiological data that may contain
nonmonotonic or threshold dose-response nonlinearities. Roughly, exposure variable X is
a potential cause of response variable Y if and only if: (a) X is INFORMATIVE about Y (i.e.,
the mutual information between X and Y, I(X; Y), measured in bits, is positive. This pro-
vides the required generalization of statistical association measures for monotonic rela-
tions); (b) UNCONFOUNDED: X provides information about Y that cannot be removed
by conditioning on other variables. (c) PREDICTIVE: Past values of X are informative
about future values of Y, even after conditioning on past values of Y; (d) CAUSAL ORDER-
ING: Y is conditionally independent of the parents of X, given X. These criteria yield prac-
tical algorithms for detecting potential causation in cohort, case-control, and time series
data sets. We illustrate them by identifying potential causes of campylobacteriosis, a food-
borne bacterial infectious diarrheal illness, in a recent case-control data set. In contrast to
previous analyses, our information-theoretic approach identifies a hitherto unnoticed,
highly statistically significant, hormetic (U-shaped) relation between recent fast food con-
sumption and women’s risk of campylobacteriosis. We also discuss the application of the
new information-theoretic criteria in resolving ambiguities and apparent contradictions
due to confounding and information redundancy or overlap among variables in epidemi-
ological data sets.

1. INTRODUCTION

This note proposes and illustrates a solution to the problem of detect-
ing and estimating unknown, possibly non-monotonic exposure-response
relations in large multivariate epidemiological data sets. This problem is
important because existence of a monotonic exposure-response relation
has traditionally been regarded as one indication that a statistical associ-
ation may be causal (Weed and Gorelic, 1996). However, there is no rea-
son that causal exposure-response relations must necessarily be monoto-
nic, and the reality of hormesis in many systems suggests that sometimes
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they are not. Hence, methods are needed to detect and quantify non-
monotonic (e.g., U-shaped, n-shaped, N-shaped, or more complicated)
relations in epidemiological data. This statistical challenge is exacerbated
by the fact that hormetic effects are often relatively small and may involve
interactions among multiple variables, so that searching for them in com-
plex data sets may involve detecting relatively weak signals among a huge
number of possibilities.

As an example, Figure 1 shows a U-shaped exposure-response relation
identified in data from a recent food safety case-control study of campy-
lobacteriosis (Friedman et al., 2004). The data were collected by the
Centers for Disease Control and Prevention (CDC) as part of a study of
risk factors for sporadic cases of campylobacteriosis, a common food-
borne bacterial illness. As described by Friedman et al. (2000), 

We enrolled patients with culture-confirmed Campylobacter infections
from Foodborne Diseases Active Surveillance Network (FoodNet) sites
in California, Georgia, Maryland, Minnesota, New York and Oregon.
Information about demographics, clinical illness, and exposures occur-
ring within 7 days before diarrhea onset was collected using a standard-
ized questionnaire. By using random-digit dialing, we interviewed one
age-group matched, site-matched community control for each patient. ...
From January 1, 1998, to March 1 ,1999, 1463 patients and 1317 controls
were enrolled in the study.

The data set contains one record (with over 800 variables covering
demographics, medical information, and recent self-reported food con-
sumption and cooking habits information) for each case and each con-
trol. After QA/QC reviews by CDC, it has previously been analyzed by
CDC and public health researchers (e.g., Kassenborg et al., 2004). To our
knowledge, this data set has not previously been analyzed for evidence of
hormesis. The data set was provided to the author as an Excel file by CDC
upon request. 

In the classification tree notation of this diagram (Lemon et al.,
2003), each node in the tree (i.e., each box) indicates the percentages of
cases (upper percentage) and controls (lower percentage) for the sub-
population described by that box. 

The integer at the bottom of each box indicates the total number of
subjects described by it. Among 1444 subjects, 59.5% were confirmed
campylobacteriosis cases and 40.5% were matched controls, as shown in
the top node of Figure 1. (Campylobacteriosis is a food-borne diarrheal
illness that typically lasts several days and then, in over 99% of cases, spon-
taneously resolves itself without need for treatment.) The variable FAST
FOOD PER WEEK indicates the number of times that subjects reported
eating at a fast food restaurant in the 7 days prior to the onset of campy-
lobacteriosis illness. Thus, this small tree displays basic cross-tab informa-
tion for case status vs. fast food consumption frequency. (“???” denotes
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missing data and “77” is a don’t know/no answer code.) The methods
used to identify the relation in Figure 1 are discussed in the next section. 

The classification tree program used to generate Figure 1
(KnowledgeSeeker, marketed by Angoss Software, 2005) automatically parti-
tions the ordinal variable FAST FOOD PER WEEK into the discrete cate-
gories shown (i.e., the branches), to create conditional distributions that
are statistically significantly different after adjusting for multiple testing
bias due to repeated testing with multiple boundary locations. The nota-
tion [x, y) on a branch for FAST FOOD PER WEEK indicates the interval
x ≤ FAST FOOD PER WEEK < y; thus, the branch labeled [0, 1), for exam-
ple, denotes people who reported eating at fast food restaurants 0 times
in the week prior to illness. These people are at significantly higher risk
than people who ate 1 or 2 meals at fast food restaurants (55.8% vs.
34.4%), but risk then increases for more frequent exposures to fast food,
reaching a case rate of 69.3% among subjects reporting 5 or more fast
food meals per week. The KnowledgeSeeker program is well-suited to this
type of analysis as it works with both continuous and discrete variables
(including binary and ordered categorical variables) to create highly pre-
dictive risk classes without making any specific parametric modeling
assumptions (Biggs et al., 1991).

The data display a typical U-shaped (or moderately J-shaped) rela-
tion. Such patterns often are not discovered in standard parametric mul-
tivariate modeling (e.g., linear or logistic regression with automatic back-
ward or forward stepwise variable selection) even when they exist, since
the U shape cannot be expressed by the coefficients in a regression
model. (If dummy variables are used to break the domain of the inde-
pendent variables into downward-sloping and upward-sloping compo-
nents, then regression methods can be applied successfully, but this
requires knowing the correct answer in advance.) The problem is worse
when there are hundreds of variables (as in this data set, which has over
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FIGURE 1: U-Shaped Relation Between Fast Food Consumption and Risk of Foodborne Illness
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800) and many possible interactions: even highly predictive U-shaped
relations may be impossible to discover by standard methods in the sea of
possible relations. 

The following sections develop a possible solution and illustrate it for
this data set, building in part on ideas from classification tree analysis,
which is designed to detect high-order interactions in models that need
not be linear or monotonic.

2. METHODS: INFORMATION-THEORY CRITERIA FOR IDENTIFYING
NON-MONOTONIC CAUSAL EXPOSURE-RESPONSE RELATIONS FROM
DATA

Traditional epidemiology often begins by seeking non-random asso-
ciations between potential explanatory variables and response variables
of interest, e.g., by using logistic regression modeling to screen for statis-
tically significant predictors of increased risks of adverse health effects
(e.g., Lemon et al., 2003). Fully automated variable selection is a notori-
ously challenging problem, however. On the one hand, “data dredging”
(e.g., using automated variable-selection criteria such as the AIC, BIC, or
Mallows criteria included in many standard commercial regression soft-
ware packages) can easily produce false positives (e.g., Raftery et al.,
1997). On the other, non-monotonic relations for predictors having both
positive and negative relations with risk over different ranges can easily
escape detection by these methods, thus producing false negatives. To
help overcome these problems, we propose to replace more traditional
measures of statistical association between variables, such as correlation
coefficients or t-tests of regression coefficients, with mutual information—
a measure that also works for arbitrary non-monotonic relations and that
is nonparametric, or “model free”, thus reducing the problems of multi-
ple testing bias and model selection bias. 

Information Theory Background: Entropy, Mutual Information, and
Conditional Independence

Let X and Y be two discrete random variables, e.g., X = level of expo-
sure, Y = level of response. (The following methods can also apply to con-
tinuous variables, as in Cover and Thomas, 1991, but we focus on the dis-
crete case, as this is most useful in conjunction with classification trees.)
Uncertainty about any discrete random variable X taking values xi with
corresponding probabilities pi can be quantified by its entropy, defined as:

H(X) = entropy of X = –Σipilog2pi = E[log2(1/pi)] bits

H(X) may be interpreted as the average amount of information gained
when the value of X is learned. (It is also the expected minimum number
of binary yes-no questions with equally likely answers (i.e., Pr(yes) =
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Pr(no) = 0.5) that one would need to have answered about the value of X
to uniquely identify its value.) 

The mutual information between any two random variables X and Y,
denoted by I(Y ; X), is defined as:

I(Y ; X) = H(Y) – H(Y | X).

where H(Y | X) = ΣxPr(X = x)H(Y | X = x) = EX[H(Y | X)] is the condi-
tional entropy of Y given X. For any specific observed value of X, say, x,
the conditional entropy of Y given that value of X is:

H(Y | X = x) = –ΣiPr(Y = yi | X = x)log2Pr(Y = yi | X = x).

Some intuitively appealing properties of entropy H and mutual informa-
tion, I, include: 

(a) I(X ; Y) = I(Y ; X), i.e., X and Y provide the same amount of informa-
tion, or uncertainty reduction, about each other; 

(b) H(Y | X) ≤ H(Y), i.e., conditioning on (or learning the value of) X
never increases the expected uncertainty about Y, but is expected to
decrease it unless they are statistically independent.

(c) H(X, Y) = H(X) + H(Y | X), i.e., the entropy of the joint distribution
of X and Y is the entropy of X plus the entropy of Y given X. 

(d) I(X ; Y) > 0 if Pr(Y | X = xi) depends on xi. For example, if the prob-
ability distribution of response variable Y depends on the value of
exposure variable X, then the mutual information between them is
positive. This allows mutual information to be used in screening for
possible exposure-response relations. 

(e) Let the “causal graph” (also called “Bayesian network”) notation Z →
X → Y indicate that the probability distribution of Y depends on the
value of X and that the probability distribution of X depends on the
value of Z, but the conditional probability distribution of Y given any
specific value of X does not depend on the value of Z. In other words,
Y is conditionally independent of Z given X. (However, Y is not uncon-
ditionally independent of Z, since Z affects Y through X.) Then I(Y ;
X) ≥ I(Y : Z), with equality if and only if X is a deterministic, one-to-
one function of Z. More generally, in a causal graph, more remote
ancestors of a node can never be more informative about it than its
direct parents. (In a causal graph, nodes represent variables, and an
arrow directed from X to Y indicates that the probability distribution
of Y depends on the value of X. Such graphs are required to be
acyclic. Each node is conditionally independent of its more remote
ancestors, given the values of its parents, i.e., of nodes with arrows
pointing into it.)
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(f) In a causal graph model X – Y – Z (with the arcs oriented in any di-
rections), more remote ancestors can never be more informative that
direct parents. Thus, I(X ; Z) ≤ I(X ; Y). Moreover, I(X ; Z | Y) = 0 (i.e.,
X and Z are conditionally independent given Y) unless both X and Z
point into Y.

For these and other aspects of information theory, see Cover and
Thomas, 1991.

Classification Trees and Causal Graphs via Information Theory

The above properties suggest that mutual information can be used to
help search for potential dose-response relations or exposure-response
relations and to identify direct parents of responses in large, multivariate
data sets. Two main families of practical data analysis algorithms have
exploited this potential: classification tree algorithms and causal graph
“learning” algorithms. 

A classification tree analysis begins with a specific dependent variable
of interest, such as a health response variable in a population, and repeat-
edly conditions on the “most informative” variables in the data set to cal-
culate its conditional probability distribution, given their values. At any
stage in the construction of a tree, each leaf represents a set of values of
the variables that have been conditioned on so far. There is a condition-
al distribution of the values of the dependent variable at each node, given
the values of the conditioned-on variables leading to it. At each leaf, the
myopically “most informative” variable to condition on next is the one hav-
ing the highest mutual information with the conditional distribution of the
response variable at that leaf. (Less myopic, more CPU-intensive proce-
dures seek the subsets of variables that jointly give the greatest reduction
in the entropy of the dependent variable, and then condition on combi-
nations of their values. Continuous variables can be discretized into con-
tiguous ranges as part of this search process by taking either maximum
reduction in entropy of the dependent variable or maximal increase in
the mutual information of all directly related variables as the goal; see
Friedman and Goldsmitz, 1996b). When further conditioning provides
no additional useful information about the dependent variable (e.g., as
assessed by cross-validation estimation of the true error rate resulting
from using the conditional distributions at the current leaf nodes to make
predictions about the dependent variable), tree-growing stops. 

Like classification trees, causal graphs store conditional distributions
at each node. However, the conditional distribution at a node is for the
variable represented by that node, rather than for some other dependent
variable. Instead of there being a single dependent variable, there is usu-
ally a set of variables related by statistical dependence and conditional
independence relations that are expressed by the directed arcs (“arrows”)
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among the variables (nodes). Moreover, the conditional distribution at
any node is conditioned only on the values of its parents, i.e., the variables
that point into it. This information may be stored in a conditional proba-
bility table (CPT) specifying the different conditional probability distribu-
tions of that node’s variable, for each combination of values of its parents.
(Combinations of parent values that lead to the same conditional distri-
bution can be aggregated, e.g., by using ranges of values of the variables
to create distinct rows in the CPT.) Several computationally practical algo-
rithms for fitting classification trees and causal graphs to large, multivari-
ate data sets are now available (Murphy, 2001; Tsamardinos et al., 2003 )

Classification trees and causal graphs are closely related, as follows.
Consider an ideal classification tree algorithm, in which X appears in the
tree for Y if I(X ; Y) > 0 (and I(X ; Y | C) > 0 even after conditioning on
the other variables, C, in the tree.) For any data set with enough obser-
vations, adequate variability in the values of its variables, and redundant
variables eliminated (e.g., by replacing any cluster of redundant variables
A = B = ... = C with any one of them, or more generally by pruning all vari-
ables Z satisfying I(X ; Z) = H(X) for some remaining X), the following
properties hold (e.g., Frey et al., 2003):

1. All of the parents of a node appear in any mutual information-based
classification tree having that node variable as its dependent variable.
(This is because, by definition, the conditional distribution of the
node depends on the values of its parents.) 

2. Once a node’s parents (and children, if any) have been included in
a classification tree, i.e., conditioned on, no more remote ancestors
(or descendants) will enter its classification tree. (By definition, the
node’s value is conditionally independent of its more remote ances-
tors, given the values of its parents.) 

3. In the causal graph X ← Z → Y, variable Z is called a confounder of the
statistical relation between X and Y. It explains away an apparent asso-
ciation between them. Including the parents of a health response
variable in its classification tree (i.e., conditioning on them) elimi-
nates all variables that are statistically associated with the response
variable only due to confounding. (More generally, X is a parent of Y
only if there is no subset of variables C such that I(X ; Y | C) = 0, i.e.,
only if X provides information about Y that cannot be fully removed
by conditioning on any other subset of variables. In the example X ←
Z → Y, the tree for Y will include Z but not X. The confounded rela-
tion between X and Y is eliminated when the tree conditions on Z.)

4. When a classification tree is grown for a particular node variable,
using only its parents as conditioning variables, the leaves of the re-
sulting tree contain the conditional probability table (CPT) informa-
tion for that node. (The empirical CPT based on the raw data is a max-

Detecting causal nonlinear exposure-response relations

125



imum-likelihood estimate of the true CPT. It can be used together
with a multivariate Dirichlet prior to develop Bayesian posterior esti-
mates of the CPT for purposes of uncertainty analysis; see e.g., Fried-
man and Goldszmidt, 1996 and Murphy, 2001.) 

By property 1, an automated tree-growing procedure based on condi-
tioning on variables having the highest estimated mutual information
with the dependent variable tends to create a tree containing the node’s
parents. In theory, if the dependent variable is a response variable with
no children in the data set, the classification tree should consist only of
the parents of that node in a causal graph. In practice, it may also include
more remote ancestors (and children and descendants, if there are any)
since the empirical joint distribution of the variables among the observed
cases may contain sampling variability that causes it to differ from the
underlying joint distribution determined by the data-generating process.
Property 2 can then be used to prune more remote ancestors (and
descendants) by testing whether some variables drop out of the tree when
others are conditioned on first. In principle, those that cannot be elimi-
nated in this way are the parents and children of a node. To distinguish
among parents and children (which are mutually conditionally inde-
pendent, given the value of the node variable) for variables that have
both, it is necessary to orient the arcs.

Health responses are often known a priori to be possible children of
exposure-related variables, but not possible parents. Moreover, earlier
observations can usually be causes (parents) of later ones but not conse-
quences (children). These properties help to orient the arrows near
exposure and response variables in a causal graph. [More generally, if
time series information is available on variables, as in many longitudinal
epidemiological studies, then X is a potential cause of Y only if the histo-
ry of X up to and including each time t is informative about the future of
Y after t, even after conditioning on the past of Y, i.e., 

I(X–(t) ; Y+(t) | Y–(t) ) > 0,

where X–(t) denotes the set of X values at times ≤ t, Y–(t) the set of Y val-
ues at times ≤ t, and Y+(t) the set of Y values after t. This provides an infor-
mation-theoretic generalization of the concept of Granger causality for
multiple time series (e.g., Guatama and Van Hulle, 2003.)]

Property (f) above, which shows that mutual information with a vari-
able Y increases along chains of variables leading to it helps to orient the
remaining arcs. The following PC algorithm (Glymour and Cooper, 1999,
here modified to use classification trees and mutual information) pro-
vides a systematic approach to orienting arcs even without such domain-
specific knowledge:
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1. Grow a classification tree for each node. Create an undirected arc be-
tween each node and every node that appears in its tree (and that can-
not be forced to drop out after conditioning on other variables.)

2. Orient any triple of nodes X – Y – Z as X → Y ← Z if and only if I(X ;
Z | Y) > 0, i.e., if and only if X and Z are dependent when conditioned
on Y.

3. Orient any remaining triple X → Y – Z as X → Y → Z.
4. Orient any pair X – Y with a directed path through X to Y as X → Y.

(For example, if X – Y → Z and I(Z; Y) > I(Z ; X) > 0 and I(Z ; X | Y)
= 0, then create X → Y.)

5. Repeat steps 3-5 until no more arc directions can be assigned.

A variety of other algorithms are now available for fitting causal graph
models even to very large multivariate data sets (Murphy, 2001;
Tsamardinos et al., 2003).

We can now summarize our proposed methodology for identifying
potential causal exposure-response relations in large data sets, even if the
relations are non-monotonic, as follows. First, pre-process the data to remove
any redundant variables and to eliminate any variables that occur after
the response of interest or that are otherwise known not to be candidates
for potential causal variables. (Redundant variables appear as the only
nodes in each others’ classification trees and satisfy I(X ; Z) = H(X).)
Next, identify parents of the response variable in the causal graph for that
node. Finally, fit a nonparametric model, such as a classification tree, a non-
parametric regression model, or simply the relevant conditional proba-
bility table (CPT) (possibly smoothed or approximated by simple regres-
sion functions), to the reduced data set consisting of the response vari-
able—which is the dependent variable—and its parents. This approach
can be implemented using commercially available classification tree and
Bayesian network learning software products, such as KnowledgeSeeker
and BayesiaLab, respectively.

3. RESULTS FOR THE CAMPYLOBACTERIOSIS CASE CONTROL DATA

The cross-tab information in Figure 1 illustrated a single “split” (i.e.,
conditioning the dependent variable, CASE STATUS, on a single vari-
able, FAST FOOD PER WEEK.) But this is only one of many statistically
significant splits, each having positive mutual information with the
dependent variable. Figure 2 shows a more fully developed classification
tree. All of the variables in this tree are parents of CASE STATUS, in that
none can be eliminated by conditioning on other variables. (Potential
children and descendants of CASE STATUS, mainly describing duration
and treatment of diarrhea, were pruned in the pre-processing step.
Throughout the tree, variables are coded so that 1 = Yes, 2 = No, 7 and 77
= don’t know/no answer/refused to answer. The KnowledgeSeeker algo-
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rithm is computationally efficient, taking on the order of 10 seconds to
develop each “split” in the tree when run on a laptop PC.)

In this tree, all potential confounding by other variables in the data set
has automatically been eliminated, as discussed above. Thus, the statisti-
cally significant (but non-monotonic) relation between FAST FOOD PER
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FIGURE 2: Classification Tree for Campylobacteriosis Risk

 59.5%
 40.5%
1444

SEX

??? F M

 50.0%
 50.0%
20

 50.3%
 49.7%
791

TRAVEL outside US

2.00 1.00 ???

 42.7%
 57.3%
672

VISIT FARM

2.00 1.00 ???

 39.0%
 61.0%
595

PET08 = Puppy

???
2.00

1.00

 37.1%
 62.9%
568

CHIKSOAP = kitchen hygiene

1.00 ???
2.00
7.00 26.4%

 73.6%
197

FAST FOOD PER WEEK

[0,1) [1,5) [5,77]

 33.3%
 66.7%
78

 16.0%
 84.0%
106

THAWCHIK

1.00
7.00

2.00

  8.3%
 91.7%
72

 32.4%
 67.6%
34

 69.2%
 30.8%
13

 42.9%
 57.1%
371

FAST FOOD PER WEEK

???
[0,1)

[1,5) [5,77]

 50.7%
 49.3%
144

 33.3%
 66.7%
177

 54.0%
 46.0%
50

 77.8%
 22.2%
27

 56.2%
 43.8%
48

 96.6%
  3.4%
29

 85.7%
 14.3%
56

100.0%
  0.0%

63

 71.2%
 28.8%
633

TRAVEL outside US

2.00 ???
1.00

 65.3%
 34.7%
521

VISIT FARM

2.00 1.00
???
7.00 59.1%

 40.9%
416

PET08 = Puppy

???
2.00
7.00

1.00

 57.4%
 42.6%
397

CHIKSOAP = kitchen hygiene

1.00 ???
2.00
7.00 38.7%

 61.3%
62  60.9%

 39.1%
335

THAWCK2

1.00 ???
2.00

 30.0%
 70.0%
30

 63.9%
 36.1%
305

 94.7%
  5.3%
19

 89.5%
 10.5%
105

 99.1%
  0.9%
112

Legend

CASE STATUS breakdown
Case
Control
total



WEEK and risk (i.e., CASE STATUS) is potentially causal: it cannot be
explained away by confounding with other variables in the data set. For
example, consider the hypothesis that men, who intrinsically have greater
susceptibility to campylobacteriosis, than women also eat at fast food
restaurants more frequently, and that this explains the association between
fast food dining and risk of campylobacteriosis. This hypothesis can be dia-
grammed as: FAST FOOD PER WEEK ← SEX → CASE STATUS. It is
directly falsified by the classification tree in Figure 2, since the CASE STA-
TUS varies significantly with FAST FOOD PER WEEK even after condi-
tioning on SEX = F, thus proving that I(CASE STATUS ; FAST FOOD PER
WEEK | SEX) > 0. Other confounding-based explanations for the parents
of CASE STATUS shown in Figure 2 are similarly precluded by the data.
(A few other variables, including drinking untreated water and having
health insurance, were also identified as parents of CASE STATUS for
small sub-populations, but were pruned from the bottom of Figure 2, leav-
ing the tree shown. This was done to save space and because they affected
only small fractions of the sample and did not appear in multiple parts of
the tree, indicating that they had at most only very limited impacts.) 

Also interesting is the set of variables that do not appear in the full clas-
sification tree for CASE STATUS. For example, it is well known that drink-
ing raw milk is a risk factor for campylobacteriosis. Indeed, the tree-grow-
ing program lists it as a significant split, i.e., a variable having significant
mutual information (and positive association, by any measure) with CASE
STATUS. However, conditioning on VISIT FARM eliminates drinking raw
milk as an additional parent of CASE STATUS: they belong to the same
cluster of closely associated, partly redundant variables. Similarly, although
CHIKSOAP, which records whether subjects reported using soap to wash
after handling raw chicken in the kitchen, is a parent of CASE STATUS,
buying, handling, thawing, and cooking raw chicken and eating chicken at
home all belong to a cluster of tightly inter-related variables that are all
associated with reduced risk of being a case. (This cluster of variables is
represented by THAWCHICK and THAWCK2 in Figure 2, referring to

Detecting causal nonlinear exposure-response relations

129

TABLE 1: Data for Figure 3

Fraction of Exposed Women 
Fast Food Meals  in Prior  Week Who Are Campylobacteriosis Cases N

0 0.51 276
1 0.33 160
2 0.31 104
3 0.37 54
4 0.37 19
5 0.64 22

All Groups 0.42 650



thawing chicken in any manner and thawing chicken in the refrigerator at
home, respectively.) Thus, CHIKSOAP may be a marker for kitchen
hygiene in general, rather than specifically for chicken-associated risk. 

Figure 3 displays the U-shaped exposure-response relation identified
in Figure 2 for FAST FOOD PER WEEK and CASE STATUS in a more
conventional (interaction plot) format. CASE STATUS has been recoded
in Figure 3 so that 1 = case, 0 = control, as this is more usual than the 1
vs. 2 coding used in the original Centers for Disease Control data file.
Table 1 summarizes the sizes of the different groups. The reduction in
risk between the group exposed to 0 fast food meals per week and the
group exposed to fast food once or twice per week is statistically signifi-
cant (p < 0.05) by all standard tests.

Although beyond the scope of the data, is tempting to speculate that
the increased risk of illness among people with low exposures to fast food
may be due to underdeveloped acquired immunity to common
pathogens such as Campylobacter, as previously noted for outbreaks asso-
ciated with raw milk consumption (Blaser et al., 1987). 

4. CONCLUSIONS

This paper has proposed and illustrated a general information-theo-
retic approach to detecting causal non-monotonic exposure-response
relations in large epidemiological data sets, based on combining methods
from causal graph (or “Bayesian networks”) modeling and classification

L. A. Cox, Jr

130

FIGURE 3: A U-Shaped Exposure-Response Relation for Women
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tree analysis. Applied to a recent food safety case control data set, the new
approach successfully discovered a potentially causal (significantly
informative, not confounded) U-shaped relation between consumption
of fast food by women and resulting risk of a diarrheal illness (campy-
lobacteriosis). This sex-specific non-monotonic relation has not previous-
ly been identified in analyses of this data using logistic regression model-
ing (e.g., Friedman et al., 2004). 

In principle, the information-theoretic approach can find arbitrarily
shaped causal relations in other large data sets. They essential steps are:
(a) Identify informative variables that help to predict the dependent variable
(e.g., illness risk) of interest. This can be accomplished via classification
tree analysis (even for non-monotonic relations). (b) Eliminate variables
(e.g., confounders, redundant variables, variables that follow the effect of interest in
time) whose mutual information with the dependent variable is fully
explained away by the information contained in other variables or that are
inconsistent with the hypothesis of causality. This can be accomplished by
conditional independence tests, e.g., using Bayesian network algorithms
(including classification tree analysis of individual nodes in a Bayesian net-
work.) (c) Quantify the remaining relation between the dependent variable
and its parents using non-parametric methods (e.g., classification trees
and conditional probability tables with nonparametric smoothing.) The
final relation, even if non-monotonic, reveals the shape of potential causal
relations between the dependent variable and a minimal set of predictors
(its “parents” in a causal graph.) Current algorithms are practical even for
data sets with thousands of records and variables, as run times are on the
order of a few minutes on current laptop or desk top machines. Thus,
these methods appear to be practical for identifying hormesis (U-shaped)
relations and other nonlinearities even in large epidemiological data sets.
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